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Abstract

Few-shot learning features the capability of generaliz-

ing from a few examples. In this paper, we first identify

that a discriminative feature space, namely a rectified met-

ric space, that is learned to maintain the metric consis-

tency from training to testing, is an essential component to

the success of metric-based few-shot learning. Numerous

analyses indicate that a simple modification of the objective

can yield substantial performance gains. The resulting ap-

proach, called rectified metric propagation (ReMP), further

optimizes an attentive prototype propagation network, and

applies a repulsive force to make confident predictions. Ex-

tensive experiments demonstrate that the proposed ReMP is

effective and efficient, and outperforms the state of the arts

on various standard few-shot learning datasets.

1. Introduction

Learning and generalizing from a few examples to effec-

tively make predictions in new domains/tasks is a common

scenario in real applications, as the supervised information

is often hard to acquire due to some practical considera-

tions, such as high labeling cost, privacy, safety or ethic

issues. Naively applying the traditional supervised learn-

ing techniques tend to overfit in this scenario [5, 31]. This

stimulates the emergence of few-shot learning (FSL), which

mimics the human ability of recognizing new data after ob-

serving a few instances.

In such a few-shot regime, it is desired to leverage

knowledge (e.g. parameters and embeddings) from one task

to another. Recent research has shown promising results in

exploiting episodic learning on this task. In essence, the

episodic learning aims to mimic the real testing scenarios

where the model generalizes information from a few labeled

instances (called support set) to predict labels of unlabeled

instances (called query set) in each episode. Research ef-

forts in solving FSL can be broadly categorized into two

types: (i) Meta-learning [5, 19] can quickly adapt param-

eters to a new task after fine-tuning; (ii) Embedding and

metric-based learning [28, 31] directly performs nearest-

neighbor classification given a similarity metric on an em-

bedding space. Our work is falling into this category.

The fundamental task for the metric learning methods is

to design an appropriate metric space [20] that can satisfy

the following three properties simultaneously: (i) a valid

measure (or metric) such as Euclidean distance and Cosine

similarity [27, 20, 10]); (ii) a cost function that can fully

exploit input information to update the network; (iii) the

metric consistency from training to testing, as well as from

pretraining to fine-tuning if a pretraining is being applied. A

contradictory example that arouses an inconsistency issue is

seen in most works as well as recent advanced metric-based

FSL frameworks [2, 34]. They adopt an inefficient two-

phase training procedure: a parametric pre-training with a

linear classifier and a non-parametric fine-tuning with the

nearest-neighbor prediction. In FSL, the pretraining essen-

tially leads to a different metric space from that learnt by

fine-tuning. However, the testing is only accessible to use

the non-parametric nearest neighbor classifier (see more de-

tails in the Background section). In the end, the inconsis-

tency is reflected on the very limited performance gain [34].

While the first two properties have largely been individu-

ally explored [27, 21, 14], the last one is less studied (if not

ignored at all). We observe that this missing ingredient can

lead up to 5% absolute recognition accuracy drop when the

inconsistent metric exists. In the meantime, however, this

kind of parametric linear classifier is essential to explore a

discriminative metric space and to encourage faster conver-

gence. So the natural question is: is there a strategy that

can maintain the metric consistency as well as fully utilize

the training data information to learn a meaningful metric

space?

To this end, we argue that a suitable interaction of

above three properties can yield significant improvements

in terms of performance and stability. We study the FSL

problem from a unified perspective and propose a rectified

metric propagation (ReMP) framework that can progres-

sively make predictions in a discriminative feature space,

namely the rectified metric space. The rectified metric is

induced from maintaining consistency from training to test-

ing. Specifically, we firstly design a cooperative learning

objective that considers training-testing consistency both

within a global parametric classifier (called global match-



ing) and local nearest neighbor prediction among instances

(called local matching). The framework proceeds in a feed-

forward pass without either pre-training or fine-tuning. To

further enhance the nearest neighbor prediction confidence,

we propose an attention-based contextualized label embed-

ding method to iteratively rectify the prototypes, such that

data importance is taken into account when calculating class

prototypes. The resulting approach is simpler and more ef-

ficient than related recent approaches. The contributions of

this paper are threefold:

• We identify the metric inconsistency issue between

training and testing in FSL, a long-standing issue of

almost all metric-based FSL approaches. To alleviate

this problem, we propose a cooperative label-aligned

training scheme, where the unabridged metric space

can be inherited to the testing phase.

