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This appendix provides additional experimental results
and details. We summarize and highlight the relationship
and difference with related work in Section A. We include
additional implementation and experimental details in Sec-
tion B. We provide additional experimental results and anal-
ysis about the “Small Data” scenarios in Section C, includ-
ing combining multiple sources of supervision and compar-
ing the Scarce-Class and Scarce-Image settings. We in-
clude extensive evaluation on all the supervision sources
in Section D. We show the cross-domain generalization of
the learned representation on other datasets in Section E.
We demonstrate the consistent usefulness of incorporating
diverse supervision into other few-shot learning methods
in Section F. We include the results of pre-trained mod-
els based on self-supervision loss in Section G. We provide
the baseline of using object crops for classification in Sec-
tion H. We present experiments using advanced multi-task
learning methods in Section I. Finally for completeness, we
provide the corresponding numbers for the experimental re-
sults shown in the form of figures in Section J.

A. Summary of Connection and Difference
with Related Work

Our work is broadly related to the general investigation
of learning with varying amount of data and annotation.
While the detailed discussion on our proposed settings of
Scarce-Class and Scarce-Image and existing work has been
already covered in Section 2 of the main paper, here we fur-
ther summarize and highlight their connection and differ-
ence in Table A. As shown in Table A, our work is unique
and addresses significant limitations in existing work.

B. Additional Implementation Details
B.1. Benchmark Construction

In this section, we include additional details for con-
structing our LRDS benchmark, especially the algorithms

for box enlargement and random jittering (Algorithm 1),
which were briefly discussed in Section 3.2 of the main pa-
per.

First, we enlarge the bounding box size by a context ratio
γ, which is 2.7, computed from the average ratio between
the tight bounding boxes and full images on ImageNet [2].
Then in function RatioAssign, we assign the enlargement
in height h and width w by γh and γw, respectively. Note
that γh and γw are generated randomly. They are larger than
1 and γhγw = γ.

Then in function FindJitterRange, we compute the
range of movement for jittering the bounding box center,
including the maximum range on the y-axis and x-axis
ymin, ymax, xmin, xmax. The jittered box should still be in-
side the image and contain the original tight bounding box.

Finally, we randomly sample the jittering movement
mx,my from the computed range and apply it to the bound-
ing box center, thus finishing the box enlargement and jit-
tering.

Algorithm 1: Enlarging and Jittering Boxes
Input: Image Size: (H,W ), Tight BBox Size: (h,w),

BBox Center (y, x), Context Ratio γ
Output: BBox for LRDS, including: Size (h̃, w̃),

Center (ỹ, x̃)
1: γh, γw ←− RatioAssign(H,W, h,w, y, x, γ)

2: h̃←− hγh, w̃ ←− wγw
3: ymin, ymax, xmin, xmax ←−

FindJitterRange(H,W, h,w, h̃, w̃, y, x)
4: mx ←− UniformSampling(xmin, xmax)
5: my ←− UniformSampling(ymin, ymax)
6: ỹ ←− y +my, x̃←− x+mx

7: Return h̃, w̃, ỹ, x̃

B.2. Model Training

In this section, we provide the implementation details
for the experiments in Section 5 of the main paper. Un-



Related Settings Included Tasks
Data Annotations

Amount for
Feature Learning

Data Distribution for
Feature Learning Test on Novel Amount Types

Scarce-Class and
Scarce-Image

Single target task
Multiple supervisory tasks Small Imbalanced 3 Full Multiple

Few-shot Learning Single target task Large \ 3 Full Single
Multi-task Learning Multiple target tasks Large \ 7 Full Multiple
Long-tail Learning Single target task Large Imbalanced 7 Full Single

Weakly-supervised Learning Single target task Large \ 7 Partial Single
Unsupervised Learning Single target task Large \ 7 None None

Table A. Summary of the commonalities and differences between our proposed settings of Scarce-Class and Scarce-Image in LRDS and
existing work on learning with varying amounts of data and annotation. ‘\’ means that the setting poses no requirements on whether the
training data should be balanced or imbalanced.

