
Generalizable Multi-Camera 3D Pedestrian Detection

João Paulo Lima2,1, Rafael Roberto1, Lucas Figueiredo1, Francisco Simões2,1, Veronica Teichrieb1
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Abstract

We present a multi-camera 3D pedestrian detection

method that does not need to train using data from the tar-

get scene. We estimate pedestrian location on the ground

plane using a novel heuristic based on human body poses

and person’s bounding boxes from an off-the-shelf monocu-

lar detector. We then project these locations onto the world

ground plane and fuse them with a new formulation of a

clique cover problem. We also propose an optional step

for exploiting pedestrian appearance during fusion by using

a domain-generalizable person re-identification model. We

evaluated the proposed approach on the challenging WILD-

TRACK dataset. It obtained a MODA of 0.569 and an F-

score of 0.78, superior to state-of-the-art generalizable de-

tection techniques.

1. Introduction

Pedestrian detection is a relevant problem in several con-

texts, such as smart cities, surveillance, monitoring, au-

tonomous driving, and robotics. While several solutions fo-

cus only on 2D pedestrian detection [7, 15, 14], estimating

the 3D location of pedestrians allows georeferencing them

in the environment. This referencing enables location-based

services, spatial visualization, and others [6]. Nowadays,

it is common that environments have multiple monocular

cameras with overlapping fields of view, such as security

cameras. Using such a setup makes 3D pedestrian detection

easier since it can exploit multi-view constraints and better

handle occlusions. Nevertheless, multi-camera 3D pedes-

trian detection in crowded environments is still a challeng-

ing task.

The methods that currently obtain the best results for de-

tecting pedestrians in 3D using multiple cameras need to

perform training using data from the target scene [10, 1].

This implies that they need to retrain when the target scene

changes, with different multi-camera configurations and en-

vironment conditions. The training procedure is usually

time-demanding and may require laborious annotation of

ground-truth data. Due to this, it is desirable to have a

generalizable multi-camera 3D pedestrian detection solu-

tion that can be applied out-of-the-box without training with

target scene data [16, 23].

In this context, we present a novel method for multi-

camera 3D pedestrian detection classified as generalizable.

The proposed approach encompasses monocular pedestrian

detection, estimation of pedestrian location on the ground

plane, fusion of multi-camera pedestrian detections, and

person re-identification (re-ID). We summarize our ap-

proach in Figure 1. Since it is based on off-the-shelf monoc-

ular person detectors and person re-ID models, it does not

require training using target scene data.

The contributions of this work are:

1. An approach for estimating pedestrian location on

the ground plane from off-the-shelf monocular per-

son detectors that provide both human body poses and

bounding boxes (Section 3);

2. A technique for fusing multi-camera pedestrian loca-

tions by solving an instance of the clique cover prob-

lem from graph theory (Section 4);

3. An alternative to take pedestrian appearance into

account in this fusion step based on domain-

generalizable person re-ID models (Section 5);

4. Quantitative and qualitative evaluations regarding the

proposed method’s detection performance with respect

to state-of-the-art generalizable multi-camera 3D de-

tection approaches (Section 6).

2. Related Work

Monocular 3D Pedestrian Detection. 3D monocular de-

tectors can retrieve pedestrians’ 3D location, requiring a

single camera. MonoPair [5] uses trained networks to ac-

quire 3D bounding boxes of detected people (among other

targets). It then adds pairwise spatial relationships (based

on predicted constraints related to the mid keypoint between

targets) to improve the resulting location. MonoLoco [2]



Figure 1. Summary of our generalizable multi-camera 3D pedestrian detection. We detect pedestrians’ bounding boxes and body poses in

each camera’s image (represented by different colors). Then we estimate every detection’s ground point on every camera and eliminate

those out of the area of interest (grey rectangle). We can compute a descriptor for each pedestrian bounding box aiming at person re-

identification. Finally, we solve an instance of the clique cover problem from graph theory to fuse pedestrian detections.

adopts a monocular approach that infers the depth of each

person’s detected 2D bounding box based on uncertainty es-

timation. It uses 2D estimated poses to model the ambiguity

of the 3D location related to intrinsic characteristics such as

the different heights of the tracked population. Hayakawa

and Dariush [8] improve MonoLoco’s 3D localization ap-

proach by introducing an asymmetric loss function. It bet-

ter handles the pixel’s related error of estimated joints from

distant pedestrians, achieving improved accuracy in these

cases.

Non-Generalizable Multi-View 3D Pedestrian Detec-

tion. In contrast with monocular approaches, estimation

using multiple cameras has better results in general because

it is prone to deal with complex occlusion problems [1].

