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Abstract

The current COVID-19 pandemic has shown us that we

are still facing unpredictable challenges in our society. The

necessary constrain on social interactions affected heavily

how we envision and prepare the future of social robots and

artificial agents in general. Adapting current affective per-

ception models towards constrained perception based on

the hard separation between facial perception and affective

understanding would help us to provide robust systems. In

this paper, we perform an in-depth analysis of how recog-

nizing affect from persons with masks differs from general

facial expression perception. We evaluate how the recently

proposed FaceChannel adapts towards recognizing facial

expressions from persons with masks. In Our analysis, we

evaluate different training and fine-tuning schemes to un-

derstand better the impact of masked facial expressions. We

also perform specific feature-level visualization to demon-

strate how the inherent capabilities of the FaceChannel to

learn and combine facial features change when in a con-

strained social interaction scenario.

1. Introduction

The outstanding incursion of machine learning in our

daily life in the last years changed drastically the man-

ner we perceive, consume, and interact with artificial sys-

tems [16]. Promising research in deep neural networks was

quickly transformed into a heavy investment in the automa-

tion of image understanding, and one of the areas which

were most affected is the perception of human faces [14, 2].

Nowadays, we can find simple applications deployed in our

smartphones that can detect, recognize, and even alter our

faces [12, 22]. One of the areas where these impressive de-

velopments are still far behind, however, is on the process-

ing, categorization, and understanding of emotions from fa-

cial expressions, in particular when addressed in scenarios

where social interaction is somehow constrained [13, 21, 9].

In particular, in the current times of the COVID-19 pan-

demic situation, the application of affective perception on

health care, assistive scenarios, and even tutoring becomes

more important. In the current situation where masks are

mandatory in most human interactions, persons do not only

change how they express themselves, but also adapt how

they perceive emotions from others. This is an important

capability that is under-explored by the most successful af-

fective perception solutions.

Most of the current state-of-the-art solutions for auto-

matic facial expression recognition, however, claim to have

addressed the problem by approaching maximum general-

ization [20, 4, 17]. The vast majority of these solutions de-

ploy the computational power of artificial neural networks,

boosted by data-driven deep learning of faces. The modus

operandi of these solutions is to use millions of examples to

tune these networks to extract specific facial features that,

in controlled scenarios, represent and categorize affect. In

most of these models, the learned features are comparable

with existing human-made modelings such as the Facial Ac-

tion Units[10], which, together with a good performance

in specific cases, puts them one step closer to their under-

standing and acceptance as a general facial representation

system.

The problem these models face when deployed in so-

cially constrained scenarios comes when combining these

representations into affective categories [18]. Most of

these models, mostly for commodity and data avail-

ability, categorize affect using standard representations,

whether a strict set of categories or dimensional plea-

sure/arousal/dominance scales. They are, thus, not only

sensitive to representing only the facial features that are

present on the training data but also on categorizing such

features based on given affective labels. Such labels are

usually obtained based on unconstrained scenarios, to max-

imize their capability of achieving a possible generalization

of affective perception.

When deployed in scenarios different from the ones they

were tuned for, most of these models present difficulty to



perform and even to adapt, given that deep neural networks

are known to be extreme resources and data-hungry [25].

These models are, thus, extremely biased towards their ap-

plication, and most of the time are difficult to adapt to

specific scenarios [23]. In particular, the ones which do

not have a popular interest, and thus, do not provide large

amounts of available or labeled data. One of these scenar-

ios, now in strong evidence given the COVID-19 pandemic,

is when social interactions are constrained by the use of per-

sonal protective equipment such as facial masks. As most

of these neural networks learn how to recognize affect based

on a collection of facial features, if some of these features

are not present, which is the case when using a mask (il-

lustrated by Figure 1) these models tend to fail [1]. This

effect can be observed, albeit on a smaller scale, in humans

as well. However, due to our capability of changing the way

we express emotions when using the mask [24], and conse-

quently how we recognize expressions from persons with

masks, we learn to compensate much better than any deep

learning system.

Recently, we proposed the FaceChannel [3], as a small

and easy to adapt neural network, and evaluated it on dif-

ferent scenarios, including different fine-tuning methods.

Our experiments showed that the network could be eas-

ily adapted due to its small number of parameters while

maintaining good performance on most of the facial ex-

pression datasets. None of the evaluated datasets, however,

encapsulated any constrained expression scenario, like the

ones faced when recognizing facial expressions from per-

sons with masks.

