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Symbol Definition
c A class.
C The set of all c.
t A teacher model.
T The set of all ¢.
p A pixel in an image.
T The set of all p.
Tsrc Source domain image.
Ysre Source domain ground truth.
Ttgt Target domain image.
Ytgt Target domain ground truth.
Dsre Source domain dataset.
Digt Target domain dataset.
fPiwel Pixel-wise fusion.
fChannel | Channel-wise fusion.
™ A fusion policy.
A A segmentation map.
A, The segmentation map of class c.
A The ground truth of A_.
AT AT :={p|p € Z,m(c) = t,§P>t) = 1} is the pseudo label of class c selected according to policy 7.
AT AT = ey #cq, (AZ, M AL,) is the overlapped area between A7.
cy,c2€C
A7 . AZ o = A7 N AT is the overlapped area of a class c.
P The function that calculates the IoU of a segmentation map with its ground truth annotation.
® The IoU of the fused results generated using f Channel ¢ Ytgt-
co An unlabeled symbol.
€ A class label to be assigned in A] under the formulation of f Channel
Ccy Cy = {c|c€C;p € A} is the set of class(es) that collects the class label(s) inp € A7.

Table S1: List of commonly-used symbols.



S1 Background Material

In this section, we walk through the background material of the previous semantic segmentation based
unsupervised domain adaptation (UDA) methods. We first offer an overview of the concepts behind the
adversarial domain adaptation (ADA) methods in Section S1.1. Then, we review the pseudo labeling strategy
in Section S1.2. Some commonly used symbols are summarized in Table S1.

S1.1 The Concepts Behind the Adversarial Domain Adaptation Methods

For the semantic segmentation based UDA problem considered in this paper, the models are granted
accesses to the image-label pairs g, € RIZI X3 Yere € {0, 1}'1‘ *ICl from a source domain dataset D, and
the images x:4¢ € RIZ1X3 from a target domain dataset Dygt, where T is the set of pixels in an image, and
C is a given set of semantic classes. The goal is to train a model Gy parameterized by 6, from which the
semantic segmentation predictions can best estimate the target domain ground truth y;4;. For example, in
AdaptSegNet [1], a generator Gy : RIZI%3 5 RIZIXIC ig trained against a discriminator Dy : RIZIxICI 5 R2
using an adversarial training scheme for minimizing the domain gap. The training objective of Dy is to
distinguish whether the semantic segmentation outputs from Gy belong to the source domain or not. In
contrast, the training objectives of Gy is to confuse the discriminator Dy with its predictions. Their loss
functions L¢, Lp are defined as follows, respectively:

Lg=— Zlog D0(§§§f> ), (S1)
peT
Lp=— (1-2)log D°(&%") + 2 log D}(52), (S2)

peT

where ¢ € C denotes a class, p € Z denotes a pixel in an image, §g’,’«f) = Go(zsre) € RIZIXICI is the softmax
output of Gy for ., and §£§f) = Go(wg) € RIFI*ICl s the softmax output of Gy for x4 D°, D* denote
the first and second output channels of Dy, which represent the certainty of Dy on whether the input is drawn
from Dy or D, respectively. The binary indicator z is either zero or one to indicate that the samples are

drawn from the target or the source domains, respectively.

S1.2 Pseudo Labeling Strategy

Pseudo labeling was pioneered in [2] for improving the performance of classification tasks. For the
semantic segmentation based UDA problem, pseudo labeling is a common measure used in the fine-tuning
phase by several self-training methods. During the fine-tuning phase, a model is trained to minimize the loss
between the pseudo labels (§;4;) and the predictions of the model on target domain instances (x4:). These
pseudo labels are generated by taking the arg max operation over the softmax predictions 54 of the model,
which can be formulated as the following equation:

1, if ¢ = argmax {57}
~(p, gt
yt(gtc) - cec 7 (S3)
0, otherwise
alpe) _ |Z|x|C]| 3 : N AE]
where 3;,;7 = mp(T1g:) € R is the softmax output from a segmentation model my : R —

RIZIXICI which is the model parameterized by 6 to be fine-tuned in the target domain. By reducing the
cross-entropy loss between the predictions 8;4; and the one-hot pseudo labels 4 4¢, the decision boundaries of
the model my are adjusted to lie in low-density regions [2]. This additional fine-tuning stage encourages the
model my to produce high-certainty predictions, and enhances its stability in deployment time.