There are multi-view techniques that consider an additional

training (supervised or unsupervised) step with the target

scene content to better handle contextual information from

the application domain. Given the implicit cost of perform-

ing training for each new scene, we can classify them as

non-generalizable. In this sense, Baqué et al. [1] present

a combination of convolutional neural networks (CNNs)

and conditional random fields (CRFs) to handle the pair-

wise matching ambiguities between the observed pedestri-

ans. Alternatively, MVDet [10] aggregates the multi-view

people detection information by applying a feature perspec-

tive transform to place all ground heatmaps (and later lo-

cations) of pedestrians in the same coordinate space. Sim-

ilarly, DMCT [21] proposes a perspective-aware network,

which produces distorted detection blobs (related to the

camera’s perspective). This is followed by a fusion proce-

dure for ground-plane occupancy heatmap estimation and

the use of a Deep Glimpse Network for person detection.

Generalizable Multi-View 3D Pedestrian Detection.

The pipeline to estimate the 3D location of pedestrians

in multi-camera scenarios, in a generalizable manner, of-

ten employs 2D monocular pedestrian detectors [7, 15, 14]

and later fuse their results based on multi-view proper-

ties [16, 23, 17]. In this scenario, one way to make 3D

pedestrian detection robust to domain shift, therefore gen-

eralizable, is to use monocular person detectors that do

not need retraining for a specific target domain [19, 9,

12, 7]. Another advantage of monocular detectors re-use

is to simplify setup requirements, easing cameras addi-

tion/removal/combination [17].



3. Monocular Pedestrian Detection and

Ground Point Estimation

Our approach relies on an off-the-shelf monocular

pedestrian detector that is not retrained for the target do-

main. From the monocular detections, we estimate each

person’s ground point, which is its location on the ground

plane. We can then fuse these ground points for estimat-

ing the 3D coordinates of pedestrians in the world ground

plane.

Some monocular person detectors can provide both

bounding boxes and human body poses as output [12]. The

use of full-body poses allows better handling of occlusions,

making it possible to verify which parts of the pedestrian’s

body are visible. A widely used representation for a body

pose is the one employed by the MSCOCO dataset [13],

which consists of 17 keypoints that correspond to human

body landmarks. We propose a heuristic for estimating

ground points from body poses in the MSCOCO format to-

gether with person’s bounding boxes.

We only use the ankle keypoints, which are the lower

ones among all 17 keypoints. We only keep detections that

have scores for ankle keypoints both higher than a thresh-

old ts. However, the ankles are not on the ground plane, so

we need to apply an offset δ to the y coordinate of the ankle

keypoints to obtain their correspondences on the ground.

This offset is given by

δ = bbymax
−max(lay, ray), (1)

where bbymax
is the y coordinate of the bottom edge of the

full-body bounding box, and lay and ray are the y coor-

dinates of left and right ankle keypoints, respectively. We

estimate the ground point as the midpoint of the line seg-

ment whose endpoints are the offsetted ankle keypoints. We

illustrate the proposed ground point estimation heuristic in

Figure 2.

4. Fusion of Multi-Camera Detections

Assuming that the cameras are calibrated, the camera

frames are undistorted, and that the ground plane corre-

sponds to the Z = 0 plane in world coordinates, we com-

pute for each camera a homography H that maps the image

plane onto the world ground plane. Considering a camera

with intrinsic parameters matrix K and extrinsic parame-

ters matrix [R|t], the projection of the world ground point

M = (X,Y, 0)T onto the image ground point m = (x, y)T

is given by

Figure 2. Midpoint (in yellow) of the two ankles (in blue). We find

the estimated ground point (in green) by adding the δ distance to

the the midpoint.
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where Ri is the i-th column of R. Then we use the computed

homographies to project all ground points from all cameras

to the world ground plane. If there is a predefined area of

interest in the world ground plane, we can use it to discard

world ground points outside this area.

We adopt the same two conditions used by López-

Cifuentes et al. [16] for fusing world ground points. All

world ground points that correspond to the same pedestrian

should have the following properties:

1. Come from different cameras since a pedestrian can

only appear once per camera frame;

2. Pairwise Euclidean distances lower than a threshold tg .

As López-Cifuentes et al. [16], we create a graph repre-

senting these conditions. The vertices are the world ground



points, and the edges connect vertices associated with world

ground points that satisfy both constraints.