• We describe a contextualized label embedding mod-

ule containing attentive prototype propagation lay-

ers to take into account data importance to make more

confident predictions.

• With the above two novelties, new state-of-the-art

(SoTA) performances on three standard FSL classifi-

cation datasets, the miniImageNet, tieredImageNet and

CIFAR-FS are achieved.

The rest of the paper is organized as follows. We first sum-

marize the related work and how our proposal is differen-

tiated from those. Then, we describe our contribution in

detail and present extensive experiments to demonstrate our

justifications. Finally, we conclude our paper and highlight

future research directions.

2. Related work

In this section, we introduce related works and make

distinction between our approach and related FSL meth-

ods. These methods broadly fall into three categories, meta-

learning, embedding and metric learning, and transductive

learning based approaches.

Meta-learning Meta-learning [29, 5], or learning-to-

learn, is a framework that is capable of learning a task-

specific meta-network. After observing the support set of

a new task, the meta-network can quickly adapt to be eval-

uated on the query set of that new task. [23] proposes to

finetune an LSTM-based optimizer besides the meta-learner

to maximize the performance. [18] learns to change its

inductive bias via fast parameterization. These works in-

clude MAML [5], Reptile [19], Meta-SGD [13], Bayesian-

MAML [36], Implicit-MAML [22] and LEO [25]. How-

ever, the aforementioned approaches often suffer from over-

fitting and sensitive to architectures, making the perfor-

mance after fine-tuning on a new task limited. Although

some recent work [1] proposes some modifications, this

line of approaches is still unsatisfactory for solving FSL.

By contrast, our proposed model can make predictions in

a direct and efficient feed-forward manner without the ne-

cessity of fine-tuning. Recently, perhaps the most popu-

lar approach is model agnostic meta learning (MAML) [5].

MAML learns a meta-parameter-initialization of a meta-

network such that it can solve a new task with only a few

gradient descent steps.

Embedding and metric learning This class of methods

for FSL has drawn more and more attention. The main goal

is to learn a transferable and discriminative feature space

that preserves the neighborhood structure, e.g., the Match-

ing network [31] and Prototypical network [27]. This means

objects belonging to the same class should be consistently

closer to each other in the feature space measured by some

similarity measures, e.g., the Euclidean distance and Cosine

similarity, and vice versa. Two typical works Relational net-

work [28] and TADAM [20] made further improvements.

Another line of work proposes to learn global prototypes

[6, 21]. Label embedding has been proposed as anchor

points to improve text classification in NLP [32]. Different

from these approaches, the proposed cooperative learning

objective can fully exploit the manifold information of both

support set and query set in training, and progressively ex-

plore a discriminative feature space to refine the prototype

in testing.

Transductive learning The transductive learning is first

introduced in TPN [15] that exploits the manifold structure

in the data by learning a graph construction to propagate

labels from the support set to the unlabeled query set. It al-

leviates the small-data problem in FSL and has been shown

to outperform the inductive learning (inaccessible to a query

set) counterparts. [8] further enhances the graph construc-

tion module. FEAT [34], CAN [7], Meta-Fun [33] and EP-

Net [24] optimize the embedding manifold to better gener-

alize to unseen classes. DFMN-MCT [10] chooses to prop-

agate prototypes along with assigning confidence scores to

all unlabeled queries, leading to SoTA results. However, the

pretraining phase of FEAT and the pixel-wise dense classi-

fier of DFMN-MCT lead to an inconsistent pipeline from

training to testing. Our work is distinguished from existing

works by that we propose to rectify the metric space, which

aims to close the gap between training and testing. Further-

more, our approach can achieve new SoTA results with a

newly proposed repulsive attention strategy by stacking up

more attention layers.



