
Improving Semi-Supervised Domain Adaptation Using Effective Target Selection

and Semantics

Anurag Singh1*, Naren Doraiswamy1*, Sawa Takamuku2, Megh Bhalerao1, Titir Dutta1, Soma Biswas1, Aditya Chepuri3

Balasubramanian Vengatesan3, Naotake Natori2. (* denotes equal contribution)
1Indian Institute of Science, Bangalore, 2Aisin Corporation, Japan †, 3Aisin Automotive Haryana Pvt. Ltd, Bangalore†

Abstract

Recently, semi-supervised domain adaptation (SSDA)

approaches have shown impressive performance for the do-

main adaptation task. They effectively utilize few labeled

target samples along with the unlabeled data to account

for the distribution shift across the source and target do-

mains. In this work, we make three-fold contributions, con-

centrating on the role of target samples and semantics for

the SSDA task. First, we observe that choosing a few, but

an equal number of labeled samples from each class in the

target domain requires a significant amount of manual ef-

fort. To address this, we propose an active learning-based

framework by modeling both the sample diversity and the

classifier uncertainty. By utilizing k-means initialized clus-

ter centers for picking a small pool of diverse unlabeled

target samples, we compute a novel classifier adaptation

uncertainty term to select the most effective samples from

this pool, which are queried to obtain their true labels from

an oracle. Second, we propose to weigh the hard target

samples more, without explicitly using their predicted, pos-

sibly incorrect labels, which guides the adaptation process.

Third, we note that irrespective of the domain shift, the se-

mantics of the classes remain unchanged, so they can be

effectively utilized for this task. We show that initializ-

ing the class-representations or prototypes with the class-

semantics helps in bridging the domain gap significantly.

These along with adversarially learnt entropy objective re-

sults in a novel framework, termed STar (Select TARgets),

which sets a new state-of-the-art for the SSDA task.

1. Introduction

With the availability of large scale labeled data and

computational resources, deep neural networks have shown

impressive performance on various computer vision tasks

such as, image classification [14], retrieval [11], segmenta-

tion [17], etc. However, when tested on data with a different
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distribution, these models often fail to generalize well, lead-

ing to a sharp decrease in their performance. For most real-

life scenarios, the data used for training the model (source

domain) and the test data (target domain) follow different

distributions (termed as domain shift), which results in this

performance degradation. Thus, for deploying a trained

neural network in real world, it is extremely important for

this model to be able to adapt to the new domain, which is

the goal of domain adaptation (DA) [32, 2]. Unsupervised

DA aims to learn a classifier using label rich source domain

data and then adapt it to a related but unlabeled target do-

main. Although reasonably successful, these approaches

suffer from bias towards the task specific boundaries on

the source domain data, due to its label-based strong su-

pervision [28]. Hence, to calculate the disagreement be-

tween the source and target distributions for improving the

generalization of the network, a small amount of labeled

target data is very useful. Recently, semi-supervised DA

(SSDA) [26, 13, 24], where a few (1-3 samples per class)

labeled samples from the target domain are utilised along

with the remaining unlabeled target data have received sig-

nificant attention and have been used to tackle the condi-

tional shift problem to a certain extent.

In this work, we propose a novel approach focusing on

the importance of target sample selection and class seman-

tics for the SSDA task. First, we make the following obser-

vations: (1) Since very few labeled samples from the target

domain are being utilised, it is important that these samples

are effective for addressing the domain shift. However, ran-

dom selection of such target samples may not ensure the

same and may also result in outlier selection; (2) Though

few in number, to select equal number of samples from each

class requires an expert to manually go through a signifi-

cant portion of the data, or requires collecting samples from

all the classes, both of which require considerable manual

effort. To address these, we propose a novel technique to

automatically select the target samples [31, 35], which are

better suited to the DA task and thus, worth the effort of

manual annotation. As in the SSDA approaches, we work

in the very low data regime, i.e. the annotation budget is



less than or equal to 3 samples per class. We aim to select

the effective target samples on the basis of their diversity, as

well as the classifier uncertainty for the domain adaptation

task. First, the unlabeled target pool is grouped into clusters

using the k-means algorithm. Observing that not all classes

get adapted at the same pace, we propose a novel classifier

adaptation uncertainty for each class, and leverage it to se-

lect the most effective target samples from the diverse target

pool obtained in the first step, for annotation by the oracle.