We propose to formulate the problem of finding world

ground points to be fused as a clique cover problem1. A

clique is a subset of vertices of a graph such that every two

distinct vertices are connected. Vertices of our graph that

belong to a clique represent world ground points that can

be fused. A clique cover is a partition of the vertices of

the graph into cliques. A minimum clique cover is a clique

cover that uses as few cliques as possible. The clique cover

problem is the problem of finding a minimum clique cover

of a graph. A clique cover of a graph G may be seen as a

graph coloring of the complement graph of G.

We use the greedy coloring algorithm [11] for color-

ing the complement of the graph created from the world

ground points. We employ the smallest-last vertex order-

ing strategy with color interchange described by Kosowski

and Manuszewski [11]. This prioritizes the fusion of world

ground points belonging to pedestrians seen by many cam-

eras at the same time. Vertices assigned with the same color

represent world ground points that meet the fusion crite-

ria. We assume that the cameras have overlapping fields

of view, so we discard cliques with only one vertex. This

helps to decrease the number of false positives since most

of the times a pedestrian should appear in more than one

camera. The final 3D coordinate of a detected pedestrian is

the arithmetic mean of all world ground points represented

by a clique found. Figure 3 illustrates the fusion procedure.

5. Person Re-Identification

So far, we only used the proximity of world ground

points for fusing them. As an optional step, we can also

exploit appearance cues for guiding the fusion process.

One way to represent pedestrian appearance is by com-

puting discriminative descriptors invariant to viewing di-

rection and background conditions. The person re-ID task

tackles this problem. However, person re-ID models often

suffer from the domain shift problem, which means that

a person re-ID model trained on one source dataset usu-

ally presents a degraded performance on an unseen target

dataset. In order to keep multi-camera 3D pedestrian detec-

tion generalizable, we need to use a domain-generalizable

person re-ID model such as OSNet-IAP [20] and OSNet-

AIN [22]. These models better handle the domain shift is-

sue so that, once trained, they can be deployed without any

retraining.

We propose to also use descriptors provided by a

domain-generalizable person re-ID model to help the fusion

of world ground points. The person re-ID model takes as in-

put the pedestrian bounding box cropped out of the respec-

tive camera frame and outputs a high-dimensional vector as

1https://en.wikipedia.org/wiki/Clique_cover

Figure 3. Graph illustrating the detection of three persons. Each

node represents the detection by one camera, which can be iden-

tified by its color. The strong edges in the graph denote different

cliques, which we use to compute the person position (green cir-

cles over the graph).

a descriptor. We can then have an additional condition that

all world ground points belonging to the same pedestrian

should satisfy:

3. Pairwise descriptor distances lower than a threshold td.

When using person re-ID, we should take into account

all the three criteria presented for creating the fusion graph

(following the approach explained in Section 4).

6. Experiments

We evaluated the proposed method under a multi-camera

3D pedestrian detection scenario with a crowded setup. We

present in the following subsections the details of the exper-

iments carried out and the results obtained.

6.1. Dataset and Metrics

We used the publicly available and challenging WILD-

TRACK dataset2 [3], which was acquired using seven static

cameras with overlapping fields of view in a crowded pub-

lic open area. It provides both intrinsic and extrinsic cal-

ibration for each camera and synchronized frames with a

2https : / / www . epfl . ch / labs / cvlab / data / data -

wildtrack/



1920 × 1080 resolution. Ground-truth 3D locations of

pedestrians are available for 400 frames at 2 fps, covering

an area of interest of 12 × 36 m, with an average of 23.8

people per frame and a total of 9518 annotations.

We followed the evaluation protocol proposed by Chav-

darova et al. [3], which uses the subsequent metrics: Mul-

tiple Object Detection Accuracy (MODA), Multiple Object

Detection Precision (MODP), precision (Prcn), and recall

(Rcll). The 3D detections are assigned to ground truth using

Hungarian matching and only if they are closer than 0.5m.

We consider MODA as the primary performance indicator

since it takes into account both false negatives and false pos-

itives.

6.2. Environment Setup

The hardware used in the evaluations was a laptop with

an Intel Core i7-7700HQ @2.80 GHz processor, 32 GB

RAM, and an NVIDIA GeForce GTX 1060 graphics card.

We used AlphaPose3 [12] for human body pose esti-

mation, which employs YOLOv34 [18] for person bound-

ing box detection. We performed greedy graph coloring

with the algorithm implementation available in the Net-

workX5 package for Python. For person re-ID, we used

an OpenVINO6 model based on the omni-scale network

(OSNet) backbone with Linear Context Transform (LCT)

blocks [20]. It outputs 256-dimensional descriptors that we

compare using the cosine distance.

In all experiments we used empirically obtained thresh-

old values for the proposed method as following: keypoint

score threshold ts = 0.4, ground point distance threshold

tg = 0.7m and descriptor distance threshold td = 1.0. We

report the results of competing approaches using the opti-

mal parameter values found.

