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A. Numerical Results on IJB-B, IJB-C
In Table 1 and Table 2, we show more numerical results

on the IJB-C and IJB-B dataset, respectively. Since all the
baseline methods (from other papers) are trained on differ-
ent number of labeled images, we report the performance of
our models trained on different labeled subsets for a more
fair comparison. From the tables, we could observe that our
models outperform most of the baselines with equal or less
than 2M labeled data.

Method Data Model Verification Identification
1e-7 1e-6 1e-5 1e-4 Rank1 Rank5

Cao et al. [2] 13.3M SE-ResNet-50 - - 76.8 86.2 91.4 95.1
PFE [8] 4.4M ResNet-64 - - 89.64 93.25 95.49 97.17
ArcFace [3] 5.8M ResNet-50 67.40 80.52 88.36 92.52 93.26 95.33
Ranjan et al. [7] 5.6M ResNet-101 67.4 76.4 86.2 91.9 94.6 97.5
AFRN [6] 3.1M ResNet-101 - - 88.3 93.0 95.7 97.6
Baseline 500K ResNet-50 51.13 66.44 77.58 87.73 90.90 94.50
Proposed 500K+70K ResNet-50 60.33 71.24 80.31 88.18 91.81 94.96
Baseline 1.0M ResNet-50 59.53 77.70 86.16 92.13 93.62 95.93
Proposed 1.0M+70K ResNet-50 61.87 79.76 87.16 92.39 94.19 96.30
Baseline 2.0M ResNet-50 67.64 78.66 88.16 93.48 94.34 96.34
Proposed 2.0M+70K ResNet-50 78.62 84.91 90.61 93.77 95.04 96.80
Baseline 3.0M ResNet-50 62.65 79.20 89.20 94.20 94.76 96.49
Proposed 3.0M+70K ResNet-50 78.38 85.91 91.56 94.48 95.51 97.04
Baseline 3.9M ResNet-50 62.90 82.94 90.73 94.57 94.90 96.77
Proposed 3.9M+70K ResNet-50 77.39 87.92 91.86 94.66 95.61 97.13

Table 1: Performance comparison with state-of-the-art methods on
the IJB-C dataset.

B. Architecture of Augmentation Network
The architecture of our augmentation network is based

on MUNIT [5]. Let c5s1-k be a 5× 5 convolutional layer
with k filters and stride 1. dk-IN denotes a 3 × 3 convo-
lutional layer with k filters and dilation 2, where IN means
Instance Normalization [9]. Similarly, AdaIN means Adap-
tive Instance Normalization [4] and LN denotes Layer Nor-
malization [1]. fc8 denotes a fully connected layer with
8 filters. avgpool denotes a global average pooling layer.
No normalization is used in the style encoder. We use Leaky
ReLU with slope 0.2 in the discriminator and ReLU activa-
tion everywhere else. The architectures of different mod-
ules are as follows:

Method Data Model Verification Identification
1e-6 1e-5 1e-4 1e-3 Rank1 Rank5

Cao et al. [2] 13.3M SE-ResNet-50 - 70.5 83.1 90.8 90.2 94.6
Comparator [10] 3.3M ResNet-50 - - 84.9 93.7 - -
ArcFace [3] 5.8M ResNet-50 40.77 84.28 91.66 94.81 92.95 95.60
Ranjan et al. [7] 5.6M ResNet-101 48.4 80.4 89.8 94.4 93.3 96.6
AFRN [6] 3.1M ResNet-101 - 77.1 88.5 94.9 97.3 97.6
Baseline 500K ResNet-50 39.35 71.14 84.37 92.12 89.74 94.16
Proposed 500K+70K ResNet-50 45.39 72.35 84.75 92.00 90.46 94.42
Baseline 1.0M ResNet-50 45.75 80.11 90.19 94.48 92.37 95.78
Proposed 1.0M+70K ResNet-50 41.59 82.10 90.09 94.64 92.88 95.91
Baseline 2.0M ResNet-50 47.62 82.30 91.82 95.46 93.25 96.05
Proposed 2.0M+70K ResNet-50 44.76 86.26 91.92 95.27 94.01 96.23
Baseline 3.0M ResNet-50 42.77 82.86 92.48 95.78 93.80 96.23
Proposed 3.0M+70K ResNet-50 43.09 87.31 92.80 95.70 94.35 96.53
Baseline 3.9M ResNet-50 40.12 84.38 92.79 95.90 93.85 96.55
Proposed 3.9M+70K ResNet-50 43.38 88.19 92.78 95.86 94.62 96.72

Table 2: Performance comparison with state-of-the-art methods on
the IJB-B dataset.

• Style Encoder:
c5s1-32,c3s2-64,c3s2-128,avgpool,fc8

• Generator:
c5s1-32-IN,d32-IN,d32-AdaIN,d32-LN,
d32-LN,c5s1-3

• Discriminator:
c5s1-32,c3s2-64,c3s2-128

The length of the latent style code is set to 8. A style de-
coder (multi-layer perceptron) has two hidden fully con-
nected layers of 128 filters without normalization, which
transforms the latent style code to the parameters of the
AdaIN layer.

