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1. Implementation Details
In the following paragraphs, we provide the implementation
details. We carried out all of our experiments using Tensor-
Flow 1. Concerning the architectures used, please refer to
Figure 2.

To ease the discussion, we can divide the optimization
problem presented in our work into the following two

min
θ,ψ

Ltask + λLne (1)

max
φ

Lne (2)

where the learning rates associated to (1) and (2) are α and
η, respectively. We use the same notation of Algorithm 1.

Digit experiment. We train our models for 150 epochs,
using mini-batches of size 1024. The learning rates α and
η are both set to 10−4. We use Adam [2] as optimizer for
(1) and (2). For each gradient update to optimize (1) with
respect to θ, ψ, we update MINE parameters 80 times (K =
80). That is, we perform 80 update steps to optimize (2), as
to better train MINE (see Section 2 for a detailed discussion
around this choice).

IMDB experiment. For both training splits (EB1 and
EB2) we restrict the training set to 2000 samples (for each
run we sampled different random images). This choice is
motivated by the fact that using the whole training sets we
observed higher baselines results then the ones published in
previous art [1]. We trained each model for 6 epochs with
mini-batch size set to 24. The learning rate α is set to 10−5;

1https://www.tensorflow.org/

the learning rate η is set to 10−1. We use Adam [2] as opti-
mizer for (1) and vanilla gradient descent for (2). We found
a number K = 20 of MINE iterations to be sufficient in or-
der to estimate the mutual information throughout training.

German experiment. We adopted the same settings as
previous art that uses this benchmark [4]. The 1, 000 data
samples available are split in 70% training and 30% test
(randomly picked in each run). The model is trained for
500 epochs with mini-batch size set to 64. The learning rate
α is set to 10−5; the learning rate η is set to 10−1. We use
Adam [2] as optimizer for (1), and vanilla gradient descent
for (2). We set to a number of MINE iterations K = 30.

Adult experiment. We adopted the same settings as
Madras et al.[3]. The model is trained for 1, 000 epochs
with mini-batch size set to 64. The learning rates α and η
are set to 10−3. We use Adam [2] as optimizer for both (1)
and (2). We set to a number of MINE iterations K = 30.

2. Discussion on the Hyper-Parameters

In this section, we discuss the hyper-parameters that we
adopted throughout the experiments reported in this work.

Choice of the number of iterations to update MINE.
We found that increasing the number of iterations to esti-
mate I(Z,C) stabilizes the overall training procedure, as
shown in Figure 3. As our intuition behind this fact, we
posit that the better the estimation of the mutual informa-
tion through MINE is, the more precise and effective the
gradients ∇θLne are. The only drawback we observed is
the increased computational cost, since the time increases



Figure 1. Description of the architectures (classifiers and statistics networks) for the experiments on Digits (left), IMDB (right).

Figure 2. Description of the architectures (classifiers and statistics networks) for the experiments on Gernan (left), Adult (right).

linearly with the number of iterations employed to estimate
the mutual information.

Choice of the hyper-parameter λ. The hyper-parameter
λ regulates the trade-off between minimizing the task loss
and reducing the mutual information between the biased at-
tribute and the learned representation in (1). In Section 5 of
the paper, we describe how to properly tune it. We report
in Figure 4 the complete version of the analysis reported
in the manuscript for the Digit experiment. We report the
evolution of mutual information, test accuracy and training
accuracy for different values of the hyper-parameter λ.
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Figure 3. Training (cross-entropy) loss (left) and training accuracy (right) with λ = 1.0 for different number of iterations of MINE (K) on the digit
recognition task (setting σ = 0.02). An increased number of iterations (K = 20, 40, 80 in blue, orange and green, respectively) has the effect of stabilizing
the training procedure, i.e. it allows the model minimizing the loss function and fitting the training data. The charts report the average of 3 runs.



Figure 4. Values for mutual information (left column), test accuracy (middle column) and train accuracy (right column). We accounted for the different
color, modelled by different σ (check Section 5 of the paper), and here represented by different rows. It is visible how a decrease in the (estimated) mutual
information correlates with an improved performance.