6.3. Detection Performance Evaluation

First, we evaluated different approaches for monocular

pedestrian detection and ground point estimation:

• BB only, which uses only the bounding boxes pro-

vided by the YOLOv3 detector and estimates ground

points as Zhu [23] and López-Cifuentes et al. [16] by

taking the center of the bottom edge of the bounding

boxes;

• BP & BB, which is the proposed approach described

in Section 3 based on both body poses and bounding

boxes.

We tested both strategies together with the proposed ap-

proach detailed in Section 4 for the fusion of multi-camera

3https://github.com/MVIG-SJTU/AlphaPose
4https://pjreddie.com/darknet/yolo/
5https://networkx.org/
6https://docs.openvinotoolkit.org/

detections based on the clique cover problem (CC). As can

be seen in Table 1, the proposed BP & BB method presented

significantly better results than the BB only approach. Fig-

ure 4 shows examples of results obtained using BB only +

CC and BP & BB + CC. The proposed BP & BB approach

presented far fewer false positives than the BB only method

for this given frame.

Method MODA MODP Prcn Rcll

BB only + CC 0.147 0.587 0.560 0.689

BP & BB + CC 0.569 0.673 0.808 0.746

Table 1. Performance evaluation of different strategies for monoc-

ular pedestrian detection and ground point estimation: using only

bounding boxes (BB only) and the proposed approach using both

body poses and bounding boxes (BP & BB). We employ the pro-

posed clique cover method (CC) for the fusion of multi-camera

detections in both strategies.

Figure 4. 3D detections projected onto frame #1650 from camera 7

of the WILDTRACK dataset. Top: BB only + CC. Bottom: BP &

BB + CC.

In the next experiment, we compared using the BP &

BB method together with different strategies for the fusion

of multi-camera detections:

• AH, which computes an average heatmap as described

by You and Jiang [21]. It obtains each camera’s

heatmaps by considering a non-normalized Gaussian

kernel in world ground plane coordinates centered at

each ground point with a radius of 0.8m and σ = 10.1.



Then it retrieves the detections as local maxima on the

average heatmap with a minimum allowed distance of

0.5m and minimum value of 0.3;

• GH, which is the greedy heuristic presented by

Zhu [23] using a distance of 0.8m for combining de-

tections;

• CC, which is the proposed approach detailed in Sec-

tion 4 based on the clique cover problem.

Table 2 shows that the proposed CC method obtained

the best results with respect to MODA, MODP, and preci-

sion. The recall obtained by CC was higher than by AH

and slightly lower than by GH. Figure 5 depicts examples

of results obtained using BP & BB + AH, BP & BB + GH

and BP & BB + CC. While one false negative appears in the

presented view for both AH and GH, the proposed CC ap-

proach correctly detects all persons visible in this view that

are inside the area of interest.

Method MODA MODP Prcn Rcll

BP & BB + AH 0.262 0.670 0.608 0.736

BP & BB + GH 0.564 0.670 0.802 0.749

BP & BB + CC 0.569 0.673 0.808 0.746

Table 2. Performance evaluation of different strategies for fusion

of multi-camera detections: using an average heatmap (AH), a

greedy heuristic (GH) and the proposed approach based on the

clique cover problem (CC). In all strategies, we employ the pro-

posed method for monocular pedestrian detection and ground

point estimation using both body poses and bounding boxes (BP

& BB).

We also evaluated the effect of using person re-ID as pro-

posed in Section 5. The addition of person re-ID brought

almost no changes to MODA, MODP, precision, and recall.

Due to this, we show in Table 3 the number of true positives,

false positives, and false negatives. It is worth noting that

using person re-ID caused a slight increase of false posi-

tives. Figure 6 depicts examples of results obtained using

BP & BB + CC and BP & BB + CC + Re-ID. The ap-

proach that employs re-ID could not correctly connect all

graph nodes belonging to the same person. This caused a

noticeable shift in the location of detection #14, resulting in

one false negative and one false positive.

Table 4 compares the results obtained with the best con-

figuration of the proposed multi-camera 3D pedestrian de-

tection method to state-of-the-art approaches that can be

classified as generalizable. The results of RCNN-projected,

POM-CNN and Pre-DeepMCD are the ones reported by

Chavdarova et al. [3], and the results of López-Cifuentes

et al. 2018 [16] and Zhu 2019 [23] are the ones reported in

their respective works. Since some methods only reported

F-score instead of precision and recall, we also added this

Figure 5. 3D detections projected onto frame #340 from camera 5

of the WILDTRACK dataset. Top: BP & BB + AH. Middle: BP

& BB + GH. Bottom: BP & BB + CC.

