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Abstract

Neural network designers have reached progressive ac-

curacy by increasing models depth, introducing new layer

types and discovering new combinations of layers. A com-

mon element in many architectures is the distribution of the

number of filters in each layer. Neural network models keep

a pattern design of increasing filters in deeper layers such

as those in LeNet, VGG, ResNet, MobileNet and even in

automatic discovered architectures such as NASNet. It re-

mains unknown if this pyramidal distribution of filters is

the best for different tasks and constrains. In this work we

present a series of modifications in the distribution of filters

in three popular neural network models and their effects in

accuracy and resource consumption. Results show that by

applying this approach, some models improve up to 8.9% in

accuracy showing reductions in parameters up to 54%.

1. Introduction

An important consideration to create a convolutional

neural network (CNN) model is the number of filters re-

quired at every layer. The Neocognitron implementation for

example, keeps an equal number of filters for each layer in

the model [4]. A very common practice has been to use

a bipyramidal architecture. The number of filters across

the different layers is usually increased as the size of the

feature maps decreases. This pattern was first proposed in

[13] with the introduction of LeNet and can be observed

in a diverse set of models such as VGG[20], ResNet[6]

and MobileNet[8]. Even models obtained from automatic

model discovery, like NASNet [24], follow this principle

since neural architecture search methods are mainly formu-

lated to search for layers and connections while the number

of filters in each layer remains fixed. The motivation be-

hind this progressive increase in the number of kernels is to

compensate a possible loss of the representation caused by

the spatial resolution reduction [13]. In practice it improves

performance by keeping a constant number of operations in

each layer [1]. It remains unknown if this pyramidal dis-

tribution of filters is also beneficial to different aspects of

model performances other than the number of operations.

The contribution of this paper is to challenge the widely

used design of increasing filters in neural convolutional

models by applying a small subset of diverse filter distri-

butions, called templates, to existing neural network de-

signs. Experimental evidence shows that simple changes

to the pyramidal distribution of filters in convolutional net-

work models lead to improvements in accuracy, number of

parameters or memory footprint; we highlight that most re-

cent models, which have had a more detailed tuning in the

filter distribution, present resiliency in accuracy to changes

in the filter distribution, a phenomena that requires further

research and explanation.

Experiments in this document are exploratory. We use

equal number of filters in all templates without constraining

the effects of the redistribution. We extend this work in [9]

where templates are evaluated with more rigorous experi-

ments keeping FLOPs to similar values as in the original

model and then comparing resource consumption.

2. Related Work

The process of designing a neural network is a task that

has largely been based on experience and experimentation

which consumes a lot of time and computational resources.

Of note are reference models such as VGG[20], ResNet[6],

Inception[21] and MobileNet[8] that have been developed

with significant use of heuristics. Even with automatic

methods, one key feature that has constantly been adopted

is the manual selection of the number of filters in each layer

in the final model. Filters are set in such a way to have an

increasing number as the layers go deeper, differing from

the original Neocognitron design[4].

With the increase in the use of Neural Networks, and par-

ticularly Convolutional Networks for computer vision prob-

lems, a mechanism to automatically find the best architec-

ture has become a requirement in the field of Deep Learn-

ing. One of the biggest challenges in automatic architec-
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Figure 1. Filters per layer using the proposed templates for filter redistribution in a VGG style model. Base distribution, which is the original

distribution, shows the common design of growing the filters when resolution of feature maps decreases in deeper layers. Although the

total number of filters is kept constant after templates, changes in filter distribution induce different effects in performance and resource

consumption.

ture design is that the search space for CNN architectures is

very large[18]. Two fields have derived from the problem:

i) neural architecture search (NAS), that develops mecha-

nisms for searching for the best combination of layers[25]

and ii) channel number search (CNS), which look for the

best distribution of filters given an initial architecture[2, 22].

Pruning methods could be seen as an special case of CNS

in which there is the assumption that the weights, obtained

at the end of the training process of the original model, are

important to the pruning method[3].

In pruning methods, searching involves training models

for several iterations to select the correct weights to remove

[3, 7, 23], or at least increasing the computation during the

training when doing jointly training and search [12, 15]. In

[16] it is suggested that accuracy obtained by pruning tech-

niques can be reached by removing filters to fit a certain

resource budget and training from scratch.

