
Efficient Pre-trained Features and Recurrent Pseudo-Labeling

in Unsupervised Domain Adaptation

Youshan Zhang Brian D. Davison

Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

{yoz217, bdd3}@lehigh.edu

Abstract

Domain adaptation (DA) mitigates the domain shift prob-

lem when transferring knowledge from one annotated do-

main to another similar but different unlabeled domain.

However, existing models often utilize one of the ImageNet

models as the backbone without exploring others, and fine-

tuning or retraining the backbone ImageNet model is also

time-consuming. Moreover, pseudo-labeling has been used

to improve the performance in the target domain, while

how to generate confident pseudo labels and explicitly align

domain distributions has not been well addressed. In this

paper, we show how to efficiently opt for the best pre-trained

features from seventeen well-known ImageNet models in

unsupervised DA problems. In addition, we propose a re-

current pseudo-labeling model using the best pre-trained

features (termed PRPL) to improve classification perfor-

mance. To show the effectiveness of PRPL, we evaluate

it on three benchmark datasets, Office+Caltech-10, Office-

31, and Office-Home. Extensive experiments show that our

model reduces computation time and boosts the mean accu-

racy to 98.1%, 92.4%, and 81.2%, respectively, substantially

outperforming the state of the art.

1. Introduction

With the explosive growth of information in the current

era, there are massive amounts of data from multiple sources

and corresponding to varied scenarios. However, not all

tasks have enough annotated data for training, and collecting

sufficient labeled data is a big investment of time and effort.

Therefore, in order to build machine learning models it is

often necessary to transfer knowledge from one labeled do-

main to an unlabeled domain. Due to dataset bias or domain

shift [17], the generalization ability of the learned model on

the unlabeled domain has been severely compromised. Do-

main adaptation (DA) is proposed to circumvent the domain

shift problem.

Unsupervised domain adaptation (UDA) transfers knowl-

edge learned from a label-rich source domain to a fully

unlabeled target domain [16]. Most prior methods focus

on matching (marginal, conditional, and joint) distributions

between two domains to learn domain-invariant representa-

tions. Maximum Mean Discrepancy (MMD) is one of the

most popular distance metrics when minimizing differences

between two distributions. Long et al. [14] proposed a Deep

Adaptation Network (DAN) that considered multiple kernels

of MMD functions. Recently, Kang et al. [11] extended

MMD to the contrastive domain discrepancy loss. However,

these distance-based metrics can also mix samples of dif-

ferent classes together. Recently, adversarial learning has

shown its power in learning domain invariant representations.

The domain discriminator aims to distinguish the source do-

main from the target domain, while the feature extractor aims

to learn domain-invariant representations to fool the domain

discriminator [11]. Sometimes, pseudo-labeling is proposed

to learn the target discriminative representations [31, 32].

However, the credibility of these pseudo labels is unknown.

To address the above challenges, this paper provides two

specific contributions:

1. To reduce computation time, we extract features from

seventeen pre-trained ImageNet models and then design

a fast and efficient unsupervised metric to select the best

pre-trained features for the domain transfer tasks.

2. We develop a recurrent pseudo-labeling paradigm to

continuously select high confidence transfer examples

from the target domain and minimize the marginal and

conditional discrepancies between the two domains.

We conduct extensive experiments on three benchmark

datasets (Office + Caltech-10, Office-31, and Office-Home),

achieving higher accuracy than state-of-the-art methods.

2. Related work

Pre-training. Pre-training is one of the dominant compo-

nents of transfer learning. Recent deep networks often apply

a pre-trained network (typically trained on the ImageNet

dataset) as the initialization for object recognition and seg-

mentation. As in many computer vision tasks, it is often

slow and tedious to train a new network from scratch. Hence,

using a pre-trained model on one dataset to help another

is a major advantage of transfer learning. Traditional DA

methods relied on the extracted features from the pre-trained

ImageNet models and then aligned the marginal or condi-

tional distributions between different domains [34, 39, 35].

Recent deep networks frequently select ResNet50 as the

backbone network for UDA [30, 15]. Notably, other deep

networks are not investigated, even though different Ima-

geNet models affect the performance of UDA on traditional

methods [36, 40]. The impact of extracted pre-trained fea-

tures on deep networks are not well explored. In addition,

selecting the best pre-trained features based on performance

in the target domain requires significant computation to train

models in the supervised source domain and infer to the

unlabeled target.

Pseudo-labeling. Pseudo-labeling is another technique to

address UDA and also achieves substantial performance on

multiple tasks. Pseudo-labeling typically generates pseudo

labels for the target domain based on the predicted class

probability [20, 31, 32, 3, 37]. Under such a regime, some

target domain label information can be considered during

training. In deep networks, the source classifier is usually

treated as an initial pseudo labeler to generate the pseudo

labels (and use them as if they were real labels). Different al-

gorithms are proposed to obtain additional pseudo labels and

promote distribution alignment between the two domains.