C. Ablation over the Settings of Augmentation
Network

In this section, we ablate over the training modules of the
augmentation network. In particular, we consider to remove
the following modules for different variants: Latent-style
code for multi-mode generation (MM), Image Discrimina-
tor (DI ), Reconstruction Loss (Rec), Style Discriminator
(Dz ) and the architecture without downsampling (ND).
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Figure 1: Ablation study of the augmentation network. Input images are shown in the first column. The subsequent columns show the results of different
models trained without a certain module or loss. The texture style codes are randomly sampled from the normal distribution.

Model Modules IJB-C (Vrf) IJB-C (Idt) IJB-S (V2S) LFW
MM DI Rec DZ ND 1e-7 1e-6 1e-5 Rank1 Rank5 Rank1 Rank5 Accuracy

72.74 85.33 90.52 94.99 96.75 56.35 66.77 99.82
(a) X X 74.80 87.58 91.94 95.51 97.09 56.98 65.66 99.80
(b) X X X X 75.32 88.00 91.71 95.42 97.04 57.54 66.72 99.75
(c) X X X 74.51 87.49 91.97 95.61 97.18 57.17 66.24 99.78
(d) X X X X 75.07 88.11 92.19 95.66 97.12 56.85 64.87 99.78
(e) X X X X 73.99 86.52 91.33 95.33 97.04 58.47 66.00 99.73
(f) X X X X X 77.39 87.92 91.86 95.61 97.13 57.33 65.37 99.75

Table 3: Ablation study over different training methods of the augmentation network. “MM”, “DI”, “DZ”, “rec”, “ND” refer to “Multi-mode”, “Image
Discriminator”, “Reconstruction Loss”, “Latent Style Discriminator” and “No Downsampling”, respectively. The first row is a baseline that uses only the
domain adversarial loss but no augmentation network. “Model (a)” is a single-mode translation network that does not use latent style code.

The qualitative results of different models are shown in
Fig. 1. Without the latent style code (Model a), the aug-
mentation network can only output one deterministic im-
age for each input, which mainly applies blurring to the
input image. Without the image adversarial loss (Model
b), the model cannot capture the realistic variations in the
unlabeled dataset and the style code can only change the
color channel in this case. Without the Reconstruction Loss
(Model c), the model is trained only with adversarial loss
but without the regularization of content preservation. And
therefore, we see clear artifacts on the output images. How-
ever, adding reconstruction loss alone hardly helps, since
the latent code used in the reconstruction of the unlabeled
images could be very different from the prior distribution
p(z) that we use for generation. Therefore, similar artifacts
can be observed if we do not add latent code adversarial
loss (Model d). As for the architecture, if we choose to use
an encoder-decoder style network as in the original MU-

NIT [5], with downsampling and upsampling (Model e),
we observe that the output images are always blurred due
to the loss of spatial information. In contrast, with our ar-
chitecture (Model f), the network is capable of augmenting
images with diverse color, blurring and illumination styles
but without clear artifacts.

Furthermore, we incorporate these different variants of
augmentation networks into training and show the results
in Table 3. The baseline model here is a model that only
uses domain alignment loss without augmentation network.
In fact, compared with this baseline, using all different vari-
ants of the augmentation network achieves performance im-
provement in spite of the artifacts in the generated images.
But a more stable improvement is observed for the proposed
augmentation network across different evaluation protocols.
We also show more examples of augmented images in Fig-
ure 2.
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Figure 2: More examples of augmented images. The photos in the first column are the input images. The remaining images
in each row are generated by the augmentation network with different style code.

3



References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv:1607.06450, 2016. 1
[2] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and

Andrew Zisserman. Vggface2: A dataset for recog-
nising faces across pose and age. In IEEE FG, 2018.
1

[3] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Ar-
cface: Additive angular margin loss for deep face
recognition. CVPR, 2019. 1

[4] Xun Huang and Serge J Belongie. Arbitrary style
transfer in real-time with adaptive instance normaliza-
tion. In ICCV, 2017. 1

[5] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan
Kautz. Multimodal unsupervised image-to-image
translation. In ECCV, 2018. 1, 2

[6] Bong-Nam Kang, Yonghyun Kim, Bongjin Jun, and
Daijin Kim. Attentional feature-pair relation networks
for accurate face recognition. In ICCV, 2019. 1

[7] Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng,
Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nan-
duri, Jun-Cheng Chen, Carlos D Castillo, and Rama
Chellappa. A fast and accurate system for face detec-
tion, identification, and verification. IEEE Trans. on
Biometrics, Behavior, and Identity Science, 2019. 1

[8] Yichun Shi and Anil K Jain. Probabilistic face embed-
dings. In ICCV, 2019. 1

[9] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempit-
sky. Instance normalization: The missing ingredient
for fast stylization. arXiv:1607.08022, 2016. 1

[10] Weidi Xie, Li Shen, and Andrew Zisserman. Com-
parator networks. In ECCv, 2018. 1

4


