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1. Additional pseudocodes
Here, additional pseudocode of the algorithms discussed

in the paper are provided. Once the classifier is trained by
using Algorithm 1, we are able to apply it to incomplete
test data by using Algorithm 2, where for fixed Θ and D,
we need to find the corresponding sparse coefficients si,
compute the full data vector estimations and, finally, apply
the classifier.

A sparsity-based sequential method is presented in Algo-
rithm 3 (sequential approach), which consists on learning
first the optimal dictionary D and sparse coefficients si com-
patible with the incomplete observations (dictionary learning
and coding phase), followed by the training phase, where the
classifier weights are tuned in order to minimize the classifi-
cation error of the reconstructed input data vectors x̂i = Dsi.
It is noted that for the imputation stage (lines 2-12) other
and more specialized dictionary learning algorithms with
missing data can be applied, such as the ones proposed in
[3] for high-dimensional data or [2] for color image data.

2. A condition based on RIP and sparsity
The Restricted Isometry Property (RIP): An overcom-

plete dictionary D satisfies the RIP of order K if there exists
δK ∈ [0, 1) s.t.

(1− δK)‖s‖22 ≤ ‖Ds‖22 ≤ (1 + δK)‖s‖22, (S1)

holds for all s ∈ ΣP
K . RIP was introduced in [1] and charac-

terizes matrices which are nearly orthonormal when operat-
ing on sparse vectors.

In the following theorem, we show that, by imposing
conditions on the sparsity level of the representation and
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Algorithm 2 : Testing on incomplete data
Require: Incomplete data vectors {xo

i }, i = 1, 2, . . . , I , classifier pa-
rameters Θ, dictionary D, hyper-parameters λ1 and λ2, number of
iterations Niter and update rate σs

Ensure: ŷi and reconstructions x̂i = Dsi, ∀i
1: Sparse coding stage: for fixed dictionary D find sparse representations

of observations xo
i

2: Initialize si,∀i randomly
3: for n ≤ Niter do
4: ∆i = −σs

[
λ1

∂J1
∂si

+ λ2
∂J2
∂si

]
, ∀i

5: if si(j)[si(j) + ∆i(j)] < 0 then
6: ∆i(j) = −si(j); avoid zero crossing
7: end if
8: si = si + ∆i, ∀i
9: end for

10: x̂i = Dsi, ∀i; Compute reconstructions
11: Classification stage: apply classifier to reconstructions x̂i

12: ŷi = arg maxy(pyΘ(x̂i))
13: return Θ, ŷi, si, x̂i,∀i

the RIP constant of a sub-matrix of the dictionary, we can
guarantee to meet the sufficient condition (6).

Theorem 2.1. Given a dataset {xi, yi}, i = 1, 2, . . . , I with
normalized data vectors (‖xi‖ ≤ 1) admitting a K-sparse
representation over a dictionary D ∈ RN×P with unit-norm
columns, whose sub-matrices Dm

i satisfy the RIP of order
K with constant δiK , and suppose that, we have obtained
an alternative dictionary D′ ∈ RN×P , whose sub-matrices
D′mi also satisfy the RIP of order K with constant δiK such
that, for the incomplete observation xo

i ∈ RMi , the K-
sparse representation solution is non-unique, i.e. ∃si, s′i ∈
ΣP

K such that xo
i = Do

i si = D′oi s
′
i, where si ∈ RP is the

vector of coefficients of the true data, i.e. xi = Dsi and s′i
provides a plausible reconstruction through x̂i = D′s′i with
‖x̂i‖ ≤ 1. If a perfect classifier {w, b} of the reconstruction



Algorithm 3 : Sequential sparsity based approach
Require: Incomplete data vectors and their labels {xo

i , yi}, i =
1, 2, . . . , I , hyper-parameters λ1 and λ2, number of iterations Niter

and update rate σΘ, σD and σs
Ensure: Classifier weights Θ and reconstructions x̂i = Dsi, ∀i
1: Randomly initialize D, si, ∀i
2: Imputation stage: learning of D and si
3: for n ≤ Niter do
4: D = D− σD ∂J1

∂D
5: Normalize columns of matrix D
6: ∆i = −σs

[
λ1

∂J1
∂si

+ λ2
∂J2
∂si

]
, ∀i

7: if si(j)[si(j) + ∆i(j)] < 0 then
8: ∆i(j) = −si(j); avoid zero crossing
9: end if

10: si = si + ∆i, ∀i
11: end for
12: x̂i = Dsi, ∀i; Compute reconstructions
13: Training stage: update Θ
14: for n ≤ N do
15: Θ = Θ− σΘ

∂J0
∂Θ

;
16: end for
17: return Θ,D, si, x̂i = Dsi,∀i

x̂i exists such that |f(x̂)| = |〈w, x̂〉+ b| > εi > 0 and

εi > 2‖wm
i ‖1

√
K

1− δiK
, (S2)

then the full data vector xi is also perfectly separated with
this classifier, in other words: f(xi) = 〈wi,xi〉 + b > 0
(≤ 0) if yi = 1 (yi = 0).