An asymmetric tri-training method for UDA has been pro-

posed to generate pseudo labels for target samples using two

networks, and the third can learn from them to obtain target

discriminative representations [20]. Xie et al. [31] proposed

a Moving Semantic Transfer Network (MSTN) to develop

semantic matching and domain adversary losses to obtain

pseudo labels. Zhang et al. [32] designed a new criterion

to select pseudo-labeled target samples and developed an

iterative approach called incremental CAN (iCAN), in which

they select samples iteratively and retrain the network using

the expanded training set. Progressive Feature Alignment

Network (PFAN) [3] aligns the discriminative features across

domains progressively and employs an easy-to-hard transfer

strategy for iterative learning. Chang et al. [2] proposed

to combine the external UDA algorithm and the proposed

domain-specific batch normalization to estimate the pseudo

labels of samples in the target domain and more effectively

learn the domain-specific features. Constrictive Adaptation

Network (CAN) also employed batch normalization layers

to capture the domain-specific distributions [11].

These methods highly rely on the pseudo labels to com-

pensate for the lack of categorical information in the target

domain. However, they did not check the quality of pseudo-

labels, as noisy pseudo-labeled samples hurt model perfor-

mance. In addition, most pseudo-labeling methods employ a

two-stage paradigm. The pseudo labels in the first stage are

generated and then used to train the model along with the

labeled source domain. Differing from previous work [14, 3],

we recurrently generate high confidence examples using a

novel scheme.

3. Methodology

3.1. Problem

Here we discuss the unsupervised domain adaptation

(UDA) problem and introduce some basic notation. Given

a labeled source domain DS = {X i
S ,Y

i
S}

NS

i=1 with NS

samples in C categories and an unlabeled target domain

DT = {X j
T }

NT

j=1 with NT samples in the same C categories

(YT for evaluation only), our challenge is how to get a well-

trained classifier so that domain discrepancy is minimized

and generalization error in the target domain is reduced.

In UDA, a typical method would first select one of the

ImageNet models as the backbone network for feature ex-

traction. Then, more fine-tuning layers and loss functions are

added to minimize the discrepancy between XS and XT . In

addition, most pseudo-labeling algorithms do not check the

reliability of the generated pseudo labels. These approaches

face two critical limitations: (1) they did not explore other

pre-trained networks and did not select the best pre-trained

features. It is hence necessary to develop an unsupervised

metric to quickly determine the best pre-trained features

among different ImageNet models. (2) Noisy pseudo labels

can deteriorate domain invariant features, and the conditional

distributions of two domains are difficult to align at the cat-

egory level, and the marginal and conditional distributions

are not jointly well aligned.

To mitigate these shortcomings, we propose a recurrent

pseudo-labeling using the best pre-trained features (PRPL)

model. We also jointly align the marginal and conditional

distributions of the two domains.

3.2. Pre­training Feature Representation

Feature extraction is an easy and fast way to use the power

of deep learning without investing resources into training or

fine-tuning a network. It would be especially useful when

there are no powerful GPUs to train additional deep networks.

However, one disadvantage of feature extraction using pre-

trained networks is that it has lower performance than fine-

tuning the same network since feature extraction is a single

pass over the images. However, previous work [36] suggests

that a better ImageNet model will produce better features

for UDA. Therefore, we can extract features from a better

ImageNet model to compensate for the lower performance of

not fine-tuning. Moreover, feature extraction is significantly

faster than fine-tuning a neural network. Thus, our design

goal in feature representation learning is to find fast and

accurate features from well-trained ImageNet models.

Figure 1: t-SNE view of extracted features from four pre-

trained networks (AlexNet [12], ResNet50 [7], Xception [4]

and EfficientNetB7 [27]). Different colors represent differ-

ent classes. EfficientNetB7 has better features than others

since the classes are more separate (from Amazon domain

in Office31 dataset).

Since there are several well-trained ImageNet models, we

employ a feature extractor Φ to extract features from the

source and target images using a pre-trained model1. Fig. 1

shows extracted features using four different pre-trained Im-

ageNet models. EfficientNetB7 [27] has better performance

and better-separated features than others from visual inspec-

tion. However, we should have an algorithmic solution that

chooses the best pre-trained features. We thus design a fast

and accurate unsupervised metric. For a given feature extrac-

tor Φk, the mean distance between latent represented source

Φk(XS) and target domain Φk(XT) can be denoted as:

DistPre
k = ||

1

NS

NS∑

i=1

Φk(X
i
S)−

1

NT

NT∑

j=1

Φk(X
j
T)||2. (1)

where Φk is the kth ∈ {1, 2, · · ·K} feature extractor from

seventeen pre-trained models (K = 17) and || · ||2 is the L2

norm. With a different Φk, such a distance can be varied.

DistPre
k is an easy and fast unsupervised metric to quantify

the quality of extracted pre-trained features.

Therefore, we can select the best pre-trained features if

DistPre
k has the shortest distance between two domains.

The performance of different pre-trained feature distances is

shown in Sec 4.2. The Φ in the following section refers to

the best feature extractor, i.e., EfficientNetB7.