Second, we note that the target samples which are simi-

lar to the source domain are easily and correctly classified.

So in order to facilitate the domain adaptation process, the

target samples which are farther away from the source sam-

ples and are likely to be incorrectly labeled should be given

more weightage. So we propose to weigh the entropy term

for the difficult samples, without explicitly using their pre-

dicted labels, which may be incorrect.

Finally, we observe that though the domain changes,

class-semantics remain unchanged across domains, and this

can be utilized as a unifying factor for the different domains.

For this, we propose to initialize the domain-invariant class-

representatives which can classify data from either source

or target, with semantic-attributes of that class. These at-

tributes can be automatically obtained from the class labels

using Word2Vec [19] or GloVe [23] embeddings. This not

only helps to make the class-representatives semantically

meaningful, but also helps to maintain the inter-class dis-

tances, in addition to aiding the domain adaptation.

Incorporating all these techniques with an adversarially

trained entropy objective gives the proposed framework,

termed as STar (Select Target). It is tested extensively on

three benchmark datasets, and achieves the state-of-the-art

results on all of them. The contributions in this work are:

(1) We propose a novel active learning based SSDA frame-

work, to identify the most effective samples from the target

domain and utilize their labels to improve the generalization

of the classifier.

(2) We propose a novel classifier adaptation uncertainty for

each class, by observing that the rate of domain adaptation

varies across the different classes.

(3) We propose to weigh the hard target samples, without

explicitly using their predicted, possibly incorrect labels.

(4) We incorporate semantic initialization to unify the dif-

ferent domains for effective domain adaptation.

(5) We show the effectiveness of our method for 3 datasets,

namely, DomainNet, Office-Home and Office-31.

2. Related Work

Here, we discuss the related work in DA, active learning

in DA and approaches which utilize semantic attributes.

Domain Adaptation: Initial works in unsupervised do-

main adaptation (UDA) utilized diverse statistical methods

like Mean Maximum Discrepancy (MMD) [29], Correla-

tion Alignment (CORAL) [37] and Geodesic Flow Ker-

nel [9] to address the feature distribution mismatch. Ganin

et al. [8] proposed domain adversarial training to bring the

feature distributions of both domains closer and many re-

cent works in UDA [39, 33, 43] follow up on this work.

However this approach does not consider the class-wise

conditional distribution shift and approaches trying to ad-

dress this have been recently proposed, few notable ones

being MCD [28] and ADR [27]. Recently, several SSDA

methods [26, 13, 24] have been proposed to develop a bet-

ter generalized classifier. MME [26] uses minimax adver-

sarial training to push the target features towards the cor-

responding source features, while APE [13] addresses the

intra-domain discrepancies among the target distributions.

BiAT [24] tries to generate adversarial training samples

which can fill the gap between the two domain distributions.

All these approaches utilize few labeled samples from each

class, which requires significant manual effort. In this work,

we address the SSDA task, but let the algorithm automati-

cally choose which target samples should be annotated for

effective DA.

Active learning for DA: Different types of active learn-

ing approaches have been proposed. In pool-based tech-

niques, uncertainty sampling [1], diversity sampling [30]

and combination of both [20] are the most popular algo-

rithms. In uncertainty sampling, the least confident queries

are chosen [40]. The most simplest, yet effective method in

diverse sampling is clustering [12] the feature space of the

sample pool to select the query samples. Sener et al. [30]

used diverse samples picked through maximizing the Eu-

clidean distance among the pool of unlabeled samples and

querying labels for the same. Recently, variational autoen-

coder based active learning framework has been used for

selecting the most informative samples [35, 44].

Classical machine learning techniques have showcased

incorporating active learning the DA scenario. [4] used

importance weighting [3] and selected target samples with

larger distances between features while training using

MMD [29]. [36] proposed an active learning method us-

ing H-divergence and importance sampling to query the tar-

get instances. Unlike these approaches, we work in the low

data regime, where we select very few target samples to be

labeled, which are effective for the DA task.

Class Semantics or Attributes: Several computer vi-

sion tasks like zero-shot learning [7, 41, 6], etc. have ben-

efited immensely from using semantics of the classes or

attributes. Since manual attributes are expensive to ob-

tain, usually pre-trained word embedding models are used

like Glove [23] and Word2Vec [19]; which can be used to

directly obtain the embeddings using just the given class

names. To the best of our knowledge, this is the first work

which uses semantic attribute initialization for DA task.