Proof. Let us prove that the sufficient condition (6) is met
under the hypothesis of Theorem 2.1. Taking into account
that xm

i = Dm
i si, we can write

|〈wm,Dm
i si〉| =

∣∣∣N−Mi∑
j=1

wm(j)

N∑
n=1

Dm
i (j, n)si(n)

∣∣∣
≤

N−Mi∑
j=1

|wm(j)|
N∑

n=1

|Dm
i (j, n)||si(n)|.

(S3)

Since we assumed normalized vectors ‖xi‖ ≤ 1, by ap-
plying the left-hand side of the RIP we obtain: ‖si‖ ≤
1/
√

1− δiK , and, taking into account that ‖si‖1 ≤
√
K‖si‖

and |Dm
i (j, n)| ≤ 1 (columns of D are unit-norm), we ob-

tain:

|〈wm,Dm
i si〉| ≤

√
K

1− δiK

N−Mi∑
j=1

|wm(j)| =

√
K

1− δiK
‖wm

i ‖1.

(S4)
Similarly, using x̂i

m = D′mi s′i, we can obtain that

|〈wm,D′mi s′i〉| ≤

√
K

1− δiK
‖wm

i ‖1. (S5)

Putting equations (S4) and (S5) together with equation (S2)
complete the proof of the sufficient condition (6).

Table S1. Experimental settings for MNIST and CIFAR10 datasets: Num-
ber of iterations Niter , batch size bs, learning rate σΘ, momentum m,
update rate σ (training and test)

Dataset Classifier Niter bs σΘ m σ (train) σ (test)

MNIST Log. Reg. 3000 250 0.1 0.5 1.0 5.0
CNN4 3500 250 05 0.5 0.4 0.5

CIFAR10 Resnet18 1000 64 0.01 0.5 1.0 2.5

Table S2. Hyper-parameter tuning: crossvalidated hyperparameters λ1 and
λ2 obtained for MNIST and CIFAR10 datasets with the classifiers used in
our experiments.

Dataset Classifier
Random missing entries Occlusion

75% 50% 25% 50%
λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2

MNIST Log. Reg. 0.32 1.28 0.64 1.28 0.64 1.28 - -
CNN4 1.28 1.28 2.56 1.28 5.12 1.28 10.24 10.24

CIFAR10 Resnet18 0.024 0.008 0.032 0.004 0.032 0.01 - -

3. Experimental results

3.1. Implementation details

We implemented all the algorithms in Pytorch 1.0.0 on a
single GPU. The code is available at1.

Initializations of dictionary D and coefficients si were
made at random. However, we think some improvements
in convergence could be achieved by using some dedicated
dictionaries such as the case of Wavelet or Cosine Transform
matrices.

To update NN weights (Θ), we used standard Stochastic
Gradient Descent (SGD) with learning rate σΘ and momen-
tum m, while for updating dictionary D and vector coeffi-
cients si, we used fixed update rate σ = σD = σs. It is
noted that we used different update rates for training and
testing stages. In Table S1, we report the settings used for
experiments for MNIST and CIFAR10 datasets, which in-
cludes Number of iterations Niter, batch size bs, learning
rate σΘ, momentum m, update rate σ (training and test).

3.2. Hyperparameter tuning

In Table S2 we present the results of the grid search for
hyper-parameter tuning on MNIST and CIFAR10 datasets.
We fit our model to the training dataset for a range of values
of parameters λ1 and λ2 and apply it to a validation data
set. Figure S1 shows the validation accuracy obtained with
different classifiers and levels of missing entries for MNIST
dataset.

3.3. Additional visual results

To visually evaluate our results, additional randomly se-
lected examples of original (complete) images of the test
dataset in MNIST and Fashion, together with their given
incomplete observations and obtained reconstructions, are
shown in Figure S2 and Figure S3

1https://github.com/ccaiafa/SimultCodClass.
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Figure S1. Test accuracy in the grid search for hyper-parameter tuning
in MNIST dataset: λ1 and λ2 were tuned by cross-validation for various
levels of missing entries: 25%, 50% and 75%.
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Figure S2. Reconstructions of incomplete test MNIST dataset images by
applying our simultaneous classification and coding algorithm with the
CNN4 architecture.



Figure S3. Reconstructions of incomplete test Fashion dataset images by
applying our simultaneous classification and coding algorithm with the
CNN4 architecture with Batch Normalization (BN).