Method TP FP FN

BP & BB + CC 7096 1683 2422

BP & BB + CC + Re-ID 7096 1685 2422

Table 3. Performance evaluation of the proposed multi-camera 3D

pedestrian detection method without (BP & BB + CC) and with

(BP & BB + CC + Re-ID) the proposed person re-ID approach

with respect to number of true positives (TP), false positives (FP)

and false negatives (FN).

metric to the evaluation. Our technique outperformed all

other approaches regarding MODA and F-score.

Figure 8 and supplementary material depict a visualiza-

tion from all views and from the world ground plane of a

result obtained using BP & BB + CC. We can note that the

proposed method could correctly detect the 3D locations of



Figure 6. 3D detections projected onto frame #800 from camera 2

of the WILDTRACK dataset. Top: BP & BB + CC. Bottom: BP

& BB + CC + Re-ID.

all pedestrians inside the area of interest.

6.4. Execution Time Analysis

Table 5 presents a time performance analysis of a non-

optimized version of the proposed approach. Fusion of

multi-camera detections is executed only once per frame,

while the other procedures are executed once per camera

for each frame. The bottleneck is the monocular pedestrian

detection and ground point estimation step.

6.5. Limitations

Similar to many other existing multi-camera 3D pedes-

trian detection methods in the literature [10, 21, 23, 16, 1],

our proposed approach is restricted to the ground plane.

Therefore, it cannot correctly estimate the 3D location of

people who are not standing on the ground (e.g., jumping).

This may limit its application to domains such as sports an-

alytics.

Our method also fails when the pedestrian suffers severe

occlusions that prevent ankle keypoints from being reliably

detected. Figure 7 illustrates such a situation, where Alpha-

Pose was not able to estimate the skeleton of a pedestrian in

one of the views and missed the ankle joints in the other two

views where he appears. Since we have no ground point for

this pedestrian, we end up with a false negative.

Figure 7. Failure case of the proposed method due to severe oc-

clusions. Top row: patches from views of WILDTRACK frame

#1990 where non-detected pedestrian #1120 appears, with red cir-

cles representing his projected ground truth location. Bottom row:

body pose estimation results for each respective image.

7. Conclusion

We presented a new approach for multi-camera 3D

pedestrian detection that is generalizable, not requiring

scene-dependent training. The proposed method for ground

point estimation based on human body poses and bounding

boxes proved superior to the commonly used midpoint of

the bounding box base. The novel technique for the fusion

of ground points as a clique cover problem obtained better

results than existing techniques in the literature. The sug-

gested use of a domain-generalizable person re-ID model

for giving additional cues to ground point fusion did not

Method MODA MODP Precision Recall F-Score

RCNN-projected 0.113 0.184 0.680 0.430 0.53

POM-CNN 0.232 0.305 0.750 0.550 0.63

Pre-DeepMCD 0.334 0.528 0.930 0.360 0.52

López-Cifuentes et al. 2018 0.390 0.550 - - 0.69

Zhu 2019 0.540 0.820 - - 0.77

BP & BB + CC (ours) 0.569 0.673 0.808 0.746 0.78

Table 4. Performance comparison of the proposed multi-camera 3D pedestrian detection approach (BP & BB + CC) with state-of-the-art

methods not trained on the target dataset.



Figure 8. 3D pedestrian detection results obtained with the proposed BP & BB + CC method for frame #1685 of the WILDTRACK dataset.

Blue circles represent detected pedestrians. At the bottom right, we show their locations on the world ground plane. From left to right, top

to bottom, we see the frames from cameras 1 to 7 with the projection of all 3D detections. Detections with equal number labels refer to the

same pedestrian.

Procedure Time (ms)

Monocular pedestrian detection and ground point estimation (per camera) 829.1± 158.3
Ground point projection and area of interest filtering (per camera) 0.1± 0.3
Person re-ID descriptors computation (per camera) 186.9± 67.6
Fusion of multi-camera detections (per frame) 224.0± 71.3

Table 5. Mean and standard deviation of time spent by each procedure of the proposed method for each frame.

bring any improvements. Our approach outperformed state-

of-the-art generalizable detection methods.

As future work, we intend to evaluate other heuristics for

person re-ID purposes. We also plan to investigate the use

of a multi-person 3D pose estimation method [4] as an aux-

iliary for multi-camera 3D pedestrian detection. We believe

this may help to cope with limitations such as restriction to

the ground plane and sensitivity to severe occlusions.
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