3.3. Feature Alignment
3.3.1 Initial Source Classifier

The task in the source domain is to minimize the typical

cross-entropy loss in the following equation:

LS = −
1

NS

NS∑

i=1

C∑

c=1

Yi
Sc

log(Fc(Φ(X
i
S))), (2)

where Yi
Sc

∈ [0, 1]C is the binary indicator of each class c

in true label for observation Φ(X i
S), and Fc(Φ(X

i
S)) is the

predicted probability of class c (using the softmax function

as shown in Fig. 2).
1
Φ extracts features from the layer prior to last fully connected layer of

our examined pre-trained models.

3.3.2 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) [16] is a non-

parametric distance measure to compare the distributions

of source and target domains by mapping data into reproduc-

ing kernel Hilbert space. After the initial classifier F , it is

expressed by

LMMD =
1

N 2
S

NS∑

i,j

κ(Li
S , L

j
S) +

1

N 2
T

NT∑

i,j

κ(Li
T , L

j
T)

−
2

NS · NT

NS ,NT∑

i,j

κ(Li
S , L

j
T),

(3)

where κ is the mean of a linear combination of multiple

RBF kernels and LS = F(Φ(XS)), and LT = F(Φ(XT)).
Therefore, the LMMD aims to minimize the marginal dis-

tance between two domains defined as follows:

DistMa = ||
1

NS

NS∑

i=1

Li
S −

1

NT

NT∑

j=1

Lj
T ||2. (4)

3.4. Recurrent Pseudo­Labeling Learning
Initial feature alignment only trains the target domain

in an unsupervised fashion. To get reliable predicted target

domain labels, we train the networks with the instances of the

labeled source and pseudo labeled target domains. Pseudo

labels of target domain examples will be treated as if they

are true labels. The domain invariant features are effective

and better adapted in such a paradigm.

3.4.1 Confident Pseudo-Labeling

In this stage, we take advantage of the initial source classifier

F to generate confident pseudo labels and examples for the

target domain. In contrast to Hinton et al. [8], we do not

use the weighted sum of the soft posteriors and the one-hot

hard label to train the model since the prediction of the target

domain is not accurate when the classification decision from

F is incorrect. In recurrent pseudo-labeling learning, we

continuously bring confident examples and pseudo labels

from the target domain to the source domain. A confident

pseudo label is defined as

C(Yj
TP

) = argmax
c∈C

{Fc(Φ(X
j
T))} ifmax(Fc(Φ(X

j
T))) > p,

where Fc(Φ(X
j
T)) is the predicted probability of class c of

Φ(X j
T), max(Fc(Φ(X

j
T))) is probability of the dominant

class, and it should be greater than probability threshold p
(0 ≤ p ≤ 1) for a confident pseudo label. Also, its corre-

sponding observation Φ(X j
T) is called a confident example

and denoted as C(Φ(X j
T)), where C means confident pseudo

labels or examples. The advantage of such confident ex-

amples and pseudo labels is to support the high quality of

predicted target labels and mitigate negative transfer of F .

Figure 2: Architecture of the PRPL model. We first extract features Φ(XS/T) for both source and target domains via Φ using

a pre-trained model, and then train the shared classifier F . In recurrent pseudo-labeling, confident pseudo-labeled examples

({C(Φ(XT t)), C(YT t

P
)}) are generated continuously in each t to form the updated label domain. During training, the updated

label domain will keep replacing {Φ(XS),YS} (the rectangle above updated domain). LS is source classification loss and

LMMD is maximum mean discrepancy loss. Best viewed in color.

Therefore, we construct an updated label domain DU =
{Xn

U ,Y
n
U}

NU

n=1, which consists of the labeled source domain

and confident target examples with pseudo labels, where

NU ≤ NS + NT , XU = Φ(XS) + C(Φ(XT)) and YU =
YS + C(YTP

), and NU is controlled by p. NU = 0 if p = 1,

and NU = NS +NT if p = 0.

3.4.2 Recurrent learning

Most existing pseudo-labeling methods only generate pseudo

labels in a single iteration. However, such a paradigm

cannot guarantee reliable predictions of the target domain.

Therefore, we propose recurrent pseudo-labeling to contin-

uously generate confident examples for T iterations. In

each iteration t, the updated label domain becomes: Dt
U =

{Xn
Ut ,Yn

Ut}
N

Ut

n=1, where XUt = Φ(XS) + C(Φ(XT t)) and

YUt = YS + C(YT t

P
), and t ∈ {1, 2, 3, · · · , T}. To sup-

press potentially noisy pseudo labels, in each iteration t,
the sample size of updated labels is always not greater than

NS +NT , i.e., NUt ≤ NS +NT .

C(YT t

P
) = argmax

c∈C
{Fc(Φ(X

j
T t))} ifmax(Fc(Φ(X

j
T t))) > pt,

(5)

In addition, C(YT t

P
) is also updated using Eq. 5 for the

probability threshold pt, and should maintain the condition

of pt+1 ≥ pt(0 ≤ pt ≤ 1) since we only want to generate

reliable pseudo labels, which will further avoid negative

transfer via pushing the decision boundary toward to the

target domain. In all iterations, we have a sequence of pt,
and pT = {pt}

T
t=1. Therefore, we can produce confident

examples and pseudo labels in each recurrent training.