S2 Theoretical Properties of Channel-Wise Fusion

In this section, we provide detailed descriptions of the theoretical properties of the proposed channel-wise
fusion function (i.e., f Ch‘”mez). We first define the evaluation metric for semantic segmentation maps, i.e.,
mloU, in Section S2.1. Next, we elaborate on the differences between f¢ el and fFPi@el jn Section S2.2.
Then, we discuss how the conflict-resolving mechanism can influence the effectiveness of fC@mnel in
Section S2.3. Finally, in Section S2.4, we investigate the properties of the proposed f¢"*""¢l under the
condition that |AT| = 0, and derive the proofs for Proposition 1 and Proposition 2 mentioned in the main
manuscript.

S2.1 Mean Intersection Over Union

In this section, we provide the definition and detailed explanation of the commonly used evaluation metric
mloU for semantic segmentation maps. Given a segmentation map A € 27 x C with |C| different class
channels, its mIoU with respect to the ground truth is represented as the following:

1
4 > (A, (S4)

ceC

where ® : 227 — R is the IoU function that calculates the per-class IoU of a segmentation map, and
A, := {p|p € T and the predicted label of p is ¢} € 27 is the segmentation map of a class ¢ € C. The
IoU with respect to the ground truth of a class is calculated by dividing the overlapped regions between
the predicted segmentation and the ground truth, by the union of them. Therefore, given the ground truth
segmentation map AY* := {p|p € Z and the ground truth label of p is ¢} € 27 of a class ¢, ®(A,) can be
represented as the following:

AL N A,

S2.2 Differences between Channel-Wise Fusion and Pixel-Wise Fusion

Channel-wise fusion (f Channely differs from pixel-wise fusion (f Pizely in that the mIoU’s of the fused
pseudo labels from f¢*mm¢l are dependent on two additional factors: (1) the fusion policy , and (2) the
conflict-resolving mechanism that assigns the value of €. For (1), since the fusion policy 7 : C — T is a
mapping function that assigns each ¢ € C to a teacher model ¢ € 7T, there may exist | 7|!°! possible mappings
for 7. For (2), since the conflict-resolving mechanism assigns a class label ¢ € C; U {co} to each of the pixels
in A7 given a m, there may exist |C] U {co}|I4¢! possible fusion outcomes. In order to examine how these
factors can impact the mIoU’s of the fused pseudo labels generated by f¢"em ¢! in the following section, we
analyze the scenarios when the effectiveness of €€l is maximized and when it is minimized.

S2.3 Influences of the Conflict-Resolving Mechanism

The conflict-resolving mechanism is a method that assigns a class label for e € CJ U {co}. Based on
the definition of ToU and the formulation of f¢"*""¢!_the IoU’s of the fused pseudo labels generated using
fChannel g . Yiqt for a given class ¢ € C and an arbitrary fusion policy 7 are maximized when the following
conditions are met. An illustration of these conditions is plotted in Fig. S1 (a).

* Condition a.1: The conflict-resolving mechanism assigns class label c to the pixels under the area

AT i =A7 N A9t where A7 .= AJ N A7 is the overlapped area of class ¢ and the other class(es).



(a) The scenario when the IoU is maximized. (b) The scenario when the loU is minimized.

Figure S1: An illustration of the scenarios under which the IoU’s of the fused pseudo label generated using f 7 emme!

be maximized or minimized.

can

* Condition a.2: The conflict-resolving mechanism assigns class label ¢ e C; U{co}, ¢ # ctothe
pixels under the area A7, . := A7 .\ A9

Under such conditions, the IoU w.r.t. the target domain ground truth (y4:) for class c is given by:

[AZ N(AZ\AZ, )l |Ag N AT

Frem(e) . _
A2 U (AT \ A7, )] AT U (AT \ A5, )

(56)

Eq. (S6) suggests that ®*(©7(©)) > &(7m(0) e e €, where d(©7(€) .= $(AT) = % is the IoU w.r.t.
Ytgt Tor class c before applying the conflict resolving mechanism.

In contrast, the IoU’s of the fused pseudo labels generated using fC*"m¢l w r.t. Yigt for a given class

¢ € C and an arbitrary fusion policy 7 are minimized when the following conditions are met. An illustration
of these conditions is plotted in Fig. S1 (b).