Figure 1: STar framework. F and W represent the feature-extractor and the classifier weights respectively. We query labels

for the most informative target samples and use them to adapt the class-prototypes. W is initialized using the semantic

information. The labeled data is trained using CB-Focal (LCBF ) and unlabelled target data using weighted entropy (Lu
H ).

3. Problem Definition and Notations

Here, we address the SSDA task, but unlike other ap-

proaches proposed for this problem, where the labeled tar-

get samples are given apriori, we propose to automatically

select them for improved DA. Towards this goal, we pro-

pose a novel algorithm, STar to select a few unlabeled target

samples, which if labeled, can effectively improve the DA

task. In UDA, the training data consists of labeled source

data Ds = {xs
i , y

s
i }, i = 1, 2, ..., Ns, and unlabeled tar-

get data Dut = {xut
i } where i = 1, 2, ..., Nut. Here, xi is

the input data, and yi ∈ {1, ..., C} denotes its class label,

where C is the total number of classes, assumed to be same

for source and target domains. The proposed approach is

used to query the most informative samples from this un-

labeled pool Dut during the DA process at regular inter-

vals. These queried samples and their labels provided by

the oracle are the labeled target data for SSDA denoted by

Dlt = {xlt
i , y

lt
i } where i = 1, 2, . . . .Nlt. As these labeled

targets are obtained, they are removed from Dut and infused

into DA training with the additional label information.

4. Proposed STar Algorithm

The proposed approach is based on computing a domain-

invariant representation (class-prototype) for each class as

in several other DA approaches [42, 26]. The distance be-

tween such class-prototypes (initially computed from the la-

beled sources) and the target samples are minimized strate-

gically towards the goal of efficient adaptation. The pro-

posed approach makes three main contributions: (A) Auto-

matic selection of target samples to be labeled by the ora-

cle; (B) Automatic selection of hard target examples to be

weighted for efficient DA and (C) Semantic initialization to

unify the domains using their common semantics. We will

now describe each of these three contributions in details.

4.1. Selection of target samples to be labeled

For any classifier, its weights can be considered as

the class-representatives or prototypes. In this work, we

choose the target samples during the DA process in an

online manner, as the network adapts the class-prototypes

computed from source samples towards target data distri-

bution. Inspired by the rich literature in active learning, we

aim to choose target samples, which are not only diverse

and representative of the target distribution, but also more

informative. Here, since the final goal is domain adaptation,

these factors have to be considered in the context of the

adaptation process. Based on the above, the proposed STar

chooses target samples based on the following two criteria:

(1) Classifier adaptation uncertainty: We observe that all

classes do not adapt to their corresponding target domain

at the same pace, and some classes adapt at a slower pace

than the others. The novel classifier adaptation uncertainty

ensures that during target selection, more emphasis is given

to the classes for which the estimated prototypes are highly

uncertain at that stage of training.

(2) Diversity of selected samples - This ensures that the

selected samples from the pool of unlabeled target are

diverse and represent the target distribution well, which is

very important for successful adaptation.

Budget consideration: In SSDA, few samples per

class (between 1-3) are utilized to aid the adaptation

process. To showcase that actively queried target samples

can effectively help in the adaptation process, we query

labels for samples with the same budget constraint as that

in the manually labeled SSDA setting. Thus, the number of

targets which are selected, i.e. budget is B = K ∗C, where



K denotes the number of samples per class used by SSDA

approaches. For example, the budget is B = 3C for 3-shot

setting, where 3 labeled targets per class are provided for

training. Here, the sample selection module of the STar

algorithm is run K-times interactively with the remaining

modules, and each time we select C samples from the target

domain for labeling by the oracle. Next, we provide de-

tailed explanation of the proposed sample selection module.

Classifier adaptation uncertainty: For the DA task,

the class-prototypes initially computed using the labeled

source samples slowly get adapted to the target domain.

We assume that at a certain stage of training, the behaviour

of the class-prototypes gives an indication of the class-wise

adaptation process. Intuitively, we aim to select more

samples from the classes, whose prototypes have not yet

adapted well to the corresponding target data distribution.

Towards this goal, we introduce a novel measure, classifier

adaptation uncertainty to detect those classes for which the

adaptation is not yet satisfactory.