Our work for finding an appropriate distribution of filters

relates to [5] in the sense that their method is not restricted

to reducing filters but also to increase them to see if the

changes are beneficial. Our approach differs however, be-

cause it only requires the model to be trained in the final

stage, after manually making some predefined changes to

the number of filters using the redistribution templates.

3. Filter distribution templates

While most of neural network architectures show an in-

cremental distribution of filters, recent pruning methods

such as [5, 12], have shown different filter distribution pat-

terns emerging when reducing models like VGG that defy

the notion of pyramidal design as the best distribution for a

model. This is a motivational insight into what other distri-

butions can and should be considered when designing mod-

els. On one side the combinatorial space of distributions

make this a challenging exploration, on the other however,

it importantly highlights the need to pursue such exploration

if gains in accuracy and overall performance can be made.

In this work, rather than attempting to find the opti-

mal filter distribution with expensive automatic pruning or

growing techniques, we propose to first adjust the filters of

a convolutional network model via a small number of pre-

defined templates. These templates such as those depicted

in figure 1, are inspired by existing models that have already

been found to perform well and thus candidates that could

be beneficial for model performance improvement beyond

the number of operations. Performance criteria such as ac-

curacy, memory footprint and inference time are arguably

as important as the number of operations required.

In particular, we adopt as one template, a distribution

with a fixed number of filters as with the original Neocogni-

tron design, but also other templates inspired by the patterns

found in [5] where some behaviours are present in differ-

ent blocks from the resulting ResNet101 model: 1) filters

agglomerate in the centre and 2) filters are reduced in the

centre of the block. In [12, 23] is shown also a pattern with

more filters in the centre of a VGG model. Based on these

observations we define the templates we use in this work.

Different distributions with the same number of filters

can lead to different number of parameters (e.g. weights)

and different memory or computational requirements (e.g.

GPU modules). In the toy example in Figure 2, both models

have the same number of filters but the one on the right

has less parameters and less compute requirements at the

cost of more memory footprint. This example highlights

the compromises that filter distributions can offer for the

design and operation of network models.

We define a convolutional neural network base model as

a set of numbered layers L = 1, ..., D + 1, each with fl
filters in layer l, D + 1 is the final classification layer. The

total number of filters that can be redistributed is given by

F =
∑D

l=1
fl. We want to test if the common heuristic of

distributing F having fl+1 = 2fl each time the feature map

is halved, is advantageous to the model over other distribu-

tions of F when evaluating performance, memory footprint

and inference time.

The number of filters in the final layer D+1 depends on

the task and remains the same for all the templates, therefore

it is not taken into account for computing the number of fil-

ters to redistribute. For architectures composed of blocks

(e.g. Inception) we consider blocks as single layers and

keep the number of filters within a block the same. As a

result, a final Inception module marked with fl filters, is set
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Figure 2. A toy example to show how two different templates with

the same number of filters produce a variety of effects in param-

eters, memory, inference time and flops. Layers (rectangles) con-

tain in total, equal number of filters (circles) for both templates.

Lines between filters represent parameters, red squares are by-

channel feature maps which reside in memory jointly with param-

eters. Flops are produced by shifting filters along feature maps.

Inference time is affected by flops and number of transfers, in-

dicated by blue arrows and here limited to two simultaneously,

between memory and GPU modules. Diagram assumes filters of

equal sizes and pooling between layers. Differences are scaled up

in real models counting thousand of filters.

to that number of filters in each layer inside the module.

Uniform Template. The most simple distribution to

evaluate is, as the original Neocognitron, an uniform dis-

tribution of filters. Computing the number of filters in an

uniform distribution is straightforward, the new number in

each layer is given by f ′

l = F/D ∀l ∈ {1, ..., D}.

Reverse Template. Another straight-forward transfor-

mation for the filter distribution adopted in this paper is re-

versing the number of filters in every layer. Our final model

with this template is defined by the filters f ′

l = fD−l+1.

Quadratic Template. This distribution is characterised

by a quadratic equation f ′

l = al2+ bl+ c and consequently,

has a parabolic shape with the vertex in the middle layer.

We set this layer to the minimal number of filters in the base

model fmin = min (fl) l ∈ {1, ..., D} so, the number

of filters is described by f ′

D/2 = fmin. Also, we find the

maximum value in both the initial and final convolutional

layers, thus f ′

1 = f ′

D.