During training, the updated label domain Dt
U will keep

replacing the original latent represented source domain

{Φ(XS),YS}. The parameters in the feature alignment mod-

ule will be updated via both labeled source domain and

pseudo labeled target domain. Therefore, the loss function

in each training iteration is given by:

Lt
U = Lt

S + Lt
MMD, (6)

where Lt
S = − 1

N
Ut

∑N
Ut

n=1

∑C
c=1 Y

n
Ut

c

log(Fc(X
n
Ut)),

Lt
MMD =

1

N 2
Ut

N
Ut∑

n,j

κ(Ln
Ut , L

j
Ut) +

1

N 2
T

NT∑

n,j

κ(Ln
T , L

j
T)

−
2

NUt · NT

N
Ut ,NT∑

n,j

κ(Ln
Ut , L

j
T).

In Lt
S , Yn

Ut

c

∈ [0, 1]C is the binary indicator of each class

c for observation Xn
Ut in the tth training iteration, and

Fc(X
n
Ut) is the predicted probability of class c. In Lt

MMD,

LUt = F(XUt), LT = F(Φ(XT)), and it also measures the

discrepancy between updated label domain and the target

domain in each t. Unlike Eq. 3, Lt
MMD also includes the

confident examples from the target domain. The networks

will be jointly optimized using the updated domain, which is

equivalent to minimizing the following conditional distance

during training.

DistCo
t = Dist

C∑

c=1

(YSc |XSc , C(YT tc

P
)|C(XT tc))

=
1

C

C∑

c=1

||
1

N c
S

N
c

S∑

i=1

Φ(X i
Sc)−

1

C(N c
T t)

C(N c

T t)∑

n=1

C(Φ(Xn
T tc))||2

(7)

where C is the number of categories, YSc |XSc (or

C(YT tc

P
)|C(XT tc))) represents cth category data in the

source domain or confident pseudo labeled target domain.

N c
S or C(N c

T t) is the number of samples in the cth cate-

gory in the source domain or confident pseudo labeled target

domain in each t.
In each iteration, we first use the initial classifier to gen-

erate pseudo labels for the target domain. Then, the pseudo

labels will be progressively refined. We empirically demon-

strate that such iterative learning is effective and efficient in

improving target domain accuracy.

3.5. PRPL model

The framework of our proposed PRPL model is depicted

in Fig. 2. Taken altogether, our model minimizes the follow-

ing objective function:

L(XS ,YS ,XT) = argmin(LS + LMMD +
T∑

t=1

Lt
U) (8)

where LS is the source classification loss and LMMD min-

imizes the distance between initial source and target repre-

sented data. Lt
U is the loss function of each t. T represents

the number of iterations of training.

3.6. Domain Adaptation Theory

We formalize the theoretical error bound of the target

domain for proposed recurrent learning in Lemma 1.

Lemma 1. Let h be a hypothesis in a hypothesis space

H . ǫS(h) and ǫT (h) represent the source and target domain

risk, respectively [1]. We have

ǫT (h) ≤ ǫS(h) + dH(P (Φ(XS)), P (Φ(XT))) + γ,

where dH(P (Φ(XS)), P (Φ(XT))) is the H divergence be-

tween the probability distribution of the source and target

domain. γ = ǫS(h
∗,YS)+ ǫT (h

∗,F(Φ(XT))) is the adapt-

ability to quantify the error in ideal hypothesis h∗ space of

source and target domain, which should be small.

During the recurrent pseudo-labeling, we expect the H
divergence between the distributions of latent feature space

can be minimized, and that an ideal hypothesis exists with

low risk on both domains, which is corresponding to a small

β in Lemma 1. In addition, such a divergence is assessed by

dH(P (Φ(XS)), P (Φ(XT)))≈ DistMa+ 1
T

∑T
t=1 DistCo

t .

Therefore, with the implicitly minimized training risk, do-

main divergence, and the adaptability of true hypothesis h,

the generalization bound of ǫT (h) can be achieved.

4. Experiments

4.1. Setup

Datasets. Office + Caltech-10 [6] consists of Office 10

and Caltech 10 datasets with 2,533 images from ten classes

Table 1: Pre-trained feature mean distance (1.0e+05) between two

domains and feature extraction time (minutes) for three datasets

(MD: mean distance; OC10: Office + Caltech-10; IR: Inceptionres-

netv2; EB7: EfficientNetB7; NM: Nasnetmobile).