Let us denote the set of class-prototypes (i.e., classi-

fier weights) at tth instant (here, it implies iteration) by

Wt = {w1
t , . . . , w

C
t } ∈ Rd×C . Here, wc

t ∈ Rd is the

prototype for cth class at instant t, where c ∈ {1, . . . , C}.

To compute the classifier adaptation uncertainty for each

class, we first compute the Euclidean distance between cor-

responding class-prototypes over subsequent instances as

adaptation progresses. The distance traversed by the cth

class prototype in the feature space between instances t− 1
to t is computed as

d̂ct =
√

||wc
t − wc

(t−1)||
2 (1)

To make this distance computation robust, we compute it

for L times, and compute the moving average of the same

as follows

dct = αd̂ct + (1− α)dc(t−1) (2)

Here α is a hyper-parameter, whose value is determined ex-

perimentally and is maintained between 0.5 < α < 1, to

ensure that the relative change in the prototype locations at

the current iteration gets the highest attention.

Let T denote the instant at which one set of target sam-

ples are selected for labeling, Let the weighted measure of

change in prototype location computed at instant T for all

the classes is given by Dc
T = {d1T , . . . , d

C
T }. This dis-

tance measure indicates how the classifier weights or pro-

totypes of all the classes are adapting to the target domain.

From the distance measures of all the 126 classes in Do-

mainNet data [22], at two different instances in the adapta-

tion process in Fig. 2, we observe that it varies for differ-

ent classes and also decreases gradually as adaptation pro-

gresses. At instant T , a higher value of dcT indicates that the

cth class-prototype has higher movement, which in turn im-

plies that the class prototype is still uncertain and complete

Figure 2: Movement of class prototypes as domain adap-

tation progresses from 2500th (left) to 7500th (right) itera-

tion.

domain adaptation has not taken place. Therefore, selecting

samples from these classes would be more beneficial for

the adaptation process. To ensure this, we find the classes

which have higher values of dcT . First, the mean value of

the weighted distance across all the classes is calculated as

mT = mean(d1T , ..., d
C
T ). For classes with weighted dis-

tance greater than mT , we normalize dcT with the calculated

mean-value mT , and we define the classifier adaptation un-

certainty of that class as

βc
u =

dcT
mT

, if dcT > mT

= 1 otherwise (3)

For classes with the weighted distance measure lesser than

the mean, the adaptability rate is considered to be 1. This

ensures that though the classes with higher uncertainty are

given higher weightage for selecting target samples, we

would also like to select samples from the other classes for

successful domain adaptation. We will discuss how this

uncertainty factor is utilized to automatically select target

samples to be labeled in details later.

Diverse sample selection: In addition to selecting

samples from the classes with higher uncertainty in its

prototype position, we also aim to select samples which

capture the diversity in the target domain for better gen-

eralization. Towards that goal, we select an initial pool

of diverse unlabeled target samples from the dataset Dut

with k-means. Specifically, given the entire unlabeled

target data Dut, we initially group all these samples into

Ncluster = 2C number of clusters. As mentioned before,

at each instant, since we aim to pick C number of target

samples to be labeled, we choose more number of clusters,

so that we can pick the most informative amongst them.

The intuition behind doing so is that during the adaptation

process, the target samples which are easily adaptable

would have drifted towards the source prototype, while

the target samples which have higher distribution shift

would not have drifted towards the source clusters. To

accommodate the intra-class variation present during the



adaptation process, we pick 2C number of diverse samples

using k-means. Thus, the diverse candidate unlabeled

target sample pool is given by the target samples closest to

the cluster centers.

X ut
div = {xut

i,div}
2C
i=1 ∈ R2C×d (4)

Final selection of unlabeled targets: Finally, we aim to

select target samples from the diverse candidate list X ut
div ,

which also account for the classifier adaptation uncertainty

(i.e. have higher uncertainty), and thus are best suited for

DA. At a particular instant T when the target selection is

taking place, the predicted class of xut
i,div ∈ X ut

div , is ob-

tained by identifying its nearest class-prototype wc̄
T . Let us

denote the distance with the predicted class c̄ is given by

d(wc̄
T , x

ut
i,div). Assuming that the predicted classes are cor-

rect, the most uncertain ones are those samples which are

the farthest from the predicted class prototypes. If the pre-

dicted class is wrong, the distance of these samples from

the correct class prototype is even larger, again implying

that they are difficult samples. In addition, we account for

the domain adaptation uncertainty of the classes by normal-

izing the distance of the sample from its nearest prototype

by the classifier adaptation uncertainty of that class. Thus

the final uncertainty of the sample xut
i,div at instant T , in the

initially selected diverse pool is given by:

dT (x
ut
i,div) = βc̄

u ∗ d(wc̄
T , x

ut
i,div) (5)