* Condition b.1: The conflict-resolving mechanism assigns the class label ¢ e Cy U{co}s ¢ # cto
pixels under the area A7 .

* Condition b.2: The conflict-resolving mechanism assigns the class label c to pixels under the area

™
02,C*

Under such conditions, the IoU w.r.t. the target domain ground truth (y;4) for class c is given by:

| AZ" N (A7 \ A7

)
AT U (47 \ A7 57

nol

“(em(e) .

(=i

Based on the definition in Eq. (S7), the inequality ® (@) < §lem(e) e e C holds.
Proposition S1. Ve € C, *(©7(©) = ¢(em(e)) = §'(em(©) if and only if |AT| = 0.

Proof. (=)Vc € C,d*(m(0) = plem(e) = §'(em(9) the following equality holds:

T t W
[AgnA7] AT OATNAT Ol sy

Ve e ¢, ool = T =7
[AZ U (AT \ A, I [AZ U (AT \ A, )

= Ve € C|AI NAT|JAZ U (AT \ A7, ) = [AZ N (AT \ A7, ) [AZ'U (A7 \ A7, )]
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Figure S2: An illustration of the counter example described in Proposition 2. Each column in the figure represents a
segmentation map with three pixels. The notations ‘t1°, ‘t2’, ‘t3” represent three different teacher models in 7, and ‘c1’,
‘co’, ‘c3’ represent the class labels in C. The small stripes with three digits indicate the softmax outputs for those classes.
In the illustrated example, the IoU’s of class ‘c;’ for the models ‘t1°,‘t2’,‘t3” are all greater than a positive constant «
(e.g., 0.3). However, after fusion, the mIoU’s of the fused results generated using averaging or f¥**¢ are equal to zero.
On the contrary, the mloU of the fused results generated by f€"*""¢! is greater than % (e.g., %), when a constant

fusion policy 7(c) = t3, V¢ € {c1, ¢z, c3} is adopted.

Based on the definition of A7, . and A7, , the above equation can be re-formulated as follows:

Ve € C,|AT N AT| (|AZ U AT| = |A7, ) = (JAZ' N AT| = |AT, D) (|AZ U AT| — A7, )

01,C
= Ve € C,|A7, |AG, o[ = [AZ N AT||AD, |+ A7, | (JAZ" U AT| — |AZ" 0 A7)
Since |AZ' N AT| > |A7, |and (JAZ'UAT| - [AZ N AT]) > 0, |A] .| = |A], .| = 0,Vc € C. This implies

|Ag‘ =0, as Ag = UceC Ao,c = UcEC (Aghc U A§27C)-

(<) If|A7| = 0, then Ve € C, |A], .| = |A], .| = 0. This implies the following:

02,C

t s t T t b T
Ve e ¢, d*(em(0) — t|A§ nA7| _ AT n AT AT N (ATNAT O & (cm(@).
|AZ'U (A7 \ Az, )| JAZTU AT AT U (AT \ A7)

Therefore, the equality Pr(em(@) = plem(e) = §'(em(e) e e C holds. This also implies that, under such
a condition, the IoU ®(¢™(¢)) of the fused results achieved by f¢"@""¢l is solely determined by the fusion
policy 7. O

S2.4 Proofs for the Propositions in the Main Manuscript

In this section, we provide proofs for the two propositions in Section 4.2.3 of the main manuscript based
on the discussions in Section S2.3.

Proposition 1. Consider an arbitrary fusion policy 7. Given a constant o € (0, 1) and classes ¢y, ..., ¢, € C.
If &) > o, Vi € {1,...,n}, Vt € T and |AT| = 0, we have:

1 .
mloU = 3 gl > % (S8)
ceC



Proof. As discussed in Proposition S1, given an arbitrary fusion policy , if |AT| = 0, then the ToU ® of
the fused results achieved by fChannel ig solely determined by 7 since @*(¢(©) = plem(e)) = §'(em(e),
Therefore, (7€) = &(:7(e) holds for all ¢ € C. If ®(¢i:t) > 4 € {1,...,n}, ¥t € T, the mIoU of the
fused results according to Eq. (S4) and the definition of 7 can be expressed as the following:

(e no
|C|Z Flem(@) _ \CIZ plem(@) > |(na+ > <I><°’“>)zﬁ. (S9)

ceC ceC ceC\{e1,...,cn}

As a result, the mIoU achieved by f¢"@""¢l with any 7 is ensured to be greater than or equal to 2 el c|

On the other hand, the mIoU’s achieved by either averaging or f**¢ are not guaranteed to be greater

than ?CO“ under the same condition (i.e., ®(¢t) > o, € {1,...,n}, ¥Vt € T). As demonstrated in the counter

example in Fig. S2, the IoU’s of class ‘c;’ for every teacher model ‘t1’, ‘to’, ‘t3’ are greater than a constant

€ (0,1). However, the mloU’s of the fused results generated by averaging and f#*¢! are below \CI O
Proposition 2. Consider an optimal fusion policy 7*(c) = arg max,. {®(“)}. Assume |[AT | = 0, we
have: 1 3

mloU = & >l @) > T doaleh e . (S10)

ceC ceC

Proof. As discussed in Proposition S1, given an arbitrary fusion policy =, if |[AT| = 0, then the IoU ® of
the fused results achieved by fEhannel ig solely determined by 7 since ®*(¢m(@) = Glem(e) = §'(em()),
Therefore, d(em(€)) = §(em(©) holds for all ¢ € C. Under such a condition, the optimal IoU’s for every
class can be reached by following a policy 7*(c) = arg max,c, {®(>*}. Such a policy is a greedy one that
selects ¢ € T to maximize the target domain per-class IoU’s ®(¢) w.r.t. Yege for all ¢ € C. This suggests that
the inequality Eq. (S10) holds for ¢t € T, since:

|C|Z (e,m*(c) lC‘Z(I)(CW C))>7Zq>0t) Vie T. (S11)

cEC



Hyperparameter Settings

CBST [3]
Learning Rate 1x107%
Weight Decay Factor 5x 1073
Momentum 0.9
Batch Size 2
Epochs 6 with early stopping
Image Crop Size 500 x 500

Data Augmentation

Class Balancing Maximum Weighting

Random Multi-scale Resizing (0.7~1.3) and Horizontal Flip
7

MRKLD [4]
Learning Rate (Phase 1) 1x10-3
Learning Rate (Phase 2) 1x 104
Weight Decay Factor 5x 1074
Momentum 0.9
Batch Size 32
Epochs 6 with early stopping
Image Crop Size 500 x 500
Data Augmentation Random Cropping, Multi-scale Resizing (0.7~1.3) and Horizontal Flip
R-MRNet [5]
Learning Rate 1x 1077
Weight Decay Factor 5x 1073
Momentum 0.9
Dropout Rate 0.5
Batch Size 9
Epochs 35 with early stopping
Image Crop Size 512 x 256

Data Augmentation
Inference Re-weighting Factor (o)

Random Cropping, Multi-scale Resizing (0.8~1.2) and Horizontal Flip
1

Inference Re-weighting Factor (3) 0.5
DACS [6]

Learning Rate 2.5 x 1072
Weight Decay Factor 5x 1074
Momentum 0.9
Batch Size 2 (For Both the Source and the Target Domain)
Epochs 80 with early stopping
Image Crop Size 512 x 512
Data Augmentation Random Cropping

EnD [7] and EnD? [8]
Learning Rate 25 x 1072
Weight Decay Factor 5x 1073
Momentum 0.9
Batch Size 10
Epochs 35 with early stopping

Image Crop Size
Data Augmentation
Temperature (1)

Original Image Size (1024 x 2048 For Cityscapes)
Random Horizontal Flip
1

Ours
Learning Rate 2.5 x 1072
Weight Decay Factor 5x 1073
Momentum 0.9
Batch Size 10
Epochs 35 with early stopping

Image Crop Size
Data Augmentation
Kernel Size (k)

Original Image Size (1024 x 2048 For Cityscapes)
Random Horizontal Flip
13

Table S2: A summary of the hyperparameters used in the proposed method and the baseline methods.



S3 A Detailed Training Guide for Reproduction

In this section, we provide a detailed training guide for reproducing our work. In Section S3.1, we
offer the pseudo code as well as the link to the source code for training the proposed framework. Then, in
Section S3.2, we summarize the hyper-parameters for training the proposed framework and the baselines.