3. Background

3.1. Problem definition

Similar to the supervised-learning setting, a dataset is

typically divided into three parts in FSL: a training dataset

Dtrain, a testing dataset Dtest and a validation dataset Dval.

The main distinction of FSL is that the three sets have dis-

joint label spaces. The episodic classification [5, 17, 12,

31, 27, 26] is a common and effective approach to FSL,

where the training dataset is exploited to simulate the few-

shot learning setting via episode-based training.

Specifically, to characterize generalization, in the train-

ing process, one typically randomly samples N classes in-

stances in each episode, containing a support set S =
{(xi, yi}

N×K
i=1 (K samples per class) and a query set Q =

{(x̃i, ỹi}
N×M
i=1 (M samples per class). The support set is

used to calculate prototypes and then make predictions on

the query set, which in turn is used to update the model.

This setting is often abbreviated as N-way K-shot FSL. The

number of K is generally very small, e.g. 1 and 5. The goal

of FSL is to learn a model to exploit such a low resource

data set S to predict labels for queries in Q.

3.2. Revisiting the classifiers in the feature space

Current approaches to FSL resort to a two-step proce-

dure, represented as a function decomposition f ◦ g, where

(i) f : x −→ z is a feature extractor, which maps an in-

put x ∈ R
D to a feature vector z ∈ R

d in a transferable

and discriminative space. It is worth noting that d is not

necessarily much smaller than D and it is mostly related to

the complexity of f ; (ii) g is a classifier, mapping the fea-

ture z into a vector of logits g(z) and produce a probability

distribution p(·|x) over all categories activated by the Soft-

max. Since f and g are sometimes not trained end-to-end,

it is crucial to find a good association between a classifier

g and the feature representation z. Typically, there are two

general paradigms to design the classifier g. Unfortunately,

both paradigms endow a limitation. Our proposed approach

would inherit the best of both worlds, as described in the

next section.

• Parametric Methods. These approaches usually learn

a linear classifier g(z) = w
⊺
z + b,w ∈ R

d×N ,b ∈
R

N , thus inherits fast convergence. However, since in

FSL, the label space in the testing is disjoint with that

in the training phase. This implies that {w,b} trained

on the training data is not ready to be adopted for test-

ing directly. Two solutions can be designed to miti-

gate this problem: (i) Fine-tuning to adapt the param-

eters [5, 13, 25] to test sets; (ii) Performing the nearest

neighbor search in an embedding space [21, 10, 2] for

testing. We only consider the second approach in the

following as the fine-tuning approaches are often un-

satisfactory and time-consuming. However, the second

solution would lead to inconsistency between train-

ing and testing. This is because g(z) is computed

based on a linear mapping in training; whereas the

nearest neighbor is used in testing. In fact, the model

is unaware of an appropriate metric in training. Such

inconsistency could harm model performance.

• Non-parametric Methods. In training and testing,

one consistently applies a metric-based similarity mea-

sure g(z) = κ(z, cn), where cn is the class pro-

totype (prototype), usually defined as the intra-class

mean over support embeddings; κ(·, ·) is often de-

fined by Cosine similarity [20], negative Euclidean dis-

tance [27, 20, 10] and kernel-based functions [33, 15].

However, it has been found that these approaches are

hard to explore and learn a discriminative metric

space1 [27, 20, 28], thus limiting its potential to reach

a good convergence point (see Tab. 3).

4. The Proposed Method

Our goal is to overcome the two aforementioned limita-

tions, and design a model to close the gap between train-

ing and testing, and at the same time, to learn a discrimi-

native metric space. To this end, we first define a cooper-

atively label-aligned learning objective. A contextualized

label embedding module with self-attention is then further

formulated to iteratively propagate labels on S ∪ Q, and to

rectify prototypes such that more confident predictions can

be made. The overall framework is illustrated in Figure 1.