Next, we sort all the 2C samples in X ut
div according to their

final uncertainty measure as computed above, and select the

C samples with highest uncertainty measure. This set of

selected samples at T th instant is referred to as Dlt. These

selected samples are not only diverse in nature, but are also

better suited to improve the domain adaptation task. Once

the labels are obtained for these target samples from the or-

acle, the training process of the remaining modules of the

STar framework continues with labeled source Ds, actively

acquired labeled targets Dlt and the remaining unlabeled

target data Dut. Note that the samples for which the labels

are queried are removed from the unlabeled target data pool.

4.2. Weighting Hard Target Samples

It is well known that giving more weight to difficult train-

ing samples using techniques like [16], makes classifiers

more discriminative. Here, we propose to weigh both hard

source & target examples. This helps in learning discrim-

inative classifiers, and the hard targets will help guide the

DA as well. For the source data, noting that majority of

the real-world data [26, 25] are imbalanced, we use a recent

variant of focal loss, namely class-balanced focal loss (CB-

Focal loss) [5], which additionally incorporates class imbal-

ance information for improved performance as follows:

LCBF = −E(x,y)∈Ds∪Dlt

1− δ1

1− δnc

1

C
∑

c=1

(1− pc)
γ1 log(pc)

(6)

where nc is the total number of labeled training source and

target samples and pc is probability that the sample belongs

to class c, δ1 and γ1 are hyper-parameters to be empirically

determined. Here, we remove the explicit sample indices to

avoid notational clutter. It is not straightforward to compute

a similar loss on the unlabeled target data, since it requires

the knowledge of the class labels. But since the final clas-

sification is on the target domain, incorporating such a loss

for the target is very important.

One approach is to predict the labels of the targets and ei-

ther consider these hard labels or compute soft labels, which

are then used for computing this loss. Though this idea has

been successfully used in some works [45, 46, 15, 34], we

did not apply it for our problem for two reasons, (1) In gen-

eral, since easier samples are correctly classified in com-

parison to the difficult ones, so label prediction has to be

done in multiple stages from easy to difficult. We observe

that predicting the labels of the target samples repeatedly

increases the computational complexity of the framework

significantly; (2) Also, we are more interested in predicting

the labels of the difficult targets, which is hard, since these

samples are likely to be incorrectly classified. Taking these

factors into account, we initially let the model adapt to the

target domain by only incorporating CB-focal loss for the

labeled samples, by running it for sufficient number of it-

erations (eg. 8000 iterations for DomainNet data). This is

followed by an inference step, i.e. predicting the labels of

the unlabeled targets. The predicted label of an unlabeled

target example xut
i ∈ Dut is the class whose prototype is

the closest with the target feature. We define the class pre-

diction uncertainty of the target sample as follows

ucuti = 1− max
1≤c≤C

putc (7)

As in majority of DA approaches, the proposed STar frame-

work also uses entropy loss for the unlabeled targets to en-

sure that they move closer to one of the class prototypes. In-

spired by the focal loss, we propose to weigh the entropy of

the unlabeled targets based on their prediction uncertainty.

We weight the uncertain unlabeled targets more, to ensure

that they are better aligned with one of the class prototypes.

However, in order to be confident in the predictions we let

the classifier adapt to unlabelled target for τ iterations be-

fore we start weighing uncertain examples as follows

αut
i =

{

(ucuti )γ2 + δ2 if T > τ

1 otherwise
(8)

Here, γ2 and δ2 are hyper-parameters to be empirically de-

termined. This implies, that the more uncertain samples will



have higher weight αi, and vice versa. Incorporating this

weight, the new entropy loss takes the following form:

Lu
H = −Exut

i
∈Dut

αut
i

C
∑

c=1

pclog(pc) (9)

We observe that for SSDA, this works significantly better

than directly using the predicted class of the target samples

with focal-loss.

4.3. Semantic Initialization

Semantic information represents a domain invariant at-

tribute for samples of both source and target distributions.

