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Abstract

Despite the attention marker-less pose estimation has

attracted in recent years, marker-based approaches still

provide unbeatable accuracy under controlled environmen-

tal conditions. Thus, they are used in many fields such

as robotics or biomedical applications but are primar-

ily implemented through classical approaches, which re-

quire lots of heuristics and parameter tuning for reliable

performance under different environments. In this work,

we propose MarkerPose, a robust, real-time pose estima-

tion system based on a planar target of three circles and

a stereo vision system. MarkerPose is meant for high-

accuracy pose estimation applications. Our method con-

sists of two deep neural networks for marker point detec-

tion. A SuperPoint-like network for pixel-level accuracy

keypoint localization and classification, and we introduce

EllipSegNet, a lightweight ellipse segmentation network for

sub-pixel-level accuracy keypoint detection. The marker’s

pose is estimated through stereo triangulation. The tar-

get point detection is robust to low lighting and motion

blur conditions. We compared MarkerPose with a detec-

tion method based on classical computer vision techniques

using a robotic arm for validation. The results show our

method provides better accuracy than the classical tech-

nique. Finally, we demonstrate the suitability of Mark-

erPose in a 3D freehand ultrasound system, which is an

application where highly accurate pose estimation is re-

quired. Code is available in Python and C++ at https:

//github.com/jhacsonmeza/MarkerPose.

1. Introduction

Planar markers or fiducial markers are useful in robotics,

computer vision, medical imaging, and related fields for 6-

degree-of-freedom (DoF) pose estimation, mapping, local-

ization, and other pose-related tasks. Tracking an object’s

pose by attaching a marker to it and using a vision system

is attractive because it can be highly accurate while still be-

ing a low-cost alternative when compared to other strate-

gies [3]. For instance, marker-less techniques are not as

robust or fast or not used for precise pose estimation [16].

Moreover, marker-based methods are useful in different en-

vironments. Robustly detecting these targets under differ-

ent lighting or motion conditions is essential for ensuring

reliable system operation and accurate tracking for spatial

registration of acquired data [11, 12].

There are several applications where highly accurate

pose estimation is crucial. For example, for robot path

planning and navigation [13], Unmanned Aerial Vehicle

(UAV) refueling [22], or for surgical instrument guid-

ance [2]. These applications require a robust marker de-

tection method under different environments and lighting

conditions to register accurate poses. Furthermore, motion

blur robustness is highly desired for real-time operation.

In this paper, we propose MakerPose: a robust, real-time

pose estimation method using a planar target with concen-

tric circles. Our method is inspired by Deep ChArUco [9]

and consists of two main stages. In the first stage, with a

SuperPoint-like network, the circles’ centers are estimated

at a pixel level. In the second stage, the points are estimated

at sub-pixel accuracy with a proposed lightweight encoder-

decoder network called EllipSegNet. The network segments

the marker ellipses for sub-pixel center estimation. The pair

of stereo images are processed with the proposed method,

and through triangulation, the marker’s pose is determined.

The experiments show the highly accurate results of Mark-

erPose compared with a classical sub-pixel center detection

method [19]. Also, we show the potential and suitability of

our proposed method for pose estimation under low lighting

conditions and high motion blur.

Our main contributions are:

1. Real-time, highly accurate pose estimation based on

triangulation using a marker of circles and stereo im-

ages.

2. EllipSegNet: a lightweight network for ellipse seg-

mentation meant for real-time applications.



3. Sub-pixel marker points detection at full resolution

through ellipse fitting, avoiding detection errors by de-

tecting in a lower resolution and rescaling to the origi-

nal.

2. Related Work

Deep Convolutional Neural Networks (CNN) have been

extensively used for object detection with, for example,

Faster R-CNN [18] or YOLO [17]. Additionally, there

are different examples for object segmentation like Mask-

RCNN [8] or DeepLab [4]. Detection in challenging con-

ditions has also been addressed. For example, Rozumnyi et

al. [20] tackle fast-moving object detection in challenging

high-movement conditions. However, these methods are

not readily applicable for 6DoF object pose estimation. Al-

ternatively, other works have addressed object detection for

marker-less pose estimation. For example, Nakako [15]

proposed a stereo vision for pose estimation using a robot

manipulator. Xiang et al. [24] proposed to jointly segment

and estimate different objects’ poses. Wang et al. [23] ad-

dressed pose estimation with depth information using an

RGB-D camera. Nevertheless, these approaches are limited

to moderately accurate pose estimation applications.