4.1. LabelAligned Cooperative Learning

We firstly define a label-aligned learning objective to op-

timize the feature extractor f and the classifier g in training.

It completes the cooperative learning on two levels, global

matching on the global prototype of Dtrain and local match-

ing on the local prototype of the episodic S ∪ Q.

Notations To facilitate the reading, notations are clarified.

The number of classes in Dtrain is N train. The i-th pair of Q
is (x̃i, ỹi). For the N -way classification protocol on the

instance x̃i, (ỹgi = ỹi, ŷ
g
i ) are the true label and predicted

label ranging from 1 to N train on the global level; whereas

(ỹli, ŷ
l
i) denotes the true label and predicted label ranging

from 1 to N on the local level. Note ỹgi and ỹli are different

random variables corresponding to the same data instance

x̃i in a FSL setting.

Global matching To encourage fast convergence, we first

define a global matching loss on Dtrain. The global matching

1A metric space means an embedding space, where one can compute

similairty given a metric. It is different from the definition in mathematics,

e.g., the Cosine similarity, which can be negative.
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Figure 1. Illustration of the proposed label-aligned learning. The training considers matching in both a parametric global weight space

and a non-parametric rectified metric space. In testing, predictions are only made through local matching in a feed-forward manner, where

rectified prototypes help to generate a better decision boundary based on self-attention.

is a parametric model, aiming to make predictions matched

with the global-level label ỹgi . To this end, we first intro-

duce a metric κ(·, ·) to measure the similarity between two

vectors. The metric can be flexible. We adopt the Consine

similary and Euclidean distance in our experiments. The

goal is to match the feature of a data instance with a set of

global learnable weight vectors {wk ∈ R
d}N

train

k=1 , each rep-

resenting a global class prototype, as illustrated in Figure 1.

To this end, the global likelihood on x̃i is:

p(ŷgi = k|x̃i) =
exp(κ(f(x̃i),wk))

∑N train

k=1 exp(κ(f(x̃i),wk))
. (1)

The global loss is then defined as the standard cross-entropy

loss:

Lglobal = −

NM
∑

i=1

N train

∑

k=1

I(ỹgi = k) log p(ŷgi = k|x̃i), (2)

where I(·) is an indicator function. In each episode, all

global weights are being optimized with interactive infor-

mation sharing, which could significantly encourage the

model’s convergence. Note that, the proposed approach is

different from other types of inconsistent global matching,

e.g., the linear classifier in [7] and the dense matching in

[10], where the embedding has a different dimension from

the global weight.

Local matching Note the above global loss Lglobal is

parametric, which still could cause training-testing incon-

sistency. To close the gap, we further incorporate a local

loss on episodic S ∪ Q with N classes. Instead of using

a parametric model, we define a non-parametric model to

directly match predictions with local prototypes. We first

define the local likelihood on x̃i as:

p(ŷli = n|x̃i) =
exp(κ(f(x̃i), cn))

∑N

n=1 exp(κ(f(x̃i), cn))
(3)

where cn represents the prototype for local class n, calcu-

lated as

cn =
1

K

NK
∑

i=1

I(yi = n)f(xi), for (xi, yi) ∈ S . (4)

We then define the local loss as:

Llocal = −
NM
∑

i=1

N
∑

n=1

I(ỹli = n) log p(ŷli = n|x̃i) . (5)

It is clear that Llocal can leverage episodic S and Q for

similarity comparison both in training and testing, without

consulting the global parametric classifier.

Label-aligned objective To align labels in the local

matching with that in the global metric space, we propose a

full objective that combines Eq. (2) and Eq. (5):

Lfull = Lglobal + αLlocal , (6)

where α is a balance hyper-parameter. At testing, predic-

tions will only be made following Eq. (3) such that the lo-

cal matching is consistent for both training and testing. We

claim that:

Remark 1 A good metric space is all we need in metric-

based FSL. On the premise that the embedding z and the

global weight w are jointly learned via Eq. (6), global

matching helps accelerate convergence and explore a space

that is endowed with a strong transferability; meanwhile lo-

cal matching preserves the metric inheritance from training

to testing.