Since our goal is to compute domain-invariant class pro-

totypes, we propose to initialize them with the class name

embeddings, and we observe experimentally that this signif-

icantly helps in adaptation. This not only makes the latent

space semantically meaningful, but also makes the compu-

tation of the prototype movements (1) very efficient, by re-

ducing the latent space dimension (equal to the dimension

of the semantic attributes).

The semantic information can be obtained using pre-

trained word representations like Word2Vec [19] or

GloVe [23]. Here, we use GloVe 50-d embeddings of the

class names to initialize the prototypes. Given the class

names in the source domain, these embeddings can be au-

tomatically generated with no additional information.

4.4. Complete STar framework for SSDA

The proposed STar framework (Fig. 1) consists of a fea-

ture extractor F and a classifier W , with learnable param-

eters denoted by θF and θW respectively. We use adver-

sarial entropy minimization objective [26] on the unlabeled

target data Dut to train the feature extractor and classifier

in an adversarial fashion. The entropy maximization step

drives the prototypes to move towards the unlabeled tar-

get features to avoid over-fitting the prototypes to labeled

source data, while the entropy minimization step on the fea-

ture extractor clusters the unlabeled target features around

these prototypes. We use semantic initialization as a means

of domain invariant prototype initialization. In this work,

since there are no labeled target samples at the beginning,

we start the adaptation in an unsupervised manner using the

labeled source data Ds and unlabeled target data Dut. The

domain-invariant class prototypes are first estimated by ex-

tracting the discriminative features from the labeled source

data. When the actively selected target samples along with

their labels are acquired at instant T , they are moved from

Dut to Dlt, and the final training objective is as follows:

θ̂F = argmin
θF

LCBF + λLu
H

θ̇W = argmin
θW

LCBF − λLu
H

(10)

Algorithm 1: Proposed STar algorithm.

Input: Base network with feature extractor F , classifier

W , labeled source data Ds, unlabeled target data Dut,

labeled target data initialized as Dlt = {φ}, update

iteration T , budget B, total training iteration Niter .

Semantic initialization of class prototypes.

Repeat

• Train F & W using DS , Dlt & Dut, minimizing (10).

• Extract class prototypes and compute dct according to (2)

iteratively till update iteration T .

• At update iteration T , obtain the classifier adaptation

uncertainty βc
u according to (3).

• Perform k-means sampling to obtain 2C number of diverse

target candidate samples as Xut
div .

• Compute the uncertainty for each diverse candidate,

dT (x
ut
i,div), according to (5).

• Sort dT (x
ut
i,div) to select the most effective C target samples

as Dlt.

• Move the newly labeled target samples to Dlt from Dut.

Until size(Dlt) = B
Output: Trained F and W .

where LCBF is the CB-focal loss over the labeled data. The

LCBF in training objective starts with source data Ds. As

the data from unlabeled target Dut is labeled by the oracle,

it is moved to labeled target data Dlt and used by LCBF .

Thus, as labeled samples from the target domain are ac-

quired, they are seamlessly infused into the domain adap-

tation process, without restarting the training process. Un-

like other SSDA approaches which have access to labeled

targets from the beginning of the adaptation process, our

approach gets access to labeled targets at different stages

in the domain adaptation process. Our model not only

weighs the harder samples in labeled data from the start, but

also the more uncertain/hard unlabeled target eventually as

the model adapts. The feature extractor and classifier thus

learnt is used to classify the remaining unlabeled samples.

5. Experimental Evaluation

Here, we provide the experimental details to evaluate the

efficacy of the proposed approach for SSDA application.

We start with the datasets used and implementation details.

Datasets Used: In this work, we use three benchmark DA

datasets. DomainNet [22] is a recently released large scale

DA dataset with 6 different domains and a total of 345
classes with over 0.6 million images. Due to the prevalence

of noise, experiments are conducted on the partial dataset

consisting of 4 domains and 16 classes. Following the re-

cent approaches, we conduct experiments on all the 7 do-

main adaptation scenarios using this large scale dataset. We

also perform experiments on the other benchmark datasets,

namely, Office-31 [25] and Office-Home [38]. Office-31 is

a relatively smaller dataset consisting of 3 domains (Ama-



Method
R to C R to P P to C C to S S to P R to S P to R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0