Pose estimation can be approached via keypoint detec-

tion. There are multiple examples of keypoint detection

with CNNs for marker-less pose estimation. Human body

pose estimation [1], hand pose estimation [6] or head pose

estimation [7] are popular examples in the computer vision

community where 2D points are detected using a single

image for marker-less pose estimation. There are meth-

ods for interest point detection using CNN. An example

is SuperPoint [5], where 2D locations and descriptors are

estimated for reliable performance of pipelines like Struc-

ture from Motion (SfM) or Simultaneous Localization and

Mapping (SLAM), where stable and repeatable keypoints

are required. By estimating the descriptors with Super-

Point the matching between 2D points is more easily tack-

led. Recently, SuperGlue [21] has been introduced for ro-

bust matching of interest points in a pair of images, using a

Graph Neural Network. The interest points can be estimated

with a CNN like SuperPoint, or other approaches.

Different planar marker methods for pose tracking pro-

vide highly accurate pose estimation compared to previ-

ously discussed approaches. However, the target’s key-

points detection is typically carried out using classical com-

puter vision techniques, which require lots of heuristics and

parameter tuning for reliable performance under different

environments. Recently, Deep ChArUco [9] was proposed

for pose estimation based on a planar marker that is robust

in low lighting and high movement conditions. It estimates

2D corners in a sub-pixel accuracy with two CNNs. While

being an attractive approach, it is focused on the pose esti-

mation of a ChArUco board.

3. Proposed Approach

Here we describe MarkerPose, our proposed pose esti-

mation approach. For that, we used a three-coplanar circle

marker and a calibrated stereo vision system. The 3D co-

ordinates of the centers define the 3D frame of the target.

The circles, which due to perspective projection look like

ellipses in the image, are labeled as shown in Fig. 1. These

labels help us to solve the correspondences between both

views for triangulation. But for that, we need to estimate

these centers in a sub-pixel-level accuracy and classify them

with the corresponding label or ID.

Figure 1. Fiducial marker used for pose estimation and the respec-

tive labels of each circle.

The proposed MarkerPose method is shown in Fig. 2,

and consists of three stages. For pose estimation, we need

first to detect the centers of the ellipses in a sub-pixel-level

accuracy for both views. We perform center detection in

the first two stages of our method: pixel centers detection

and sub-pixel centers estimation. In the first stage, marker

points in a pixel-level accuracy, and their IDs are estimated

with a two-headed network based on SuperPoint [5]. This

SuperPoint variant is the same used in Deep ChArUco [9],

where an ID-head replaces the descriptor head, and the

same point localization head of SuperPoint is used. These

classified rough 2D locations are used in the second stage

to extract three square patches from each image around the

pixel points that contain each ellipse. Then, we segment

the ellipses to use their contour for sub-pixel centroid esti-

mation. For that, we introduce EllipSegNet, a lightweight

encoder-decoder network for fast ellipse contour estima-

tion. Finally, in the last stage, with the sub-pixel matches

of both views, triangulation is applied for 3D pose estima-

tion. The correspondences are established with the points’

IDs. Our method is robust to low lighting conditions and

motion blur, essential for real-time applications and usage

in different environments.

3.1. Pixel Centers Detection

Point detection from the first and second stages of our

proposed method is shown in more detail in Fig. 3 for a

single image. In this section, we focus on the first stage of

MarkerPose which is based on a SuperPoint-like network.

We use 1280 × 1024 images for training and testing. With



Figure 2. MarkerPose: the proposed approach for marker-based pose estimation, which consists of three stages. The first and second stage

is for sub-pixel centers estimation, and the last stage for triangulation and target pose estimation.

the SuperPoint-like network, 2D pixel-level accuracy center

detection is performed at a lower resolution of 320 × 240.

For that, the input 1280× 1024 images are resized to 320×
240. The estimated rough 2D locations are then scaled-back

to full resolution.

The original SuperPoint network [5] consists of a back-

bone and two heads: a head for point localization and an-

other for point descriptors. Instead of the descriptors head,

an ID-head is used for point classification as shown Fig. 3.