der the backbone of ResNet-18 [6], we experimented with
varied implementations of the model and different hyper-
parameter settings. In the process of data loading, we resize
all the short edges of the images to the length of 800 fol-
lowing the protocol in the ADE20K dataset [14]. As for
the model, we modify the down-sampling rate of ResNet-
18, with the first three Residual Blocks yielding a down-
sampling rate of 2, which together down-samples the image
by 8, compared to 32 in original ResNet. During the train-
ing of the model, we use a batch size of 8, optimizer of SGD
with learning rate 0.1, and cosine scheduler [9]. The whole
training process of the baseline model takes 6 epochs to run,
roughly 3 hours on a 4-GPU machine.

As for the combination weights for different types of su-
pervision, we adjust the weights so that the total loss of each
supervision branch has the same scale as the classification
branch. The detailed values of the weight hyper-parameters
are summarized in Table B.

Supervision Type Weight
Attribute 25.0
Hierarchy 1.0
Scene 0.2
Part 25.0
Bounding Box 5.0
Segmentation 0.5
Rotation 10.0
Patch Location 1.0

Table B. Weights for different types of supervision during training.

B.3. Training Few-shot Learning Methods

In this section, we provide the details for experimenting
the few-shot learning methods in Section 5.1 of the main
paper. During the feature representation learning stage, we
train the models following Section B.2. Then during the
stage of few-shot learning on novel classes, we append and
train an additional linear layer on top of the learned features.

For Cosine Classifier [1], we simply replace the linear
classifier in our baseline model with a cosine classifier. For

Scarce-Class Scarce-Image

Figure A. Combining multiple sources of supervision consis-
tently improves the performance under Scarce-Class and Scarce-
Image settings.

Prototypical Network [11], we use a full 193-way, 5-shot
(or 1-shot) support set to calculate the mean of each cat-
egory and then perform 193-way classification on a query
set. We reproduce Relational Network [12] in a setting sim-
ilar to Prototypical Network. For Proto-MAML [13], we
first add one linear layer after the fixed feature extractor as
an additional encoder. We use the 100-way novel-val set to
estimate initialization parameters for the encoder. Then we
evaluate model performance on the 193-way novel-test set.
On both novel-val set and novel-test set, we use a prototyp-
ical network initialization as is described in [13].

C. Additional Analysis on “Small Data” Sce-
narios

This section provides additional experimental evaluation
and analysis in the “Small Data” regimes.

C.1. Combining Multiple Sources of Supervision

In Section 5.4 of the main paper, we showed that combin-
ing multiple sources of supervision leads to improvements
in full data settings. In this section, we further demon-
strate the consistent effectiveness of diverse supervision in
the very challenging “Small Data” regimes. As summarized
in Figure A, incorporating supervision improves the perfor-
mance of the baseline model by large margins, even with
very few classes or images.

In addition, we have the following observations from
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Figure B. Performance comparison of the baseline model un-
der Scarce-Class, Scarce-Class-Adjust, and Scarce-Image settings.
The new setting “Scarce-Class-Adjust” is constructed through ran-
domly down-sampling the instances of each category in the origi-
nal Scarce-Class setting, so that the total number of training sam-
ples is the same as that of the Scarce-Image setting. With the same
amount of training data, the lack of classes has a similar effect as
the lack of images on the performance drop of the baseline.

Figure A. First, we observe a significant performance drop
when we replace the segmentation supervision with bound-
ing box supervision. This is due to the fact that segmenta-
tion provides a stronger learning signal by exactly delineat-
ing the objects from the background, in contrast to approx-
imately localizing them with bounding boxes. This further
confirms that investing in more expensive types of annota-
tions is valuable, especially when the number of training
instances is limited.

Second, we can see that when the number of training
samples is decreased, the improvements from additional su-
pervision sources decrease. This demonstrates the limita-
tions of not only our approach, but also modern represen-
tation learning techniques in general, since they struggle
in extremely low data regimes. That said, using additional
sources of supervision leads to significant improvements at
moderate data scarcity levels.