To compute the new number of filters in each layer

we solve the system of linear equations given by i) the

restriction of the total number of filters in
∑D

l=1
(f ′

l ) =
∑D

l=1

(

al2 + bl + c
)

= F , that can be reduced to
(

D3

3
+ D2

2
+ D

6

)

a+
(

D2

2
+ D

2

)

b+Dc = F , ii) the equa-

tion produced by the value in the vertex f ′

D/2 = D
2

2
a +

D
2
b + c = fmin and iii) the equality from the maximum

values which reduces to (D2 − 1)a+ (D − 1)b = 0.

Negative Quadratic Template. It is a parabola with

the vertex in a maximum, that is, a negative quadratic

curve. The equation is the same as the previous template

but the restrictions change. Instead of defining a value

in the vertex, f ′

l at the initial and final convolutional lay-

ers are set to the minimal number of filters in the base

model f ′

l = fmin l ∈ {1, D}. The number of filters in

each layer is computed again with a system of equations

Table 1. Model performances with the original distribution and

four templates for the same number of filters evaluated on CIFAR-

10, CIFAR-100 and Tiny-Imagenet datasets. After filter redistri-

bution models surpass the base accuracy. Results show average of

three repetitions.
Redistribution Templates

Model Base Rev

Base

Unif Quad Neg

Quad

CIFAR-10

VGG-19 93.52 94.40 94.24 94.18 94.21

ResNet-50 94.70 95.17 95.08 94.41 95.23

Inception 94.84 94.60 94.82 94.86 94.77

MobileNet 89.52 91.35 91.28 89.98 91.04

CIFAR-100

VGG-19 71.92 74.65 74.03 73.55 74.05

ResNet-50 77.09 74.80 76.65 75.71 76.76

Inception 78.03 77.78 78.12 77.67 76.65

MobileNet 65.08 66.39 68.71 63.89 67.05

Tiny-Imagenet

VGG-19 54.62 57.73 56.68 54.73 59.50

ResNet-50 61.52 53.67 60.97 59.77 60.12

Inception 54.80 55.24 55.78 54.97 55.87

MobileNet 56.29 51.40 58.11 53.37 55.76

specified by i), the restriction of the total number of fil-

ters as in the quadratic template, and the two points already

known in the first and last convolutional layers defined by

ii) a+ b+ c = fmin and iii) D2a+Db+ c = fmin.

4. Models Comparison Under Size, Memory

Footprint and Speed

In this section we investigate the effects of applying

different templates to the distribution of kernels in convo-

lutional neural network models (VGG, ResNet, Inception

and MobileNet). We compare models under the basis of

size, memory and speed in three of the popular datasets for

classification tasks.

Datasets and Models

We trained over three datasets traditionally used for con-

volutional network evaluation: CIFAR-10, CIFAR-100 [10]

and Tiny-Imagenet [11]. The first two datasets contain sets

of 50,000 and 10,000 colour images for train and validation

respectively, with a resolution of 32x32. Tiny-Imagenet is a

reduced version of the original Imagenet dataset with only

200 classes and images with a resolution of 64 x 64 pixels.

We evaluate some of the most popular CNN mod-

els: VGG[20], ResNet[6], Inception[21] and MobileNet[8];

which represent some of the highest performing CNNs on

the ImageNet challenge in previous years [19].

Implementation Details

Experiments have models fed with images with the com-

mon augmentation techniques of padding, random cropping

and horizontal flipping. Our experiments were run in a
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Table 2. Parameters, memory and inference time for selected models when applying our templates keeping the same number of filters

evaluated on the CIFAR-10 (black) and Tiny-Imagenet (blue) datasets. Models are normally optimised to fast GPU operation, therefore

the original base distribution has a good effect in speed but the redistribution of filters induced by our templates makes models capabilities

improve on the other metrics. Memory footprint reported by CUDA.
Redistribution Templates