The backbone is a shared encoder for both branches, which

reduces the dimensionality of an image W×H to a factor of

eight W/8×H/8, using eight convolution layers and three

2× 2 max-pooling layers after every two convolutions. The

point localization head produces a W/8×H/8× 65 tensor,

which is a pixel location distribution of each 8×8 region of

the input image and an additional channel for background or

non-point locations. The ID head produces a W/8×H/8×4
tensor, which is a classification distribution for each 8×8 re-

gion of the input image, where we have three labels for each

center (see Fig. 1) and an additional label for background or

non-center pixels. In this way, we have the following labels:

0 for c0, 1 for c1, 2 for c2, and 3 for background. With the

estimated IDs, we sort the resulting array of 2D points from

0 to 2 labels, where the first row corresponds to the c0 point,

and so on. With the output from this network, we solve the

correspondence problem between both views.

The loss for this stage is the sum of the center location

loss Lloc, and the ID classification loss Lid,

L(P̂,P, Ĉ,C) = λ1Lloc(P̂,P) + λ2Lid(Ĉ,C) , (1)

where P̂ is the predicted W/8×H/8×65 location tensor by

the network, and P is the ground truth. Ĉ is the predicted

W/8×H/8×4 classification tensor, and C the ground truth.

For both Lloc and Lid cross-entropy loss is used.

3.2. Sub­pixel Centers Estimation

Once the circle center locations have been detected at a

pixel-level resolution, in this second stage we refine these

points to a sub-pixel-level accuracy for triangulation and

accurate pose estimation. With the scaled-back pixel-level

points from the SuperPoint-like network to the original res-

olution, we extract 120× 120 patches around each detected

center from the original 1280 × 1024 image. The ellipse is

supposed within those patches for sub-pixel center estima-

tion.

Since circles project as ellipses onto the image plane,

we propose a lightweight encoder-decoder network called

EllipSegNet for segmenting the extracted ellipse patches

for contour estimation and sub-pixel centroid calculation

as shown Fig. 3. EllipSegNet is meant for real-time appli-

cations, and its weight is just 1.1 MB, and a forward pass

takes 2.3 ms approximately with an NVIDIA Tesla P100.

The encoder of the network consists of eight 3 × 3 convo-

lution layers with 16-16-32-32-64-64-64-64 channels, re-

spectively. From the second convolution layer, three 2 × 2
max pool layers are used between each pair of convolutional

layers. The decoder part of EllipSegNet consists of bilinear

upsampling with a factor of 2 and skip connections via con-

catenation followed by two convolution operations. There

are a total of six 3×3 convolution layers with 64-32-32-16-

16-16 channels, respectively. Finally, a 1 × 1 convolution

layer is used to map the 16 channels to 1 for binary segmen-

tation.

The binary cross-entropy loss is used in this stage for the

training of the network,

L(Y, Ŷ) = −

∑

i

∑

j

yij log p(ŷij)+(1−yij) log[1−p(ŷij)] ,

(2)

where Ŷ is the predicted mask, and Y the ground truth.

Furthermore, p is the sigmoid function,

p(x) =
1

1 + e−x
. (3)

For sub-pixel point estimation, we can compute the

centroid of the white pixels of the mask with OpenCV’s

moments function, or we can use the contour of the ellipse

to fit an ellipse with the OpenCV fitEllipse function.

Either way, the detected center coordinates are estimated



Figure 3. Sub-pixel centers detection for a single image.

at sub-pixel accuracy. We adopt using fitEllipse, be-

cause we obtain more robust and accurate results than the

other approach.

For sub-pixel estimation, the ellipse can be partially in-

side of the 120×120 patch. When there is more than one el-

lipse within the patch, the nearest to the image center is seg-

mented. Although ellipse contour estimation is performed

pixel-wise (discrete way), the sub-pixel calculation is not

discrete, i.e., the estimation is not restricted to a discrete

grid of positions, which enables higher accuracy. Further-

more, this sub-pixel estimation is carried out at full resolu-

tion, which leads to highly accurate pose estimation results

because if we perform sub-pixel detection in a lower reso-

lution, we need to scale-back the points to the original size.

In this process, the small detection error in the lower reso-

lution can be also scaled, and incur pose estimation errors.

For example, a sub-pixel detection error less than a pixel at

320×240 can become larger than a pixel after scaling-back

to the original resolution of 1280× 1024. Therefore, an er-

ror in low resolution can increase in the original resolution

and this is critical in final pose estimation for high-accuracy

applications.