Finally, we find that the performance of the “+Seg” and
“+Seg+Attr” models drops in the Scarce-Class evaluation
when the number of available classes increases from 50%
to 75%. A potential explanation for this lies in the long-tail
distribution of LRDS. Removing the tail classes from the
training set makes the category-level instance distribution
more balanced, thus simplifying the optimization.

C.2. Comparison Between Scarce-Image and
Scarce-Class Settings

In Section 5.5 and Table 4 of the main paper, we showed
that the lack of images (Scarce-Image) has a larger effect
than the lack of classes (Scarce-Class) on the performance
drop of the baseline. This is attributed to the fact that re-
moving images reduces the actual number of training in-
stances by a large margin, compared to removing the least
frequent classes. To further illustrate this observation, we
construct a new setting “Scarce-Class-Adjust,” through ran-
domly down-sampling the instances of each category in the

original Scarce-Class setting, so that the total number of
training samples is the same as that of the Scarce-Image set-
ting. As shown in Figure B, the baseline’s performance
is comparable in the settings of Scarce-Class-Adjust and
Scarce-Image.

D. Additional Exploration of Individual Super-
vision Sources

We demonstrated the effectiveness of five representative
types of supervision in Section 5.2 of the main paper. In
this section, we provide extensive evaluation on all the su-
pervision sources, including semantic supervision in Sec-
tion D.1, localization supervision in Section D.2, and self-
supervision in Section D.3.

D.1. Semantic Supervision

In Section 5.2 of the main paper, we discussed the types
of supervision that leverage semantic information: “At-
tributes,” “Class Hierarchy,” and “Scene Labels.” Here we
further investigate another type of semantic supervision:
“Object Parts.”

Object parts. Similar to the attributes, we use a multi-
label classification loss for the object parts as shown in Fig-
ure 4 of the main paper. The ground-truth of the object
parts comes from the part annotation in ADE20K [14]. The
results in row 6 of Table C indicate that part labels also
result in improved generalization performance, though the
improvement is not as significant as that of the other types
of semantic supervision.

D.2. Localization Supervision

In Section 5.2 of the main paper, we discussed the types
of supervision that leverage location information: “Seg-
mentation” and “Bounding Boxes.” Here we further investi-
gate how to use the background segmentation information,
namely “Stuff Segmentation.”

Stuff segmentation. For stuff segmentation, we follow
FCN [8] and append a convolutional layer after the feature
map, predicting a binary label for whether a pixel is object
or stuff. Note that the pixels not belonging to the training set
are still marked as unknown. The results in row 10 of Ta-
ble C show a small decrease in performance with respect
to the baseline. We hypothesize that this is because the
stuff supervision forces the representation to focus on the
background features, which the object classifier then latches
onto.

We further combine the foreground and stuff labels to-
gether, giving a weight of 0.1 to the background classes.
This combined supervision results in a performance im-
provement (row 11 in Table C), outperforming even the



Row
Number Type of supervision Model Base-val

Novel-test set
1-shot 5-shot

Top-1 Top-5 Top-1 Top-5
1 Baseline 44.13 7.00 16.36 17.10 34.46
2

Semantic supervision

+Attribute 45.38 7.56 17.00 19.66 37.62
3 +Hierarchy Embedding 44.57 7.48 17.34 19.12 36.93
4 +Hierarchy Classifier 46.43 7.83 17.97 19.57 37.19
5 +Scene 45.03 7.37 18.08 18.26 36.45
6 +Part 45.68 7.39 17.23 19.39 37.2
7

Localization supervision

+Bounding Box 45.97 7.14 17.16 19.64 37.40
8 +Segmentation Region 45.68 7.68 17.35 18.95 37.46
9 +Segmentation FCN 45.82 7.84 17.53 20.02 38.26
10 +Stuff 43.86 6.58 15.04 15.63 32.65
11 +(Object+Background) 46.03 7.09 16.92 20.37 38.55
12 Self-supervision +Rotation 44.31 6.16 15.16 17.57 35.04
13 +Patch Location 44.43 7.28 16.64 18.49 35.53

Table C. Comparison of different supervision sources on the base-validation set and novel-test set of LRDS. The models are trained with full
data. All types of supervision are effective by themselves (except stuff supervision which needs to be combined together with foreground
supervision). And annotated semantic and localization supervision outperforms self-supervision.

variant with foreground segmentation only. This result
demonstrates that stuff supervision can still be helpful, but
only when combined with foreground supervision.