In this paper, we investigate how the FaceChannel [3]

can adapt towards a constrained facial expression recog-

nition scenario, where persons wear masks. For that, we

leverage the one million images from the AffectNet dataset

[19] by artificially including masks on them. Our evalua-

tions include the investigation of different fine-tuning mech-

anisms on the FaceChannel and their impact on the net-

work’s final performance. Also, we investigate the differ-

ences between the FaceChannel trained with the normal Af-

fectNet dataset and the MaskedAffectNet variation. We also

provide an in-depth investigation on how the learned fea-

tures emerge in both cases, and how they differ from each

other, in particular in correlation with the performance of

the models. Our analysis helps us to explain better the

effect of constrained interaction scenarios on state-of-the-

art convolutional-based facial expression recognition, and

we discuss how different training schemes can address this

problem.

2. The Masked Face Channel

The FaceChannel was recently formalized as a light-

weighted convolutional neural network that is able to adapt

towards different interaction scenarios. It showed to have

Parameter Search Space

Fully-Connected Layer

Number of Layers [1,2,3]

Units Per Layer [16, 32, 64, 128, 256, 512, 1024]

Learning Rate [0.0005; 0.9] - Selected: 0.05

Opitmizer [ADAM, SGD]
Table 1. Search space and selected parameters used to optimize the

FaceChannel.

a good adaptation towards novel scenarios [3, 5], including

the challenging task of recognizing affect during a Human-

Robot Interaction setting [7].

The FaceChannel has a total of 2 million parameters,

which allows it to be trained from the scratch, or easily

adaptable to other tasks without the need of an overwhelm-

ing computational power. In this paper, our implementation

of the FaceChannel has 10 convolutional layers, and applies

a shunting inhibitory layer [11] in the last one. Each con-

volutional layer block is followed by 4 pooling layers, as

illustrated in Figure 1. The inhibitory layers were shown to

improve adaptability towards facial expressions [6], and an

inhibitory neuron Sxy
nc , present at position (x,y) of the nth

receptive field in the cth layer is defined as:

Sxy
nc =

uxy
nc

anc + I
xy
nc

(1)

where uxy
nc is the activation function of the convolution unit,

in our case ReLU, and Ixync is the activation of the inhibitory

units. The passive decay term anc is also updated during

training and is shared among each inhibitory filter.

When training the FaceChannel for the AffectNet and

MaskedAffectNet datasets, we implement a fully-connected

ReLU-based hidden layer after the convolutional layers.

This layer is followed by two output layers, each of them

implementing a linear activation. Each of these layers al-

lows a continuous and dimensional representation of affect

through arousal and valence.

To optimize the FaceChannel towards the AffectNet and

MaskedAffectNet, we use a parameter exploration based on

a Three-Parzen Exploration method [8]. Table 1 reports our

search space and final selected parameters. We maximize

the optimization based on the final accuracy of the model.

3. Evaluation

Our main goal is to investigate the differences that a

masked facial expression cause on the FaceChannel fea-

ture representation and final performance. Thus, we rely on

the variety of samples and a good label distribution present

on the AffectNet dataset to guarantee a proper facial fea-

ture emergence on the FaceChannel. The MaskedAffect-

Net modifies the images of the AffectNet, but maintains the

same label distribution, which guarantees a fair comparison

base in our investigations.



Figure 1. FaceChannel architecture used to learn facial expression representations and categorize them into a continuous arousal and

valence values.

Figure 2. Example of the processing to add masks to the AffectNet:

we find the facial keypoints on the images, and apply a geometrical

transformation the mask to match the mouth key points.

The AffectNet [19] is our main evaluation patform, and

it has more than 1 million images, crawled from the inter-

net, with half of them manually annotated using mechanical

Turk. Each image has a single label based on a continuous

arousal and valence value, ranging from [−1 to 1]. The

dataset authors separated it into specific training and vali-

dation subsets, which we use in our experiments. The main

metric we use to measure perofrmance is the concordance

correlation coeficient (CCC) [15] between the models’ out-

puts and the true labels of the images. The FaceChannel

showed to be competitive with other convolutional-based

models when evaluated on the AffectNet [3], and we use

this results as our performance baseline.