Besides, the metric in Equation (2) and Equation (5) don’t

need to be the same since the global weight vectors are

learned rather than computed by the episodic instances.

This claim is essentially different from previous methods,

e.g., CAN [7] and MCT-DFMN [10]. We will give detailed

justifications in the experiments.

4.2. Contextualized Label Embeddings for Proto
type Rectification

In FSL, the training set Dtrain and test set Dtest have

disjoint label space. This makes the resulting embed-

ding space trained on the training dataset not discrimina-

tive enough for making predictions on the testing dataset.

Consequently, the prototypes computed on the support set

S with Eq. (4) might not reflect the ground true. Follow-

ing the transductive-learning setting [15], we propose to in-

corporate the query set Q to refine the prototype progres-

sively, so that one can make more accurate predictions. To

this end, we propose a self-attentive prototype rectification

process, where contextualized label embeddings are propa-

gated from S to Q. The overall procedure is illustrated in

Figure 2.

Embedding We first use the feature extractor f to map

the input S ∪ Q to an embedding matrix Z = [ZS ;ZQ] ∈

R
(NK+NM)×d, where S

f
−→ Z

S ∈ R
NK×d and Q

f
−→

Z
Q ∈ R

NM×d. meanwhile, the prototype matrix C =
[c1; ...; cn; ...] ∈ R

N×d is initialized from Z
S with Eq. (4).

(a) Initial prototype               (b) Rectification             (c) Repulsive rectification  

Support 

Prototype

Query

Move

Force

Repulsive force

Figure 2. Prototype rectification. The color depth of a query repre-

sents the attention score to the prototype. (a) The initial prototype

is the mean embedding of the two instances in the support set. (b)

Rectification will take the neighbor information into consideration

to refine the prototype. (c) Repulsive rectification further imposes

a repulsive force to get a more representative prototype.

Prototype rectification Our idea is to refine the proto-

types by considering the similarity information of the sup-

port set S and query set Q. To achieve this, we modify the

popular attention-based method [30] to be suited to FSL.

Specifically, the prototype rectification aims to aggregate

information from weighted embeddings of Z, where the at-

tentive weight A ∈ R
N×(NK+NM) is given by the similar-

ity between the current prototype C and the embedding Z.

As a result, the output C∗ (the rectified prototype) is:

C
∗ = AZ = Softmax(κ(C,Z))Z . (7)

Considering the labels of S have been defined in advance in

the local level, those labels shouldn’t be ambiguous even if

a new prototype is computed. So the way to compute the

attention is not straightforward as shown in Eq. (7), other-

wise the attention matrix will be problematic as presented

in [35]. Given that, we split the attention matrix A into two

parts A = [AS ,AQ] with

A
S = Softmax(κ(C,ZS)) ∈ R

N×NK , (8)

A
Q = Softmax(κ(C,ZQ)) ∈ R

N×NM .

where the Softmax(·) is performed on each column. To

preserve the predefined label information in the support set,

we re-define the metric κ(·, ·) in A
S . Recall the label of the

current data instance is n. The metric is defined as

κ(cn, zs) =

{

+∞ if n = ys,
−∞ if n 6= ys.

(9)

where −∞ and +∞ indicate attention scores are 0 and 1.

In this way, the attention weights in A
S are non-zero only if

the labels are the same. In other words, AS can be written

as

A
S = [v(1); ...;v(n); ...], for n ∈ {1, 2, ..., N} (10)

where v(n) is a zero-vector except for elements from K ×
(n− 1) to K ×n with value 1. With A

S being hard-coded,

the label of each support instance won’t be ambiguous even

if the prototype is iteratively refined. Eventually, when con-

catenating the hard-coded A
S with A

Q, we re-normalize

the resulting matrix per row.