DANN [8] 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7

ADR [27] 57.1 60.7 61.3 61.9 57.0 60.7 51.0 54.4 56.0 59.9 49.0 51.1 72.0 74.2 57.6 60.4

CDAN [18] 65.0 69.0 64.9 67.3 63.7 68.4 53.1 57.8 63.4 65.3 54.5 59.0 73.2 78.5 62.5 66.5

ENT [10] 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6

BiAT [24] 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7

MME [26] 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9

APE [13] 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7

Proposed STar 74.1 77.1 71.3 73.2 71.0 75.8 63.5 67.8 66.1 69.2 64.1 67.9 80.0 81.2 70.0 73.2

Table 1: Performance on the DomainNet dataset for 1-shot and 3-shot settings using ResNet34 backbone. We observe that

the proposed STar not only eliminates the need to manually find target samples to be labeled, but also results in significantly

better performance compared to all the state-of-the-art SSDA approaches.

zon, Webcam and DSLR) with 31 classes. Office-Home is a

relatively larger and more challenging dataset and consists

of 4 domains, namely Real, Clipart, Painting and Art with a

total of 65 classes. We evaluate STaR on all the 12 different

adaptation scenarios on Office-Home dataset.

Evaluation: For SSDA, the classification accuracy is mea-

sured only on the unlabeled target samples. For our ap-

proach, the test data consists of samples in Dut, i.e. the

samples which are not selected for labeling by the proposed

STar algorithm. Since the labeled target samples (and thus

the remaining unlabeled ones) may be slightly different for

the other SSDA approaches and the proposed STar frame-

work, the exact testing data is slightly different. But the to-

tal number of labeled samples and thus the total number of

testing data used in all the approaches is exactly the same.

To evaluate the effectiveness of the second and third con-

tributions, we also evaluate on the standard SSDA settings,

where the labeled targets are also the same.

Implementation Details: For comparison with state-of-

the-art approaches, we perform experiments with both

Alexnet and Resnet34 backbones. We use SGD optimizer,

with starting learning rate of 0.01, momentum of 0.9 and

weight decay of 0.0005. We use batch size of 24 and 32
for Resnet34 and Alexnet backbones respectively on la-

beled samples, and twice the batch size for unlabeled data.

We implemented the proposed algorithm in PyTorch [21]

using a Geforce GTx 1080 card. The hyper-parameters

{α, λ, γ1, γ2} are experimentally set to {0.8, 0.1, 0.5, 2} re-

spectively. We set δ1 as {0.99, 0.9, 0.999} for Domain-

Net, Office-31 and Office-Home respectively. δ1 = 1 and

τ = 10000 iterations for all experiments.

For DomainNet, the iteration at which target samples are

selected is chosen to be multiples of 2500. For 1-shot, the

selection of targets happen at 2500th iteration, for 3-shot

at {2500th, 5000th, 7500th} iterations. The target selection

iteration is based on the convergence of the base approach

(i.e. the unsupervised version) for the dataset. We per-

formed experiments by varying this update iteration (500 on

both sides) and did not find any considerable change in the

results. For Office-31 and Office-Home, the update iteration

is considered to be multiples of 200 and 2000 respectively.

5.1. Evaluation on DomainNet dataset

First, we evaluate the proposed STar technique on the

large scale DomainNet and the results with ResNet34 back-

bone for both 1-shot and 3-shot settings are reported in Ta-

ble 1. The results of all the other approaches are directly

taken from [26, 24]. We observe that the proposed STar

approach performs considerably better than all the state-

of-the-art SSDA approaches. Irrespective of the adaptation

scenario, we see that utilizing actively queried target sam-

ples, along with semantic initialization and weighting of un-

labeled hard targets immensely helps in the adaptation.

5.2. Evaluation on Office­Home and Office­31

The detailed results on Office-Home for 1 & 3 shot sce-

narios are reported in Tables 2 for AlexNet backbone. The

results for Office-31 using AlexNet backbone is reported in

Table 3. We observe that for both the datasets, the proposed

STar performs significantly better as compared to all the

state-of-the-art SSDA approaches for all the settings, thus

justifying the effectiveness of the proposed framework.

6. Analysis of the proposed STar framework

Here, we perform ablation study and further analysis.