The MaskedAffectNet dataset is proposed here to rep-

resent a constrained interaction scenario. It is composed

of the same images of the AffectNet dataset, but with the

artificial addition of a facial mask. The mask is added in

a postprocessing scheme that finds the facial points of the

mouth, and using a geometrical transformation on a stan-

dard face mask image, fixes the mask on top of the mouth,

as illustrated in Figure 2. The results reassemble closely the

use of the mask in a real-world environment, but following

the same label scheme of the AffectNet.

3.1. Experimental Setup

We conduct our experiment in two settings: first, we per-

form a series of baseline studies to investigate the impact

that the mask has on the FaceChannel. Second, we inves-

tigate the emergence of the facial features by calculating

the saliency maps of the last convolutional channels of the

model, when processing images from the AffectNet and the

MaskedAffectNet.

For our first set, we run four experiments: first, we in-

vestigate the performance of the FaceChannel when trained

on the AffectNet and evaluated on the MaskedAffectNet.

Then, we run train the FaceChannel from the scratch on the

MaskedAffectNet dataset and perform the same evaluation.

Finally, we perform two fine-tuning routines: first investi-

gating the re-training of the last channel of the FaceChannel,

and the entire network. The entire experimental summary is

reported in Table 2 Our goal with this experiment is to eval-

uate the network’s performance in these different settings.

Trained On Fine-Tunned On Method

AffectNet - Scratch

AffectNet MaskedAffectNet Scratch

AffectNet MaskedAffectNet Last Conv

AffectNet MaskedAffectNet All Layers

MaskedAffectNet - Scratch
Table 2. Experimental summary of our first baseline setting. For

each of the experimental setting, we evaluate the networks’ per-

formance on both the AffectNet and MaskedAffectnet.

Second, we run an exploratory routine that calculates the

saliency map of individual images from both the AffectNet

and the MaskedAffectNet for all the models we evaluated

in our first set. We discuss how each of the training and

fine-tuning routines impacts the feature formation and the

performance of the model.

4. Results

Our baseline experiments are fully reported in Table 3.

We observe that when the FaceChannel is trained with the

AffectNet [19] and evaluated with the MaskedAffectNet,

the performance drops considerably. When inverting the

setting, and training the network with the MaskedAffect-

Net, and evaluating with the AffectNet, the performance

does not drop much. This is an indication that the network

trained with the MaskedAffectNet somehow learns a more

robust, and thus shareable, facial representation.

The best results on the MaskedAffectNet dataset, with a

total CCC of 0.53 for arousal and 0.45 for valence, were

obtained when fully re-training the network, and are ex-

pected as we guide the entire facial representation towards

the presence of masks. This, however, can be costly, as the

number of parameters to be adapted is much higher than

when re-training only the last convolutional layers. Also,



Trained On Fine-Tunned On Method AffectNet MaskedAffectNet

Arousal Valence Arousal Valence

AffectNet - Scratch 0.46 0.61 0.18 0.16

MaskedAffectNet - Scratch 0.25 0.33 0.43 0.48

AffectNet MaskedAffectNet Last Conv 0.34 0.39 0.33 0.43

AffectNet MaskedAffectNet All Layers 0.38 0.45 0.45 0.53
Table 3. Experimental summary of our first baseline setting. For each of the experimental setting, we evaluate the networks’ performance

on both the AffectNet and MaskedAffectnet. We report Arousal and Valence in terms of Concordance Correlation Coefficient (CCC).

re-training the entire network obtained a higher CCC when

compared to re-training the entire network from the scratch,

which is an indication that some of the features learned by

the AffectNet-trained network somehow contribute to the

MaskedAffectNet recognition.

When evaluating the MaskedAffectNet-trained models

with the AffectNet, we observe that while re-training the en-

tire model yields the best performance, re-training the last

convolutional layers achieves a close CCC. In this particular

experiment, the facial features were learned with full face

expressions from the AffectNet, which indicates that simple

high-level feature recombination obtained when training the

last convolutional layer is enough for this scenario.

Our second experimental setting involves visualizing the

saliency maps of each of the trained models when process-

ing images from the AffectNet and the MaskedAffectNet

datasets. We plot these results in Figure 3. We observe

the differences from a model trained on the AffectNet and

the MaskedAffectNet images: the focus on the mask. The

performance drop of the AffectNet-based model is easily

explained by the presence of facial representations from

the mouth and chin, which are covered when the mask is

present. We observe, as well, that the model which was

trained only in the last convolutional layer somehow re-

combine the representations to give more strength to the

upper-face region features, including eyes and cheeks. We

also observe that on the models trained from the scratch,

and the fully fine-tuned model, the mask itself becomes a

feature. These models identify that the size and position of

the mask somehow depict some facial characteristics, which

probably explain the performance boost on these training

processes.