D.3. Self-supervision

Figure 4 in the main paper demonstrated that self-
supervision can be naturally incorporated in our framework.
In this section, we discuss in detail the effect of two widely
used types of self-supervision, including “Rotation” and
“Relative Patch Location.”

Rotation. We follow the pretext task in [4] by rotating
the input image {0◦, 90◦, 180◦, 270◦}, and training an addi-
tional classifier to predict the angle of rotation. This method
leads to improvement on the learned representation (row 12
of Table C), but it is much smaller than that comes from
annotated supervision.

Relative patch location. Following [3], we divide the in-
put image into a 3×3 grid of crops. Then the center crop and
another randomly picked crop are passed though a model to
predict their relative locations. This self-supervision also
effectively regularizes representation learning, as shown in
row 13 of Table C. Similar to the rotation supervision, the
improvement still cannot match the other types of annotated
supervision.

E. Cross-Domain Generalization
In addition to the main experiments on LRDS, we further

investigate the generalization of the learned representation
on ImageNet [2]. Specifically, we use the feature represen-
tations trained on the base set of LRDS with and without

Model Top-1 Top-5
Baseline 7.22 19.79
+Attribute 8.06 21.40
+Bounding Box 7.49 21.04
+Class Hierarchy 7.59 20.78
+Segmentation 8.27 21.96
+Seg+Attr 8.49 22.86
+Seg+Attr+Hie 8.96 23.17

Table D. Investigation of cross-domain generalization of the fea-
ture representation trained on LRDS for few-shot classification on
ImageNet. Leveraging additional sources of supervision leads to
more generalizable representation and thus improves the perfor-
mance on ImageNet as well.

additional supervision sources, and learn a linear classifier
on top of them for the few-shot split of ImageNet defined
in [5]. From the results in Table D, we observe that us-
ing additional sources of supervision also leads to improve-
ments in a different domain, indicating a more generalizable
representation.

F. Effect on Other Few-shot Learning Methods
We mainly focused on adding supervision on top of the

linear classifier baseline in Section 5. Here in Figure C,
we show the consistent usefulness of incorporating diverse
supervision into other few-shot learning methods, such as
Prototypical Network [11].

G. Pre-training with Self-supervision
In this section, we provide the performance for the mod-

els pre-trained with a self-supervised pretext task: rotation



Scarce-Class Scarce-Image

Figure C. Incorporating additional supervision is consistently ef-
fective, which also improves the performance of the Prototypical
Network baseline.

Model Top-1 Top-5
PT-Baseline 17.41 36.05
+Segmentation 17.59 36.64
+Seg+Attr 17.82 35.93
Baseline 17.10 34.46
+Segmentation 20.02 38.26
+Seg+Attr 20.96 39.41

Table E. Effect of self-supervision pre-training. PT-baseline de-
notes the model initialized with a set of self-supervision pre-
trained parameters. Baseline denotes the randomly initialized
model.

loss [4]. We first train the model with the rotation branch
only, and then add the class labels for fine-tuning. To study
the effect of additional supervision on this model, we fur-
ther incorporate several supervision sources to the model.
As demonstrated in Table E, the model pre-trained with
the rotation self-supervision performs better than the base-
line of training with class labels only, which is the result
of better initialization. However, when adding more su-
pervision “Seg” and “Attr,” while the performance of this
variant still improves, the accuracy is lower than that of the
model initialized with classification pre-training. This is a
counter-intuitive observation, which demonstrates that self-
supervised objectives are not always beneficial for represen-
tation learning.