Networks
OC10 Office-31 Office-Home

MD Time MD Time MD Time

SqueezeNet [10] 41.93 0.79 32.61 1.16 28.38 7.23

AlexNet [12] 20.05 0.29 18.74 0.46 19.68 4.20

GoogleNet [25] 15.25 0.28 15.74 0.47 13.89 4.25

ShuffleNet [33] 24.97 0.32 25.81 0.54 21.82 4.47

ResNet18 [7] 19.27 0.29 18.99 0.48 17.27 4.30

Vgg16 [22] 15.92 0.40 16.11 0.64 16.70 4.80

Vgg19 [22] 15.49 0.43 16.17 0.68 16.86 4.94

MobileNetv2 [21] 8.53 0.34 8.13 0.57 8.17 4.62

NM [41] 6.03 0.90 5.44 1.21 6.66 6.21

ResNet50 [7] 18.94 0.39 19.62 0.64 18.13 4.78

ResNet101 [7] 20.25 0.48 20.17 0.75 19.11 5.18

DenseNet201 [9] 22.1 1.32 22.05 2.04 18.80 9.56

Inceptionv3 [26] 5.74 0.43 5.47 0.68 5.94 4.86

Xception [4] 6.02 0.70 5.75 1.13 7.03 6.76

IR [24] 5.40 0.81 5.73 1.19 6.80 6.29

NasnetLarge [41] 4.19 2.45 4.04 3.64 6.15 14.65

EB7 [41] 1.13 4.06 1.27 8.31 1.49 23.64

in four domains: Amazon (A), Webcam (W), DSLR (D)

and Caltech (C). There are twelve tasks in Office + Caltech-

10 dataset. Office-31 [19] consists of 4,110 images in 31

classes from three domains: Amazon (A), Webcam (W),

and DSLR (D). We evaluate methods across all six transfer

tasks. Office-Home [29] contains 15,588 images from 65

categories. It has four domains: Art (Ar), Clipart (Cl), Prod-

uct (Pr) and Real-World (Rw). There are also twelve tasks in

this dataset. Therefore, we have 30 tasks in our experiment.

In experiments, C�A represents learning knowledge from

domain C which is applied to domain A.

Implementation details. As in Zhang and Davison [36],

we first extract features from the last fully connected layer

from 17 different networks for the three datasets. Param-

eters in recurrent pseudo labeling are T = 3 and pT =
[0.5, 0.8, 0.9]. Learning rate (ǫ = 0.001), batch size (64),

and number of epochs (9) are determined by performance

on the source domain. We compare our results with 12 state-

of-the-art methods. For fair comparison, we highlight those

methods in bold that are re-implemented using our extracted

features, and other methods are directly reported from their

original papers. Specifically, we modify the architecture of

DAN [14], DANN [5] and DCORAL [23], and replace the

feature extractor with the best pre-trained features, while

maintaining original loss functions2. Experiments are tested

with a GeForce 1080 Ti.

2Source code is available at: https : / / github . com /

YoushanZhang / Transfer - Learning / tree / main / Code /

Deep/PRPL.

https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL
https://github.com/YoushanZhang/Transfer-Learning/tree/main/Code/Deep/PRPL

Table 2: Accuracy (%) on Office + Caltech-10 dataset

Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

DAN [14] 96.8 95.9 96.2 93.1 88.8 92.4 94.5 95.4 100 89.1 95.9 95.9 94.5

DANN [5] 96.7 94.9 97.5 95.8 94.9 91.1 94.7 94.5 100 94.9 92.4 93.9 95.1

DCORAL [23] 96.5 97.6 96.8 96.3 98.3 96.8 94.9 95.8 100 94.6 95.8 99.0 96.9

DDC [28] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

RTN [16] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [18] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6

PRPLt=0 96.7 98.6 98.1 95.5 99.0 100 95.3 96.7 100 95.1 96.2 99.7 97.6

PRPLt=1 96.7 98.6 99.4 96.2 99.3 100 96.4 96.6 100 96.1 96.1 99.7 97.9

PRPLt=2 96.8 98.6 100 96.4 99.3 100 96.4 96.5 100 96.1 96.2 99.7 98.0

PRPLt=3 96.7 99.0 100 96.6 99.3 100 96.6 96.6 100 96.2 96.2 99.7 98.1

Table 3: Accuracy (%) on Office-Home dataset

Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

DAN [14] 55.0 72.5 79.1 66.5 72.9 74.3 69.7 57.4 82.7 76.1 59.1 85.4 70.9

DANN [5] 57.1 75.7 80.3 69.2 76.7 74.3 70.9 58.0 83.0 77.8 59.8 87.0 72.5

DCORAL [23] 59.1 78.4 82.3 71.1 79.0 77.4 71.2 57.8 84.3 78.7 60.4 87.0 73.9

CDAN-RM [15] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [15] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

ETD [13] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

TADA [30] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

SymNets [38] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

PRPLt=0 65.0 83.2 88.3 78.0 83.9 85.2 75.3 65.3 87.6 82.1 66.2 90.6 79.2

PRPLt=1 67.0 84.3 89.4 79.4 85.2 85.7 78.1 68.1 88.5 83.4 68.6 91.3 80.8

PRPLt=2 68.0 84.5 89.4 79.5 85.7 86.0 79.1 68.9 88.6 83.3 68.5 91.4 81.1

PRPLt=3 67.6 84.5 89.4 79.8 85.7 86.3 79.2 69.1 88.7 83.8 68.9 91.5 81.2

Table 4: Accuracy (%) on Office-31 dataset

TaskA�WA�DW�AW�DD�AD�WAve.

