
6. Appendix
6.1. Model Settings

The details of training, testing, and architecture of mod-
els used in this paper are explained below.
Train and test procedure During training 5% of data is
allotted for evaluation. For both continual training and re-
training from scratch, the training is stopped if there is no
performance improvement on the validation dataset for 20
epochs. During testing, we create ensembles of five trained
models and evaluate each instance on the test data. The re-
sults (i.e., accuracy, precision, etc) from each ensemble is
averaged to get the final output.
Neural network architectures: Four different neural net-
work architectures are used in this paper. For CNNs, the
architecture comprises of two segments (a) feature selec-
tion network, which consists of convolution layer combined
with maxpool layer and (b) a classifier network, which
consists of some densely connected layers. For all CNN
models, the classifier network has two dense layers with
512 ! 256 ! 10 parameters, where ! indicates the flow
(or direction) of layers and the neurons in the last layer cor-
respond to the number of class labels. For regression, the
last layer has just one neuron. The architectures are ex-
plained as follows:

(a) LeNetD2: A simple 2 layer NN with 300 ! 100 neu-
rons. For MCD, dropouts are applied to the intermedi-
ate layer (set as 0.5). For EN and BNN no dropouts are
applied.

(b) LeNet5 [22] : This classic architecture consists of 2
CNN layers with filter sizes 6 ! 16 followed by a clas-
sifier network. Between each CNN, we add a maxpool
layer where the kernel size and stride are set as two.

(c) AlexNet Light: This is a simplified version of the
Alexnet architecture that is similar to the four layer
CNN implemented in Keras library 3. Here, we have
four CNN layers with filters 32 ! 32 ! 64 ! 64
followed by the classifier network. The setting for
maxpool layer is as follows: kernel size=3, stride=1,
padding=1 for the first CNN layer and padding=0 and
stride=1 for subsequent CNN layers.

(d) VGG: There are several variations of VGG [23]. For
our experiments we use VGG19 with 16 CNN layers
64(2) ! 128(2) ! 256(4) ! 512(4) ! 512(4),
where (x) indicates the number of filters, for instance,
64(2) implies 64 ! 64. As with other CNNs, the fea-
ture selection network is followed by the classifier net-
work. The kernel size and stride of maxpool are set as
two.

3https://github.com/keras-team/keras

(e) Densenet: We use Densenet121, which has 5 convolu-
tion layers, 3 transition layers, 1 classification layer and
2 dense block as introduced in [24].

Parameter setting: The weights of all layers are initialized
with Kaiming uniform distribution 4. Adam 5 is used as the
optimization algorithm of choice. The batch size is set to 32
for smaller models such as LeNetD2, LeNet5 and AlexNet
Light, for VGG and Densenet, it is set to 256. The model-
specific details and hyper-parameter setting is explained as
follows:

• BNN: The KL scaling factor is set as 1/Nr where Nr

is the number of samples per round. The mean of
the network parameters w is set as N (0,�). Here,
� = 1/

p
w`

n
, where w`

n
is the input dimension of

w in `
th layer. The variance of w is sampled from

N (�9, 10�3). The mean and variance of prior z is
sampled from N (1, 10�3) and N (�9, 10�3) respec-
tively.

• MCD: In MCD, the dropouts are activated during two
phases (a) training and (b) active learning . During
testing, the dropouts are turned off. For all dense lay-
ers, the dropout is set as 0.5 and for convolution layers,
it is set to 0.25.

4www.pytorch.org/docs/stable/nn.init.html
5www.pytorch.org/docs/stable/optim.html

10