Resource Model Base Reverse Base Uniform Quadratic Negative Quadratic

VGG-19 20.0 25.0 20.0 20.6 16.0 19.3 15.8 20.7 20.0 20.6

Parameters ResNet-50 23.5 23.9 23.1 23.1 12.9 13.0 19.0 19.3 33.0 33.0

(Millions) Inception 6.2 19.2 6.7 10.0 6.2 12.7 7.2 18.7 7.0 10.1

MobileNet 3.2 3.4 2.2 2.4 2.2 2.4 3.2 3.3 2.4 2.6

Memory VGG-19 1.3 1.5 2.6 10.0 4.4 4.8 2.0 6.8 1.4 3.8

Footprint ResNet-50 3.1 5.0 11.5 10.1 4.1 9.6 7.9 7.5 3.0 9.8

(GB/batch) Inception 1.5 5.8 3.1 10.8 1.7 6.7 2.2 8.6 1.6 5.9

MobileNet 2.5 2.5 5.1 5.1 1.5 5.9 6.0 4.8 1.0 1.9

Inference VGG-19 3.0 4.9 8.2 4.1 5.3 4.2 7.5 4.6 7.3 3.5

Time ResNet-50 46.4 13.3 61.0 12.8 23.4 12.8 59.0 11.0 47.6 29.9

(ms/batch) Inception 28.5 24.0 54.9 21.4 34.3 28.3 25.2 18.3 24.3 31.4

MobileNet 3.8 5.8 6.8 6.7 4.3 9.7 7.4 7.3 4.9 5.3

NVidia Titan X Pascal 12GB GPU adjusting the batch size

to 128. All convolutional models, with and without tem-

plates, were trained for 160 epochs using the same condi-

tions. Therefore, there is some margin for improving ac-

curacy for each distribution by performing individual hy-

perparameter [17, 14]. We used stochastic gradient descent

(SGD) with weight decay of 1e-4, momentum of 0.9 and a

scheduled learning rate starting in 0.1 for the first 80 epochs,

0.01 for the next 40 epochs and finally 0.001 for the remain-

ing epochs.

Template effect over baseline models

We conducted an experiment to test our proposed tem-

plates on the selected architectures. Table 1 shows VGG, In-

ception and MobileNet accuracies improving in all datasets

when templates are applied. Being complex architectures,

ResNet and Inception present the highest accuracy in gen-

eral. A surprising finding is that in both models differ-

ence in accuracy between templates is less than 2.3% de-

spite the drastic modifications that models are suffering af-

ter the change of filter distribution. Models that share a se-

quential classical architecture such as VGG and MobileNet,

show a better improvement when using templates in Tiny-

Imagenet. A remarkable accuracy improvement of 4.88 per-

centage point is achieved in VGG.

When analysing resource consumption (Table 2), we

find models are affected differently with each template and

model. Reverse-Base, Uniform and Quadratic templates

show some reductions in the number of parameters while

Negative Quadratic template reduces the memory usage.

Inference Time is affected negatively for most of the tem-

plates. This is an expected result as original models are de-

signed to perform well in the GPU. Inception model shows

an improvement in speed with reductions of 14% over in-

ference time respect to the base model while maintaining

comparable accuracy. ResNet is able to reduce inference

time in 49% at the cost of having slightly less accuracy than

the base model.

5. Conclusions

The most common design of convolutional neural net-

works when choosing the distribution of the number of fil-

ters is to start with a few and then to increase the number

in deeper layers. We challenged this design by evaluating

some architectures with a varied set of distributions on the

CIFAR and Tiny-Imagenet datasets. Our results suggest

that this pyramidal distribution is not necessarily the best

option for obtaining the highest accuracy or even the high-

est parameter efficiency.

Our experiments show that models, with the same

amount of filters but different distributions produced by our

templates, improve accuracy with up to 4.8 points for some

model-task pairs. In terms of resource consumption, they

can obtain a competitive accuracy compared to the original

models using less resources with up to 56% less parameters

and a memory footprint up to 60% smaller. Results also re-

veal an interesting behaviour in evaluated models: a strong

resilience to changes in filter distribution. The variation

in accuracy for all models after administering templates

is less than 5% despite the considerable modifications

in the distributions and therefore, in the original design.

Our work overall offers insights to model designers, both

automated and manual, to construct more efficient models

by introducing the idea of new distributions of filters

for neural network models and help gather data to build

understanding of the design process for model-task pairs.
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4



References

[1] Joseph Lin Chu and Adam Krzyżak. Analysis of
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