To further explore the metric space and ensure the em-

bedding is not drifted away, a residual projection layer

h : Rd −→ R
d is stacked on top of the above attention layer:

C = h(C∗) +C,Z = h(Z) + Z (11)

Repulsive attention In an episode of the standard N -way

FSL classification scenario, each of the N classes is associ-

ated with M queries. With the attention mechanism defined

above, the prototype rectification for a specific class might

be affected by the other N(M−1) queries beyond this class.

Intuitively, queries too far away from the current instance

is not expected to interact with the current instance. As a

result, we propose a repulsive self-attention mechanism to

refine the attention scores. Specifically, given a threshold β,

we refine the attention score as:

A[mask] = −min(A), where mask = (A < β). (12)

Also, a larger β tends to enforce weaker repulsive force.

The enforced negative attention score, which corresponds

to some dissimilar queries, can induce a repulsive force



Models Backbone FT
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Prototypical Net [27] ConvNet ✗ 49.42±0.78 68.20±0.66 53.31±0.89 72.69±0.74

Relation Net [28] ConvNet ✗ 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78

TPN [15] ConvNet ✗ 55.51±0.86 69.86±0.65 59.91±0.94 73.30±0.75

FEAT [35] ConvNet ✓ 55.75 72.17 – –

EPNet [24] ConvNet ✓ 59.32±0.84 72.95±0.63 60.70±0.97 73.91±0.74

DFMN-MCT [10] ConvNet ✗ 64.65±0.89 75.96±0.54 65.66±0.98 75.72±0.61

ReMP ConvNet ✗ 66.21±0.36 76.50±0.29 67.12±0.87 76.43±0.50

TADAM [20] ResNet ✗ 58.50±0.30 76.70±0.30 – –

TPN [15] ResNet ✗ 59.46 75.65 – –

FEAT [35] ResNet ✓ 62.60 78.06 – –

CAN [7] ResNet ✗ 67.19±0.55 80.64±0.35 73.21±0.58 84.93±0.38

EPNet [24] ResNet ✓ 70.74±0.86 81.52±0.58 78.50±0.86 87.48±0.69

DFMN-MCT [10] ResNet ✗ 78.30±0.81 86.48±0.42 80.89±0.84 87.30±0.49

ReMP ResNet ✗ 79.25±0.31 87.01±0.29 82.01±0.71 87.92±0.38

Table 1. Comparison with state-of-the-art methods on 5-way classification (FT: fine-tuning).

that prevents a prototype from being pulled away by these

queries, as demonstrated in Figure 2.

In our experiment, we stack L layers of the rectification

process described above, corresponding to an L-layer atten-

tion mechanism, which has been demonstrated effective in

natural language processing (NLP) tasks [30, 11].

5. Experiments

In this section, we evaluate the proposed ReMP to seek

answers for the following questions: Q1: How does ReMP

perform on standard benchmarks compared to SoTA? Q2:

Does ReMP indeed reduce the inconsistency between train-

ing and testing? Q3: How much does each component of

ReMP contribute to the performance?

5.1. Experimental Settings

Datasets In the main part, we consider three standard FSL

datasets, miniImageNet, tieredImageNet and CIFAR-FS.

• miniImageNet is a subset of ILSVRC-12 [3] proposed

in [31] for FSL evaluation. It consists of 100 classes

with 600 images per class. We follow the standard pro-

tocol to divide the dataset into three subsets: Dtrain of

64 classes, Dtest of 20 classes and Dval of 16 classes.

• tieredImageNet is an alternative subset of ILSVRC-12

prepared for more challenging FSL evaluation. It has a

hierarchical structure of 34 coarse categories with fine-

grained classes. There are three subsets: Dtrain with 20

categories and 351 classes, Dtest with 8 categories and

160 classes, and Dval with 6 categories and 97 classes.

• CIFAR-FS is based on CIFAR-100 [9]. It is split into

64 training classes, 16 validation classes and 20 testing

classes.

Implementation details All experiments are conducted

in PyTorch-1.3 on NVIDIA TITAN XP (12GB) platform.