3.3. Marker Pose Estimation

In the two previous sections, we described the sub-pixel

2D location estimation of the target’s centers for a single

image. This section describes the last stage of MarkerPose

which consists of estimating the pose of the marker. This

work is focused on pose estimation with a stereo vision sys-

tem. With the estimated IDs, we solve the point correspon-

dence problem. Hence, with the calibrated stereo vision

system and the correspondences x1 ↔ x2, we can recover

the 3D position of the points. Following the camera pinhole

model, the projection of a 3D point X in both image planes

can be written as,

x1 = P1X , x2 = P2X , (4)

where P1 and P2 are the projection matrices for the cam-

eras, estimated through calibration. To solve for X, the ho-

mogeneous solution is given by









x1p
3T

1
− p1T

1

y1p
3T

1
− p2T

1

x2p
3T

2
− p1T

2

y2p
3T

2
− p2T

2









X = 0 , (5)

where pi
1

and pi
2

represent the i-th row of P1 and P2

respectively, as column vectors. We solve this with the

OpenCV’s triangulate function.

With the three 3D points of the target, we can define a

3D coordinate system. For that, we define the c0 center as

the origin of the target frame. The 3D position of this point

gives us the translation vector t of the target frame with

respect to the cameras. Furthermore, the circles c1 and c2
represent the direction of the x-axis and y-axis of the target

coordinate system, respectively. The unit vector x̂ of the

marker frame can be estimated with c0 and c1 3D centers.

Similarly, the unit vector ŷ with c0 and c2 3D coordinates.

Using cross product, the unit vector of the z-axis, that is

perpendicular to the target, is calculated ẑ = x̂× ŷ. Finally,

the rotation matrix of the target frame relative to the stereo

vision system is R = [x̂ ŷ ẑ]. In this way, we track the

position t and orientation R of the target coordinate system.

For accurate triangulation results, we compensate the 2D

sub-pixel points for lens distortion before triangulation.

3.4. Detection Method with a Classical Approach

We also developed a center detection strategy using clas-

sical computer vision techniques. This method was de-

signed to aid the labeling of training data and for compari-

son with the proposed approach using convolutional neural

networks. This classical approach consists of binarizing and

determining the image contours. As the outer black circle

and internal white circles are concentric, their centers must

have approximately the same image coordinates. We ex-

ploit this criterion to estimate the contour of the black circle

and its center. This approach provides highly accurate re-

sults, but it is not robust. We need controlled environments

for successful detection results. Furthermore, it requires pa-

rameter tuning to make it work in different environments

and lighting conditions. Finally, as our stereo vision system

is calibrated, we exploit epipolar constraints for solving the



matching problem of points for pair of images, required for

pose estimation.

4. Implementation Details

This section explains the details about the datasets, train-

ing of the SuperPoint-like and EllipSegNet networks, and

the experimental setup.

4.1. Training Dataset

We acquired a total of 5683 grayscale images with a

1280 × 1024 resolution. There are multiple positions and

orientations of the target in our dataset, and the images were

acquired at different lighting conditions. Furthermore, we

also used two different target dimensions. Two example

images are shown in Fig. 4. For training the first stage of

MarkerPose with the SuperPoint-like network, these images

were resized to 320 × 240. For supervision, the center es-

timation was performed using the classical approach intro-

duced in Section 3.4. For data augmentation, we randomly

applied the following operations: vertical and horizontal

flip, random affine transformations, contrast modifications,

motion blur, Gaussian blur, and Gaussian noise.

Figure 4. Example of training images for the SuperPoint-like net-

work.

For EllipSegNet training, we extract 120 × 120 patches

from some of the images used for training the SuperPoin-

like network, resulting in 11010 patches. Fig. 5 shows some

patch examples, where there are images where a single el-

lipse is in the patch and cases where we have more than

one ellipse. We applied the same data augmentation trans-

formations as described above for the keypoints detection

network to ensure the robustness of the entire pipeline.

Figure 5. Example of training images for EllipSegNet.

4.2. Models Training

We implemented the point detection and ellipse segmen-

tation networks with PyTorch. A version was implemented

with Python and another with C++ using LibTorch. For the

SuperPoint-like network and the lightweight EllipSegNet,

we used the Adam optimizer with a learning rate of 0.0001.