H. Baseline of Object Crops

In addition to the Faster R-CNN [10] based architec-
ture in the main paper, we experiment with the most ba-
sic form of object classification, where the models oper-
ate on individual object crops instead of the whole feature
map. Specifically, we crop each object out, resize each in-
dividual crop to 224 × 224, and then apply a CNN with
global average pooling on it. From the numbers in Table F,
this baseline achieves better performance than the Faster R-
CNN [10] based architecture. This is because many objects
are in small scales, and the operations of cropping and re-
sizing enlarge them greatly.

Model Top-1 Top-5
Baseline 21.13 42.51
+Attr 22.64 44.25
+Attr+Hie 23.43 45.34

Table F. Object crop baseline model. Since the input object size
is fixed, the performance is higher than the Faster R-CNN based
model.

Model Top-1 Top-5
Baseline 17.10 34.46
+Seg+Attr [7] 18.56 37.02
+Seg+Attr+Hie [7] 18.16 36.92
+Seg+Attr (Ours) 20.96 39.41
+Seg+Attr+Hie (Ours) 21.18 39.99

Table G. Applying advanced MTL method in our model. Since
we evaluate our model only by classification performance, using
advanced MTL method does not lead to further improvement.

I. Advanced Multi-task Learning Methods
To explore more ways of combining multiple sources of

supervision, we experiment with a more complicated multi-
task learning (MTL) method from [7]. However, adding
this new term does not improve the final classification per-
formance, as shown in Table G. This is due to the differ-
ence between the objectives of our problem and MTL: we
are interested in improving the classification performance
on novel categories, whereas MTL is concerned with the
joint improvement on all the tasks.

J. Quantitative Results for Experiments
For those experimental results shown in the form of fig-

ures in the main paper and this appendix, here for com-
pleteness we provide their corresponding numbers in Ta-
bles H, I, J, K, L, M, N, and O.

Type of supervision Portion Top-1 Top-5
None(Baseline) \ 17.1 34.46

Attribute 25% 18.68 36.84
Attribute 50% 18.64 37.29
Attribute 75% 18.86 36.97
Attribute 100% 18.51 37.12
Hierarchy 25% 17.97 35.95
Hierarchy 50% 18.69 37.05
Hierarchy 75% 19.31 37.76
Hierarchy 100% 18.95 38.18

BoundingBox 25% 18.64 37.51
BoundingBox 50% 18.33 37.27
BoundingBox 75% 18.46 37.04
BoundingBox 100% 18.26 37.29

Table H. Performance of varied amount of supervision. Table for
Figure 5 in the main paper.



Model Portion of Classes Top-1 Top-5
Baseline-Full Classes 100% 17.10 34.46

Baseline 25% 15.08 30.96
Baseline 50% 15.36 31.20
Baseline 75% 14.96 32.50

+Seg+Attr+Hier 25% 17.02 33.99
+Seg+Attr+Hier 50% 18.26 37.26
+Seg+Attr+Hier 75% 19.30 37.86

+BBox+Attr+Scene 25% 16.11 31.90
+BBox+Attr+Scene 50% 17.37 34.71
+BBox+Attr+Scene 75% 18.67 35.98
+Attr+Hier+Scene 25% 15.73 31.32
+Attr+Hier+Scene 50% 16.99 33.31
+Attr+Hier+Scene 75% 18.21 35.52

Table I. The effect of supervision combinations under the Scarce-
Class setting. Table for Figure 6 in the main paper, top row.

Model Portion of Images Top-1 Top-5
Baseline-Full Images 100% 17.10 34.46

Baseline 25% 12.64 26.13
Baseline 50% 13.96 29.21
Baseline 75% 14.39 30.66

+Seg+Attr+Hier 25% 13.05 27.80
+Seg+Attr+Hier 50% 16.52 33.07
+Seg+Attr+Hier 75% 18.03 35.25

+BBox+Attr+Scene 25% 12.95 27.88
+BBox+Attr+Scene 50% 16.50 32.66
+BBox+Attr+Scene 75% 18.01 34.75
+Attr+Hier+Scene 25% 12.65 27.16
+Attr+Hier+Scene 50% 15.50 31.93
+Attr+Hier+Scene 75% 17.56 34.08

Table J. The effect of supervision combinations under the Scarce-
Image setting. Table for Figure 6 in the main paper, bottom row.