DAN [14] 85.8 88.0 75.7 98.4 74.7 95.0 86.3

DANN [5] 85.9 90.2 76.6 98.8 78.2 96.2 87.7

DCORAL [23] 90.7 90.6 79.0 98.8 78.7 97.1 89.2

RTN [16] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

ETD [13] 92.1 88.0 67.8 100 71.0 100 86.2

TADA [30] 94.3 91.6 73.0 99.8 72.9 98.7 88.4

SymNets [38] 90.8 93.9 72.5 100 74.6 98.8 88.4

CAN [11] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

PRPLt=0 92.1 96.0 80.4 98.6 80.1 96.1 90.6

PRPLt=1 95.4 97.0 81.8 99.2 82.1 97.0 92.1

PRPLt=2 95.6 96.8 82.2 99.2 82.8 97.1 92.3

PRPLt=3 95.9 97.0 82.4 99.2 83.0 97.1 92.4

Table 5: Ablation experiments on Office-31

Task A�W A�D W�A W�D D�A D�W Ave.

PRPLt=0-M 91.6 96.0 79.9 98.8 80.6 96.0 90.5

PRPLt=1-M 94.1 96.6 81.4 99.2 82.5 97.0 91.8

PRPLt=2-M 94.2 96.3 81.5 99.2 82.9 97.0 91.9

PRPLt=3-M 94.3 96.4 81.9 99.2 82.9 97.0 92.0

PRPLt=3 95.9 97.0 82.4 99.2 83.0 97.1 92.4

4.2. Results

Pre-trained feature selection. We first conduct experi-

ments to select the best pre-trained features for both the

source and target domains. We calculate the distance be-

tween two domains using the aforementioned pre-trained

feature distance in Eq. 1. The smallest distance between two

domains reveals the corresponding pre-trained network that

is the best for feature extraction. In Tab. 1, we first report the

mean distance between two domains of three datasets (for

Office + Caltech-10 and Office-Home, the mean distance is

the average of twelve tasks. For Office-31, the mean distance

is the average of six tasks). It is obvious that pre-trained

features from EfficientNetB7 have the smallest distance be-

tween two domains, which suggests the EfficientNetB7 is

the best deep network compared to the other 16 networks. In

addition, this observation is consistent with [36], that a better

ImageNet model will produce better pre-trained features for

UDA. Furthermore, we also list the computation time for

feature extraction of each dataset. We notice that Efficient-

NetB7 consumes more time than other networks since it has

more complex layers, and it needs more memory to process

images. However, the longest time is 23.64 minutes, and

these features will not be extracted again during the training.

Therefore, we opt for EfficientNetB7 as the feature extractor

to extract pre-trained features for the benchmark datasets.

We then use the extracted features Φ(XS) and Φ(XT) to per-

form the domain transfer tasks. In supplementary material,

we also validate the effectiveness of the proposed distance

function DistPre
k in choosing the best pre-trained features

by comparing to MMD and mean cosine distance function.

(a) Time of three datasets (b) Time of each task in Office31

Figure 3: Computation time comparison. (a) is the total computation time, that includes the pre-trained feature selection and

all transfer tasks (twelve for Office + Caltech-10, six for Office-31 and another twelve for Office-Home). (b) compares the

PRPL model with the other two baselines in each task of Office31 (feature extraction time is also included). On average, our

PRPL model is approximately 18 times faster than CAN [11], and 21 times faster than SymNets [38].

Domain transfer accuracy. The performance on Office

+ Caltech-10, Office-Home and Office-31 are shown in Ta-

bles 2-4. Our PRPL model outperforms all state-of-the-art

methods in terms of average accuracy (especially in the

Office-Home dataset). It is compelling that our PRPL model

substantially enhances the classification accuracy on difficult

adaptation tasks (e.g., W�A task in the Office-31 dataset

and the challenging Office-Home dataset, which has a larger

number of categories and different domains are visually dis-

similar). Our model also outperforms three re-implemented

baselines (DAN, DANN, and DCORAL), which use the

same EfficientNetB7 features as our model.

In Office + Caltech-10, although the final accuracy in

recurrent learning is 98.1%, it does not improve much from

97.6% to 98.1% (from first recurrent learning to the third

recurrent learning). One reason is the classification accuracy

is high (more than 97%). It is hence difficult to make a large

improvement). However, our model still provides a 1.2%

improvement over the best baseline (DCORAL). The mean

accuracy on the Office-31 dataset is increased from 90.6%

to 92.4%. We notice that accuracy is obviously improved

when t = 1, and then refined when t = 2/3. A similar

tendency is observed on Office-Home dataset. Therefore,

the best pre-trained features are powerful, and the recurrent

learning is effective in improving the classification accu-

racy. In addition, we also show the computation time of our

proposed PRPL model in Fig. 3. We require relatively less

computation time of all three datasets in Fig. 3a. In particu-

lar, we compare the computation time of our model with two

other methods (CAN [11] and SymNets [38]) on each task

in Office-31 datasets. Our model is obviously faster than

the other two (18 and 21 times faster). Therefore, our PRPL

model is fast and accurate in UDA tasks.

