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In the supplementary material we include a description
of different multi-label evaluation metrics used (Section 1),
a more detailed description of how the discrete output dis-
tributions are computed (Section 2), and additional details
on the imbalanced MultiMNIST dataset (Section 3). Fur-
thermore, we include additional results on the MSCOCO
dataset (Section 4).

1. Metrics
In this section, we explain the metrics used in our multi-

label classification experiments. In an evaluation set, there
are N images with corresponding labels {y(1), ..., y(N)}
where y(i) = [y

(i)
1 , ..., y

(i)
C ] is the ith binary label vector;

note that multiple elements in this label vector may be non-
zero in multi-label classification. For each sample, the clas-
sifier predicts class probabilities to which a threshold (0.5
in our experiments) is applied to obtain binary prediction
vectors {ŷ(1), ..., ŷ(N)}.

Per-class Precision and Recall The precision and recall
of a classifier on a single class c is given by
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respectively, where 1 [...] is the indicator function. To ob-
tain the reported metric, we average the precision (or recall)
over all classes:

Precision =
1

C

C∑
c=1

P (c) ,

Recall =
1

C

C∑
c=1

R (c) .

(2)

In these metrics, each class is treated equally regardless of
the number of samples in the test set.

F1-score The F1-score is the harmonic mean between
precision and recall:

F1 (c) =
2P (c)R (c)

P (c) + R (c)
. (3)

The final F1-score is averaged over all classes:

F1-score =
1

C

C∑
c=1

F1 (c) . (4)

0-1 Accuracy This metric measures how often the net-
work is able to output predictions which exactly match the
ground-truth labels. It is computed as follows:

0-1 Accuracy =
1

N

N∑
i=1

1

[
y(i) = ŷ(i)

]
. (5)

Since this metric is averaged over all samples, as opposed
to all classes, it tends to be biased towards more frequent
classes. Therefore, this metric tends to be a poor measure
of model performance if there is imbalance present in the
test set.

2. Output Distributions
In this section, we describe in further detail how the

discrete distributions P+
c , P̂+

c , P−
c , and P̂−

c are formed.
Given the set of probabilities described in equation 4, we
form these discrete distributions through a binning opera-
tion. Since the output probabilities are within the range
[0, 1], we create τ bins, each of width 1/τ . The probabilities
are placed within these bins to obtain a histogram, which is
then normalized to obtain a discrete probability distribution.

We present a toy example to describe the process.
Suppose there is a single-class dataset with 10 sam-
ples and following labels: {1, 1, 1, 1, 1, 0, 0, 0, 0, 0}.



Figure 1. The histograms constructed from the sets of ground-truth
labels and predicted probabilities for the toy example described in
section 2.

Figure 2. The discrete probability distributions constructed from
the sets of ground-truth labels and predicted probabilities for the
toy example described in section 2.

For these samples, the network predicts probabili-
ties: {0.2, 0.6, 0.95, 0.99, 0.45, 0.1, 0.15, 0.8, 0.4, 0.3}.
The ground-truth and predicted output sets are as
follows: S+

c = {1, 1, 1, 1, 1}, S−
c = {0, 0, 0, 0, 0},

Ŝ+
c = {0.2, 0.6, 0.95, 0.99, 0.45}, and Ŝ−

c =
{0.1, 0.15, 0.8, 0.4, 0.3}. From these sets we can con-
struct the histogram; the histograms (with τ = 4) and their
corresponding discrete distributions are shown in figures 1
and 2 respectively.

In general, these distributions tend to be shifted towards
the left (i.e. probability outputs closer to zero) for classes
with fewer samples and shifted towards the right for classes
with many samples. This behaviour can be seen in figure
3, which contains the distributions produced by a classi-

Digit Train Test
0 9485 17840
1 6167 19080
2 3967 18256
3 2476 18080
4 1508 17856
5 875 17136
6 538 17664
7 331 18224
8 164 17792
9 105 18072
Total 14694 90000

Table 1. The number of samples for each digit in the Imbalanced
MultiMNIST dataset.

fier when trained on the MultiMNIST dataset for 10 epochs.
PLM makes use of this observation to mask individual la-
bels such that predicted probability distributions more re-
semble to ground-truth distribution.

3. Imbalanced MultiMNIST Dataset
Dataset We construct the Imbalanced MultiMNIST
dataset by superimposing two MNIST [2] digits into a sin-
gle image. We begin by sampling the MNIST training set
similarly to how [1] create the Imbalanced CIFAR dataset
with an imbalance of ρ = 100. These images are padded
to become 32× 32 and shifted randomly by −6 to 6 pixels,
both vertically and horizontally. Then, each image is ran-
domly paired with another digit in the training set, which is
also padded and shifted randomly. These two digits are su-
perimposed upon each other to create a 32× 32 image with
two digits. Due to cooccurrence of the same digit, within a
sample, the final imbalance of the dataset becomes 90.33.

For evaluation, we select all samples in the MNIST test
set and perform the same padding and shifting operations.
For each digit, we select other random test digits that have
different labels, which are superimposed to make 9 samples
with two digits each. This results in 90000 test samples.
The test set is roughly balanced, with all classes having a
similar number of samples. The number of samples for each
class can be found in Table 1.

4. Additional Results
Additional MSCOCO Results We include more results
on the MSCOCO dataset. Figure 4 contains the class-wise
precision and recall scores on the MSCOCO dataset. We
find that using PLM leads to an large improvement in recall
for the tail classes, and a slight improvement in precision
for the head classes (7.86% improvement on the 10 most
frequent classes). This is in line with the observation that
PLM reduces over-prediction on the head classes while re-
ducing under-prediction on the tail classes (as well as some



Figure 3. The discrete probability distributions (τ = 10) obtained from the MultiMNIST training set. The first column consists of the
ground-truth distributions. The distributions on the top are for the positive labels, and the distributions on the bottom are for the negative
labels. Distributions for the head classes (columns 2 and 3) tend to be skewed more towards the right (i.e. predictions closer to 1);
distributions for the tail classes (columns 4 and 5) tend to be skewed more towards the left (i.e. predictions closer to 0).

difficult classes).
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Figure 4. The class-wise precision and recall scores on the MSCOCO dataset. The classes are ordered based on the number of samples in
the training set. The bars represent the results achieved by using the PLM method, and the points are the results when using BCE.