Model Portion of Classes Top-1 Top-5
Baseline 25% 15.08 30.96
Baseline 50% 15.36 31.20
Baseline 75% 14.96 32.50

+Seg 25% 17.31 34.24
+Seg 50% 18.76 36.87
+Seg 75% 18.11 35.88

+Seg+Attr 25% 17.27 34.04
+Seg+Attr 50% 19.38 37.41
+Seg+Attr 75% 19.00 35.76

+Seg+Attr+Hier 25% 17.02 33.99
+Seg+Attr+Hier 50% 18.26 37.26
+Seg+Attr+Hier 75% 19.30 37.86

+BBox+Attr+Hier 25% 16.06 31.75
+BBox+Attr+Hier 50% 17.21 33.46
+BBox+Attr+Hier 75% 18.77 35.84
+Attr+Seg+Hier 25% 16.59 32.15
+Attr+Seg+Hier 50% 17.92 34.33
+Attr+Seg+Hier 75% 18.52 36.97

Table K. The effect of diverse supervision under the Scarce-
Class setting. Table for Figure A, left column.

Model Portion of Images Top-1 Top-5
Baseline 25% 12.64 26.13
Baseline 50% 13.96 29.21
Baseline 75% 14.39 30.66

+Seg 25% 12.54 26.69
+Seg 50% 14.81 31.40
+Seg 75% 17.07 35.50

+Seg+Attr 25% 12.28 26.33
+Seg+Attr 50% 16.57 33.49
+Seg+Attr 75% 17.94 35.90

+Seg+Attr+Hier 25% 13.05 27.80
+Seg+Attr+Hier 50% 16.52 33.07
+Seg+Attr+Hier 75% 18.03 35.25

+BBox+Attr+Hier 25% 12.84 27.71
+BBox+Attr+Hier 50% 15.81 32.57
+BBox+Attr+Hier 75% 17.42 34.55
+Attr+Seg+Hier 25% 12.76 27.59
+Attr+Seg+Hier 50% 16.11 32.52
+Attr+Seg+Hier 75% 16.96 35.12

Table L. The effect of diverse supervision under the Scarce-
Image setting. Table for Figure A, right column.

Setting Portion Top-1 Top-5
Scarce-Class 25% 15.08 30.96
Scarce-Image 25% 12.64 26.13

Scarce-Class-Adjust 25% 12.47 27.26
Scarce-Class 50% 15.36 31.20
Scarce-Image 50% 13.96 29.21

Scarce-Class-Adjust 50% 13.37 29.00
Scarce-Class 75% 14.96 32.50
Scarce-Image 75% 14.39 30.66

Scarce-Class-Adjust 75% 14.93 31.70
Table M. Performance comparison of the Scarce-Class, Scarce-
Image and Scarce-Class-Adjust settings. Table for Figure B.

Model Portion of Classes Top-1 Top-5
Baseline-Full Classes 100% 17.41 33.81

Baseline 25% 14.51 29.81
Baseline 50% 14.63 30.21
Baseline 75% 14.81 31.38

+Seg 25% 16.08 33.05
+Seg 50% 17.57 34.81
+Seg 75% 16.95 34.04

+Seg+Attr 25% 16.42 32.94
+Seg+Attr 50% 18.36 35.03
+Seg+Attr 75% 18.54 35.98

+Seg+Attr+Hier 25% 16.59 33.91
+Seg+Attr+Hier 50% 17.07 34.41
+Seg+Attr+Hier 75% 18.65 36.57

Table N. Performance of Prototypical Network with diverse super-
vision. Table for Figure C, left column.
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