4.3. Ablation study

To demonstrate the effects of LMMD loss on classifica-

tion accuracy, we present an ablation study in Tab. 5. We

observe that LMMD loss is useful in improving performance

during each training iteration comparing with Tab. 4.

4.4. Parameter Analysis

There are two hyperparameters T and pt in PRPL that con-

trol the number of recurrent learning repetitions and the prob-

ability of selecting the confident examples. To get the opti-

mal parameters, we randomly opt the task Rw�Pr and run a

set of experiments regarding different values of each param-

eter. Notice that it is inappropriate to tune parameters using

the target domain accuracy since we do not have any labels

in the target domain. Therefore, we report the H divergence

between two domains, as stated in Sec. 3.6. Since H di-

vergence can be assessed by dH(P (Φ(XS)), P (Φ(XT))) ≈

DistMa + 1
T

∑T
t=1 DistCo

t , we calculate the marginal dis-

tance and recurrent conditional distance to tune these two

parameters. T is selected from {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

pt is selected from {0.5, 0.6, 0.7, 0.8, 0.9}, we fix one pa-

rameter and vary another one at a time.

Results presented in Fig. 4 demonstrate that our PRPL

model is not very sensitive to a wide range of parameter val-

ues since the H divergence (dH) is not significantly changed.

In Fig. 4a, we first tune the parameter T across five different

pt, and it consistently shows that dH achieves the minimum

value when T = 3. Therefore, the hyperparameter T = 3
is the best since the discrepancy between two domains is

minimized. After fixing T , we then present the effect of

different pt on dH in Fig. 4b. When p1 = 0.5, p2 = 0.8
and p3 = 0.9, dH achieves the minimum value. In Fig. 4, a

large pt tends to have a larger dH (e.g., pt = 0.9 in Fig. 4a

and pT = [0.7, 0.8, 0.9] in Fig. 4b) since a larger pt will se-

lect relatively fewer examples during the training i.e., NU is

small, and the discrepancy between two domains cannot be

well minimized. Therefore, the parameter analysis is useful

in finding the best hyperparameters for our PRPL model.

4.5. Feature Visualization

To further investigate the quality of invariant representa-

tion learned during the transition from the source domain

to the target domain, Fig. 5 visualizes embeddings of the

task Rw�Pr in the Office-Home dataset. In this figure, the

(a) Effect of different T on dH (b) Effect of different pt on dH

Figure 4: Parameter analysis for T and pt. In (a), dH is minimum when T = 3. In (b), the x-axis denotes different pt, and in

each array, it contains p1, p2 and p3 since T = 3. dH is minimum when pT = [0.5, 0.8, 0.9].

Figure 5: t-SNE of feature visualization of the task Rw�Pr in our recurrent pseudo-labeling learning when T = 3. Our PRPL

model improves the consistency of representations across domains. Also, the number of updated label domain NU is growing

with the increasing of time t (magenta color: source domain, cyan color: target domain). Best viewed in color.

magenta dots represent the source domain, and the cyan dots

denote the target domain. We can observe that the represen-

tation becomes more discriminative when t = 1, compared

with t = 0 (no recurrent learning). Although the representa-

tions of t = 2 and t = 3 are slightly improved, PRPL keeps

producing confident examples in Dt
U since N t

U is increasing.

5. Discussion

What can we learn from PRPL? Recurrent learning is

effective and accurate to improve target domain accuracy.

The architecture of our proposed PRPL is neat and straight-

forward. However, our model outperforms state-of-the-art

methods and achieves the highest accuracy so far. There

are two compelling advantages: 1) we extract pre-trained

features from 17 well-trained ImageNet networks, and we

select the best pre-trained features based on the domain dis-

tance. EfficientNetB7 produces high-quality features for the

datasets. 2) the proposed recurrent pseudo labeling effec-

tively keeps improving the target domain accuracy in each

iteration. Therefore, the generated confident pseudo labels

are useful in updating the network parameters, which further

reduces the domain discrepancy.

Is a pre-trained ImageNet model helpful? Yes. Ima-

geNet pre-training is important in improving the quality

of extracted features. Most existing work focused on fine-

tuning the ResNet50 network to perform domain transfer

tasks. One underlying reason is that ResNet50 is not a very

complex model, and it is easier to re-train the network with-

out the need of multiple GPUs. However, as we can see from

the results, the pre-trained features are efficient and easy to

use. Therefore, we recommend selecting better pre-trained

features for UDA.

6. Conclusion

In this paper, we efficiently and effectively select the best

pre-trained features among seventeen well-trained ImageNet

models in an unsupervised fashion. The EfficientNetB7

model shows the highest quality in extracting image features.

We then propose recurrent pseudo-labeling training to pro-

gressively generate confident labels for the target domain.

Extensive experiments demonstrate that the proposed PRPL

model achieves superior accuracy, noticeably higher than

state-of-the-art domain adaptation methods.

References

[1] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis

of representations for domain adaptation. In Advances in

Neural Information Processing Systems, pages 137–144, 2007.