Importance of each of the contributions: Here, we

analyze the importance of the different components in the

final performance improvement. We choose 2 domains,

namely R to S and C to S from DomainNet dataset for this

analysis, with ResNet34 backbone for both 1-shot and 3-

shot settings. Table 4 (first three rows) reports the results

with all the components for STar, i.e. active sampling of tar-

get samples (AS), semantic initialization (SI) and weighting

Hard Target Samples (WHTS), and removing one compo-

nent at a time. We observe that all the components con-

tribute to the good performance of the entire framework.

In the last two experiments we do not use our active

learning based target sample selection procedure and in-



Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

One-shot

S+T [26] 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1

DANN [8] 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1

ADR [27] 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5

CDAN [18] 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2

ENT [10] 26.8 65.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8

BiAT [24] - - - - - - - - - - - - 49.6

MME [26] 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2

Proposed STar 46.5 71.6 53.6 62.0 42.3 38.0 57.8 37.8 59.8 57.6 42.5 61.0 52.54

Three-shot

S+T [26] 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0

DANN [8] 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3

ADR [27] 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 53.4 37.3 57.7 49.5

CDAN [18] 41.8 69.9 43.2 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2

ENT [10] 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9

BiAT [24] - - - - - - - - - - - - 56.4

APE [13] 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6

MME [26] 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2

Proposed STar 51.9 74.1 54.0 65.1 48.5 43.0 66.0 45.8 63.0 61.5 46.1 65.3 57.03

Table 2: 1 and 3 shot results on Office-Home dataset using Alexnet backbone.

Method
W to A D to A

1-shot 3-shot 1-shot 3-shot

S+T [26] 50.4 61.2 50.0 62.4

DANN [8] 57.0 64.4 54.5 65.2

ADR [27] 50.2 61.2 50.9 61.4

CDAN [18] 50.4 60.3 48.5 61.4

ENT [10] 50.7 64.0 50.0 66.2

BiAT [24] 57.9 68.2 54.6 68.5

MME [26] 57.2 67.3 55.8 67.8

Proposed STar 59.8 69.1 56.8 69.0

Table 3: Evaluation on Office-31 dataset for 1-shot and 3-

shot settings using Alexnet backbone.

Method Components R to S C to S

AS SI WHTS 1 shot 3 shot 1 shot 3 shot

Targets

X X X 64.1 67.9 63.5 67.8

Actively Labeled X X 62.5 66.8 62.5 65.2

X 62.1 66.0 62.3 64.3

Manually Labeled X X 62.7 64.2 59.4 64.3

Targets X 62.0 63.1 58.4 63.9

Table 4: Ablation Study using Resnet34 backbone on Do-

mainNet dataset for R to S and C to S settings.

stead use the labeled target examples used by the other

SSDA approaches [26, 24, 13]. We observe that except for

R to S, for the other settings, even with the same labeled

examples, using only two of the proposed contributions, we

achieve similar or better performance as compared to the

state-of-the-art. This validates the usefulness of semantic-

initialization, weighting hard target and selection of infor-

mative target samples for the SSDA task.

Per-class performance analysis: We observe that there

is significant amount of data imbalance (both in source and

target domain) in the datasets, specially DomainNet. Due to

this imbalance, classes with lesser number of target samples

may have difficulty in adapting their class-prototypes. Here,

we perform per-class accuracy analysis on DomainNet for

R to S, 3-shot scenario. We compare the per-class accura-

cies on the basis of number of target samples per class. The

average of class-wise accuracies for 30-classes with low-

est number of target samples is calculated and compared

with another SSDA method MME [26]. For the lowest 30-

classes, STar performs extremely well with an average ac-

curacy of 56.2% as compared to 40.8% for MME. For the

30 classes with highest number of target samples, the av-

erage of per-class accuracies is 69.2% for STar and 61.9%
for MME. This gives a clearer picture of the adaptation pro-

cess, since due to presence of less number of target samples

in several classes, even a poorer accuracy for those classes

does not reflect in the overall accuracy. This also shows the

effectiveness of STaR to deal with the inherent data imbal-

ance.

7. Conclusion

In this work, we proposed a novel SSDA framework,

STar. Observing that few labeled target samples are ex-

tremely crucial for generalization, instead of the traditional

approach of selecting equal number of target samples per

class, we propose an active learning based strategy, for se-

lecting the most informative target samples to label. We also

propose semantic initialization and weighing of hard target

samples for facilitating the adaptation process. Extensive

experiments on several datasets justify the effectiveness of

the proposed framework.
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