S3.1 Pseudo Code and Source Code

The pseudo code for training the proposed framework is presented in Algorithm S1. For more details about
the source codes, please refer to the GitHub repository: https://github.com/Chao-Chen-Hao/
Rethinking—EnD-SegUDA.

Algorithm S1 The Proposed Ensemble-Distillation Method

1: Input: Ensemble 7, and dataset D; 4,
2: Output: Student model myg
/I Certainty-Aware Policy Selection Strategy

: Split Dy into D¢ and Dy

: fort € T do

Initialize the weights of a student model my.

Sample x4, from Dﬁg;“'”, and generate the fused pseudo labels §(7-¢) using ¢ "¢l with the constant

policy Ve € C, "5 (¢) = t.

Train myg with the loss in Eq. (9) in the manuscript.

Evaluate the average per-class output certainty values p(“*) of mg with instances in Dt”;tl.

9: end for
/I Ensemble-Distillation

10: Initialize the weights of a student model my.

11: Sample x4; from Dy 4, and generate the fused pseudo labels §P:°) using fCMannel with 1 selected based
on Eq. (8) in the manuscript.

12: Train mgy with the loss in Eq. (9) in the manuscript.

® 3

S3.2 Detailed Hyper-Parameter Settings

The detailed hyperparameters for training each of the teacher models in 7", EnD [7], EnD? [8], and the
proposed framework are summarized in Table S2.

S4 Additional Experimental Results

In this section, we report the additional experimental results and provide discussions on them. We first
demonstrate the performance of the proposed framework under different backbone settings in Section S4.1.
Next, we showcase the reproducibility and the stability of the proposed framework in Section S4.2. Finally,
we present some additional visualized results of our framework in Section S4.3.

S4.1 A Comparison of the Backbone of the Student Model

Table S3 compares the performance of our framework using different backbone architectures in the student
model. The first, second, and third columns correspond to the backbone architectures, the number of trainable
parameters, and the average inference speed (denoted as IS), respectively. The column ‘Before Distillation’
denotes the mIoU of the fused pseudo labels generated by f¢"""¢l The column ‘After Distillation’ refers
to the student model’s performance after being trained with the fused pseudo labels. As suggested in [9],



Before Distillation After Distillation Oracle

Model (Backbone) Parameters 1S mloU (train) mloU (train)  mloU (val) | mloU (val)
Deeplabv2 (ResNet-101) 439 M 33.1 ms 51.76 52.29 62.54
Deeplabv2 (DRN-D-54) 356 M 18.8 ms 54.14 55.25 70.25
Deeplabv2 (MobileNetV?2) 20M 16.5 ms 56.31 48.83 50.98 60.18
Deeplabv3+ (ResNet-101) 593 M 35.1 ms 51.71 54.75 67.43
Deeplabv3+ (DRN-D-54) 40.7 M 22.1 ms 55.46 57.98 72.32
Deeplabv3+ (MobileNetV2) 5.8M 20.9 ms 52.75 54.00 65.25

Table S3: A comparison of the performance of the proposed framework using different backbone architectures (ResNet-
101, DRN-D-54, and MobileNetV2) in the student model. The numerical results are evaluated on the GTA5—Cityscapes
benchmark. The inference speed is derived based on the average over 500 inferences. ‘IS’ denotes the inference
speed evaluated on an NVIDIA GTX TITAN V GPU. ‘mloU (train)’ refers to the mloU evaluated on the training set
of Cityscapes, which includes 2975 instances. ‘mloU (val)’ represents the mloU evaluated on the validation set of
Cityscapes, which includes 500 instances. The column ‘Before Distillation’ refers to the mIoU of the fused pseudo labels
generated by fC72"mel while ‘After Distillation’ represents the mIoU of the student’s predictions. ‘Oracle’ refers to the
experimental setting that the student is trained directly with ¥4 in the training set of Cityscapes and evaluated on the
validation set of Cityscapes.