5

[2] W. Chang, T. You, S. Seo, S. Kwak, and B. Han. Domain-

specific batch normalization for unsupervised domain adapta-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7354–7362, 2019. 2

[3] C. Chen, W. Xie, W. Huang, Y. Rong, X. Ding, Y. Huang, T.

Xu, and J. Huang. Progressive feature alignment for unsuper-

vised domain adaptation. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 627–636, 2019. 2

[4] F. Chollet. Xception: Deep learning with depthwise separable

convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1251–1258,

2017. 3, 5

[5] M. Ghifary, W. B. Kleijn, and M. Zhang. Domain adaptive

neural networks for object recognition. In Proceedings of

the Pacific Rim International Conference on Artificial Intelli-

gence, pages 898–904. Springer, 2014. 5, 6

[6] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow

kernel for unsupervised domain adaptation. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2066–2073. IEEE, 2012. 5

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016. 3, 5

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

3

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 4700–4708, 2017. 5

[10] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016. 5

[11] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Con-

trastive adaptation network for unsupervised domain adapta-

tion. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4893–4902, 2019. 1, 2, 6, 7

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 3, 5

[13] M. Li, Y. Zhai, Y. Luo, P. Ge, and C. Ren. Enhanced transport

distance for unsupervised domain adaptation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13936–13944, 2020. 6

[14] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transfer-

able features with deep adaptation networks. arXiv preprint

arXiv:1502.02791, 2015. 1, 2, 5, 6

[15] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional

adversarial domain adaptation. In Advances in Neural In-

formation Processing Systems, pages 1647–1657, 2018. 2,

6

[16] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised do-

main adaptation with residual transfer networks. In Advances

in Neural Information Processing Systems, pages 136–144,

2016. 1, 3, 6

[17] S. J. Pan and Q. Yang. A survey on transfer learning.

IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, 2010. 1

[18] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Srid-

haran. On minimum discrepancy estimation for deep domain

adaptation. In Domain Adaptation for Visual Understanding,

pages 81–94. Springer, 2020. 6

[19] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual

category models to new domains. In Proceedings of the

European Conference on Computer Vision, pages 213–226.

Springer, 2010. 5

[20] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-

training for unsupervised domain adaptation. arXiv preprint

arXiv:1702.08400, 2017. 2

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.

Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4510–4520, 2018. 5

[22] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 5

[23] B. Sun and K. Saenko. Deep coral: Correlation alignment for

deep domain adaptation. In Proc. of European Conference on

Computer Vision, pages 443–450. Springer, 2016. 5, 6

[24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In Proceedings of the 31st AAAI

Conference on Artificial Intelligence, 2017. 5

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1–9, 2015. 5

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2818–2826, 2016. 5

[27] M. Tan and Q. V. Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019. 3

[28] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.

Deep domain confusion: Maximizing for domain invariance.

arXiv preprint arXiv:1412.3474, 2014. 6

[29] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Pan-

chanathan. Deep hashing network for unsupervised domain

adaptation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 5018–5027, 2017.

5

[30] X. Wang, L. Li, W. Ye, M. Long, and J. Wang. Transferable

attention for domain adaptation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 5345–

5352, 2019. 2, 6

[31] S. Xie, Z. Zheng, L. Chen, and C. Chen. Learning semantic

representations for unsupervised domain adaptation. In Inter-

national Conference on Machine Learning, pages 5423–5432,

2018. 1, 2

[32] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and

adversarial network for unsupervised domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3801–3809, 2018. 1, 2

[33] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856, 2018. 5

[34] Y. Zhang and B. D. Davison. Modified distribution alignment

for domain adaptation with pre-trained Inception ResNet.

arXiv preprint arXiv:1904.02322, 2019. 2

[35] Y. Zhang and B. D. Davison. Domain adaptation for object

recognition using subspace sampling demons. Multimedia

Tools and Applications, pages 1–20, 2020. 2

[36] Y. Zhang and B. D. Davison. Impact of ImageNet model selec-

tion on domain adaptation. In Proceedings of the IEEE Winter

Conference on Applications of Computer Vision Workshops,

pages 173–182, 2020. 2, 5, 6

[37] Y. Zhang and B. D. Davison. Adversarial continuous learning

in unsupervised domain adaptation. In Pattern Recognition.

ICPR International Workshops and Challenges: Virtual Event,

January 10–15, 2021, Proceedings, Part II, pages 672–687.

Springer International Publishing, 2021. 2

[38] Y. Zhang, H. Tang, K. Jia, and M. Tan. Domain-symmetric

networks for adversarial domain adaptation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5031–5040, 2019. 6, 7

[39] Y. Zhang, S. Xie, and B. D. Davison. Transductive learning

via improved geodesic sampling. In Proceedings of the 30th

British Machine Vision Conference, 2019. 2

[40] Y. Zhang, H. Ye, and B. D. Davison. Adversarial reinforce-

ment learning for unsupervised domain adaptation. In Pro-

ceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 635–644, 2021. 2

[41] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8697–8710, 2018. 5