Following [10, 28, 12], we consider two standard embed-

ding modules (f ) as backbones: a 4-layer ConvNet with 64

channels per layer and a 12-layer ResNet, as well as stan-

dard data augmentation (including random resized crop and

horizontal flip). Following [28, 10], in each episode, the

number of queries in each class is set to M = 15. Cosine

similarity is used in (1) and negative Euclidean distance is

used in (3). All models are trained with a Stochastic Gra-

dient Descent (SGD) optimizer with momentum 0.9. The

initial learning rate is set to 0.1 and the weight decay is

5e−3. We decay the learning rate by a factor of 10 every

25000 iterations until convergence. We stack L = 2 lay-

ers in training and L = 10 layers in testing. The default

loss balance factor α = 0.1. All reported accuracy results

are averaged over 600 test episodes with 95% confidence

intervals.

Baseline Methods We compare our approach with seven

baselines. All baselines, except for Prototypical Net [27],

Relation Net [28] and TADAM [20], are transductive-

learning based approaches. Specifically, FEAT [35] and

CAN [7] use embedding propagation while TPN [15], EP-

Net [24] and DFMN-MCT [10] are based on label propaga-

tion. We also note that, (i) TADAM introduces a co-training

method that takes the parametric linear classifier as an aux-

iliary task whose importance is decayed, however, it is still

decoupled from the primary FSL task; (ii) FEAT borrows



the entire Transformer architecture from [30]. This tends

to break both the pretrained embedding space and ignore the

predefined label information (if used in a transductive man-

ner), resulting in a limited performance gain; (iii) CAN [7]

also combines the local and global losses, both of which are

defined with cosine similarity. However, we demonstrate

that it is not necessary to use the same metric as the global

loss and the local loss don’t necessarily share the same “pro-

totypes”.

5.2. Comparison with SoTA methods

The main results are shown in Table 1. As is seen, ReMP

obtains the highest FSL classification accuracy as well as

the lowest deviations in most settings by a large margin.

Table 2 shows the 1-shot and 5-shot accuracy results on

CIFAR-FS.

Models Backbone 1-shot 5-shot

ProtoNet ConvNet 55.50±0.70 72.00 ±0.60

MetaOpt-SVM ResNet 72.00±0.70 84.20±0.50

DFMN-MCT Resnet 87.51±0.48 90.23±0.63

ReMP ResNet 87.83±0.31 90.17±0.50

Table 2. Comparison with various baselines on CIFAR-FS.

N-way M-query learning We conduct further analysis to

determine the effect of the number of queries per class and

the number of classes per testing episodes. Decreasing the

number of queries and increasing the number of classes

could both affect the model’s prediction accuracy. The re-

lated work DFMN-MCT, which holds the current state-of-

the-arts, is chosen as a strong baseline. ReMP distinguishes

from DFMN-MCT in a rectified metric objective and an ef-

ficient repulsive attention-based propagation layer. As seen

in Figure 3, ReMP consistently outperforms DFMN-MCT

under two sets of scenarios, endowing both higher accuracy

and lower deviation.

5.3. Why does ReMP improve performance?

On the rectification of learning objective We present

four scenarios covering the impact of training schedules

and metric options for the demonstration: (i) Cooperative

training - apply Lfull (6); (ii) Pretrain and finetune - apply

Lglobal (2) then use Llocal (5); (iii) Local matching - only

apply Llocal; and (iv) Global matching - only apply Lglobal.

The main results are shown in Tab. 3, from which we can

conclude:

• Global matching stimulates a more discrminative met-

ric space, as it is observed that the accuracy in (b) is

always higher than the corresponding one in (c), re-

gardless of the metrics.

Figure 3. Comparison showing the effect of: (Top) the number

of test queries per class and (Bottom) the number of classes per

testing episode for 1-shot protocol on the miniImageNet.

• Local matching mitigates the discrepancy between

training and testing as seen in (a) and (d). The rea-

son lies in the improved transferability from training

to testing, as they are being optimized towards exactly

the same goal in (3).