GTAS5 — Cityscapes
Model (Backbone) | Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike | mIOU
Deeplabv2 92.89 55.61 84.42 41.09 36.53 26.16 37.39 46.14 82.82 44.68 81.96 56.27 32.94 83.27 54.82 46.59 0.00 34.27 50.72| 52.07
(ResNet-101) + + + + + + + + + + + + + + + + + + + +
0.10 115 0.10 075 045 0.11 015 0.10 0.07 034 030 021 038 010 125 046 0.00 046 0.54 | 0.24
Deeplabv3+ 93.32 59.17 86.20 33.58 37.85 37.45 43.67 52.36 86.34 43.54 86.34 62.81 34.53 86.72 46.07 45.81 0.00 32.00 53.74| 53.63
(MobileNetV2) + + + + + + + + + + + + + + + + + + + +
0.06 105 017 119 121 032 043 079 0.12 111 045 026 042 086 202 1.18 0.00 3.60 343 | 045
Deeplabv3+ 94.50 61.58 87.91 35.87 39.68 40.74 48.90 55.13 88.20 4893 88.57 67.06 38.78 89.26 55.00 50.48 0.02 40.03 54.91|57.13
(DRN-D-54) + + + + + + + + + + + + + + + + + + + +
022 155 015 085 0.89 035 067 044 005 047 039 053 112 020 274 125 0.06 095 120 0.28
SYNTHIA — Cityscapes
Model (Backbone) | Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike | mIOU

Deeplabv2 87.83 43.42 81.17 18.85 3.69 26.07 27.65 34.05 80.78 - 82.60 54.82 18.78 83.63 - 46.09 - 20.08 49.05|47.41
(ResNet-101) £ =+ =+ £ =+ =+ =+ £ £ - £ =+ =+ =+ - =+ - =+ =+ £
0.04 031 011 037 029 0.10 086 0.27 0.10 - 0.19 033 0.16 0.16 - .38 - 0.64 0211 0.15

Deeplabv3+ 88.72 4691 82.90 18.68 3.89 34.4 29.61 36.93 84.13 - 88.25 60.18 19.35 87.01 - 49.01 - 16.0 52.30|49.89
(MobileNetV2) + + =+ £ + + + + + - + + + + - + - + + +
018 035 016 053 016 024 1.18 0.15 0.17 - 0.13 024 023 024 - 1.67 - 2,66 0.15 ] 0.26

Deeplabv3+ 88.64 47.04 83.59 19.43 3.03 36.11 32.15 37.87 84.39 - 87.56 63.35 21.12 87.94 - 5258 - 2193 53.76|51.28
(DRN-D-54) + + + + + + + + + - + + + + - + - + + +
0.19 036 008 039 031 014 257 029 035 - 044 041 058 020 - 110 - 1.97 0.80| 0.13

Table S4: Validation of the stability and the reproducibility for the proposed framework on the GTAS — Cityscapes and
the SYNTHIA — Cityscapes benchmarks. The middle columns and the last column report the per-class IoU’s and the
mloU’s, respectively. Different rows correspond to different backbone configurations. Each of the numerical results are
obtained from five models trained with different initial random seeds without early-stopping.

the distillation process typically requires a larger backbone to fully learn the knowledge from the teachers.
However, adopting a larger backbone contradicts the core idea of ensemble-distillation, as the objective is
to reduce the model size so that the computational cost at deployment time is affordable. Therefore, in our
experiments, a stronger backbone ‘Deeplabv3+ (DRN-D-54)’ is adopted, as its number of parameters is
comparable with ‘Deeplabv2 (ResNet-101)’ adopted by the members in 7, while performing predictions
with better effectiveness. Under such a setting, it is observed that the student model is able to effectively
approximate the fused pseudo labels, as mIoU’s (train) only degrade slightly (0.85%) after distillation.

10



S4.2 The Reproducibility and the Stability of the Proposed Framework

Table S4 demonstrates the reproducibility and the stability of the proposed ensemble-distillation frame-
work. Each row in the table corresponds to a backbone configuration. Each of the numerical results is
obtained from five models trained with different initial random seeds. From Table S4, it is observed that both
the per-class IoU’s and the mIoU’s show only slight fluctuations in terms of their variances, indicating that
the proposed method is relatively stable and thus is reproducible.

S4.3 Visualization

Fig. S3 shows a few additional visualized results that qualitatively demonstrate the effectiveness of the
proposed framework.

Input Ground truth EnD EnD Ours (Pixel) Ours (Channel)

Figure S3: The visualized results evaluated on the validation set of Cityscapes. These figures are presented for qualitatively
comparing the student models trained by EnD [7], EnD? [8], as well as those trained by the proposed framework with
pixel-wise fusion (i.e., Ours (Pixel)) and channel-wise fusion (i.e., Ours (Channel)).

11
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