5. Discussions

In this paper, we present an in-depth study on how

FaceChannel adapts towards recognizing facial expressions

in very specific constrained settings: facial expressions

from masks. Our experiments demonstrate that the network

trained with the general AffectNet dataset struggles to deal

with the partial expressions from the masked faces. Pre-

training the network, however, increases the performance of

the model, showing that it is possible to adapt it towards this

scenario. Beyond the network’s performance, it is impor-

Figure 3. Saliency map visualization of images from the Affect-

Net and MaskedAffectNet datasets processed by all the evaluated

models.

tant to notice also the impact of our analysis in two fronts:

how partial expressions can be recognized and represented,

and how important is to have a reliable adaptation of facial

expression recognition models.

5.1. Partial Expression Recognition

Our analysis can be seen as a simulation of the real-world

scenario. Although the AffectNet dataset has millions of

images, artificially adding masks to it does not necessarily

approximate it from real-world interactions. What we fo-

cus on, however, is on the capability of the FaceChannel to

depict and to adapt to these changes, modifying its learned

representations as needed. Our feature-level analysis shows

that by re-training only the last convolutional layer of the

FaceChannel, improving drastically its performance, we al-

ready can change the focus of the network’s encoder to-

wards the upper facial area. Although the mouth is ex-

tremely important for depicting facial expressions, as shown

by the feature visualization of the original FaceChannel, the

network trained with the masked data retains a good perfor-

mance. This indicates two important things: first, at least

for the images from the AffectNet dataset, most of the affec-

tive content can be depicted from the upper-face region with

a still good performance. Second, the masked FaceChan-

nel learned to integrate the mask on its feature representa-

tion. Although the lower face is covered, the presence of the

mask following the jaw-line can be an indication of mouth

open and close, for example. The network uses the mask

shape to somehow represent these characteristics.



5.2. The Impact of Feature Adaptation

On a deeper look into the computational effort to re-train

the FaceChannel, and the final results, we can relate the

performance of the model with the meaning behind each

training strategy. When re-training the entire model, we are

changing drastically the feature representation of the net-

work together with its own decision making, towards a very

specific scenario. Although in our analysis the tasks are

similar, actually even using the same dataset, the perfor-

mance drop demonstrates how facial expression perception

can be sensitive to simple image occlusion. Having a model

that is easily adaptable, in particular when deployed in con-

strained computational environments such as mobile robots,

is certainly an advantage.

6. Conclusion

In this paper, we present a study on the impact that fa-

cial masks have on facial expression recognition neural net-

works. We use the recently proposed FaceChannel [3], to

investigate how faces with masks change the performance

of the model, and how different fine-tuning schemes can

be used to mitigate the performance drop. We propose

here the MaskedAffectNet dataset, a version of the Affect-

Net dataset that has images with facial masks but maintains

the same affective arousal and valence-based labels, to help

the direct comparison of our evaluation. By visualizing the

saliency maps of processed images from both datasets, we

can pinpoint that the network trained with the AffectNet re-

lies heavily on the mouth and chin regions to make affec-

tive decisions, which contributes to poor performance on

the masked faces. However, when re-adapting these fea-

tures towards the upper-face, as a byproduct of training and

fine-tuning the network with the MaskedAffectNet dataset,

the performance on the original AffectNet is not much af-

fected. Also, we show that the FaceChannel adapts towards

masks by using the mask itself as a feature and probably

analyses the size and position of the mask as an affective

determinant characteristic.

Our analysis, although in-depth on the FaceChannel,

needs to be extended towards other convolutional-based

models, and other affective scenarios. As a clear future

work direction, we will continue our investigation also tak-

ing into consideration different learning schemes, such as

self-supervised representation learning, and interaction sce-

narios, including settings involving social robots. We intend

to evolve the FaceChannel towards an adaptable neural net-

work that can be easily deployed on different devices, rely-

ing on specific fine-tuning strategies involving attention lay-

ers. We are also very interested in viewing facial expression

perception as a life-long adaptive goal, and thus, studying

continual and open-ended learning strategies would be very

beneficial.
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