Figure 4. The impact of α under Euclidean distance.

In addition, comparing (a) with (b) and (d), we find

that cooperative learning surprisingly obtains the best



performance when Cosine similarity and Euclidean dis-

tance are applied at the same time, which nearly closes

the gap between the two measures. We hypothesize that the

metric-based FSL problem is fundamentally difficult with-

out inductive biases on both the models and the data. The

most suitable metric space can not be easily identified. Fig-

ure 5 in Appendix B shows the t-SNE [16] visualization

of embedding spaces. The observation is consistent with

Tab. 3. Above findings provide strong support for Remark

1 to answer Q2. We also visualize the impact of the balance

Lglobal

Llocal
Cosine Euclidean

Cosine 64.69 65.55

Euclidean 65.43 65.15

(a) Cooperative training with α = 0.1

Train

Test
Cosine Euclidean

Cosine 61.89 62.41

Euclidean 61.68 62.79

(b) Pretrain Lglobal, finetune Llocal.

Train

Test
Cosine Euclidean

Cosine 59.67 58.53

Euclidean 57.26 59.45

(c) Training with Llocal.

Train

Test
Cosine Euclidean

Cosine 56.34 60.62

Euclidean 56.31 61.31

(d) Training with Lglobal.

Table 3. The impact of similarity κ(·, ·) and training schedule. Re-

sults are averaged over 10 independent runs of 6000 episodes.

factor α in Figure 4, where two red dots appeared as the un-

stable model training tries (about 6 out of 10). When α = 0,

global matching itself will cause inconsistency issues. As α
gets a bit larger, global and local prototypes try to reach a

consensus to induce an optimal model. If α is very large,

instability issues will be triggered where global and local

prototypes struggle to fit each other. When α −→ inf , the lo-

cal matching itself won’t find a discriminative space as the

global matching does.

Repulsive attention We empirically define a layer-wise

threshold βl = 1.5/N(L − l) throughout our experiments,

where l is the layer number of a stacked propagation. βl is

expected to gradually increase as we rectify the prototype

with more layers. We visualize the rectification process us-

ing attention heatmap in Figure 5. Apparently, the itera-

tive rectification process leads to a better decision bound-

ary. And generally, the boundary can be further optimized

by the repulsive rectification as seen in Figure 2(c).

Figure 5. Visualization of the rectification process for 5-way 1-shot

classification on miniImageNet. In a heatmap, the x-axis and y-

axis represent class types for prototypes and queries, respectively.

For example, the value in (row 1, column 2) represents the simi-

larity between query of class 1 and prototype of class 2. For better

classification, the diagonal values should be the highest in each

row.

Ablate the component To anwer Q3, we conduct an ab-

lation study to examine the contribution of each component

to our model. As it can seen in Table 4, the transductive

FSL obviously outperforms the inductive implementation.

More importantly, the global matching indeed encourages

a more discriminative metric space than the local matching

does. In summary, the cooperative learning can give the best

performance.

Ablation Accuracy

ReMP 66.21±0.36

ReMP w/o repulsive attention 65.55±0.36

ReMP w/o Llocal 60.62±0.37

ReMP w/o Lglobal 58.53±0.36

ReMP w/o contextualization (inductive) 56.13±0.78

Table 4. Ablation study results with 95% confidence intervals on 1-

shot 5-way classification on miniImageNet (backbone: ConvNet-

64).

6. Conclusions

In this paper, we have presented a rectified metric prop-

agation (ReMP) framework for few-shot learning. To cope

with the inconsistency issues between training and testing

in metric-based FSL, we propose a label-aligned learning

objective to close the gap, where a discriminative and trans-

ferable embedding space is induced. To further enhance the

quality of the prototype in the testing phase, we propose

a contextualized label embedding module, which progres-

sively propagates labels to the query set basis in a repul-

sive self-attention mechanism. Empirically, ReMP achieves

state-of-the-art results on various FSL datasets.
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