4.3. Stereo Vision Setup

The experimental stereo vision setup consisted of

two monochromatic Basler cameras acA1300-200um

(1280x1024, 203 fps), and two lenses Edmund Optics

58001 (12 mm fixed focal length). We calibrated our stereo

vision system with OpenCV and a pattern of asymmetric

circles. A total of 21 different poses of the pattern were

acquired for calibration. We obtained a mean reprojection

error of 0.1230 px and 0.1284 px for the first and second

views, respectively. These errors are small and appropriate

for accurate pose estimation.

5. Experiments

For validation, we compared MarkerPose with the classi-

cal approach discussed in Section 3.4. For the experiments

presented in this section, the distance between c0 and c1
centers of the target is 25 mm, and the distance between c0
and c2 centers is 40 mm.

5.1. Validation Experiments with a Robotic Arm

We evaluated the proposed pose estimation system with

two experiments using an EPSON C3 robot (0.02 mm of

precision). The robot was used for assessing the tracking

accuracy. We attached the target to the arm’s end effector,

and we evaluated the displacement and rotation of the target

moved by the robot.

5.1.1 Displacement Evaluation

For this experiment, the end effector was displaced a fixed

distance of ∆x = 10 mm in a total of 20 positions. We mea-

sured the distance between consecutive frames, which give

us 19 displacement estimations of each center of the target,

i.e., a total of 57 displacement measurements. Fig. 6 shows

an example of the first 10 frames used for this experiment,

acquired with the left camera (first view).

Fig. 7 shows the results of the estimated relative dis-

tance between the 19 pairs of consecutive frames with

MarkerPose and the classical approach. The measurements

can be compared with the reference displacement line of

10 mm. Our proposed approach achieves high-accuracy re-

sults compared to the classical method.

We also estimated the mean absolute error (MAE), the

RMS error, and the (maximum error) infinity norm ℓ∞ of

the errors of the calculated 57 distances of all centers, using



Figure 6. First 10 frames of the sequence for distance evaluation.

A total of 20 positions were captured.

Figure 7. Displacement results from the 19 pairs of frames of

MarkerPose and the classical method.

both methods. The results are reported in Table 1, where

the results of MarkerPose with MAE and RMS metrics are

comparable to the classical method. The maximum error

is slightly larger with our approach, but a maximum error

of 0.1164 mm is low enough for pose estimation in high

precision applications.

Method MAE (mm) RMS (mm) ℓ∞ (mm)

MarkerPose 0.0461 0.0544 0.1164

Classical 0.0446 0.0508 0.1086
Table 1. Displacement experiment: performance metrics for the 57

distance measurements.

Finally, we report the same metrics for the 3D distances

between the centers estimated with the triangulated points.

In this case, we have 20 measurements from the 20 acquired

frames. These were obtained as the distance d(c0, c1) be-

tween c0 and c1 centers and the distance d(c0, c2) between

c0 and c2 points, where d(.) is the Euclidean distance be-

tween two 3D points. Table 2 shows the results. Marker-

Pose provides an overall better performance than the classi-

cal approach in this case.

MarkerPose Classical method

d(c0, c1) d(c0, c2) d(c0, c1) d(c0, c2)
MAE (mm) 0.1315 0.2976 0.1558 0.3435

RMS (mm) 0.1326 0.2982 0.1569 0.3448

ℓ∞ (mm) 0.1692 0.3257 0.1833 0.4107

Table 2. Displacement experiment: metrics of the distance be-

tween the centers c0 and c1, and the centers c0 and c2, using the

frames acquired for displacement estimation. Here, d(.) is the Eu-

clidean distance between two 3D points.

5.1.2 Rotation Evaluation

The reference was established by rotating the robot’s end

effector at a fixed angle of ∆θ = 5◦ in a sequence of 7

frames. We measured the angle between pairs of consecu-

tive frames, which gives us 6 rotation estimations. The cal-

culation of the rotation angle between frames is performed

with the following expression,

θ = arccos

[

Tr(R12)− 1

2

]

, (6)

where R12 is the rotation matrix between the first and sec-

ond frame, and can be estimated as R12 = RT

1
R2. That is,

R12 is the rotation matrix of the target coordinate system

between frame 1 and frame 2. The entire sequence captured

by the left camera is shown in Fig. 8.

Figure 8. Entire sequence of 7 frames from the left camera for

angle estimation.

The estimated relative angle between pairs of frames is

shown in Fig. 9 for MarkerPose and the classical method.

By comparing with the reference line of 5◦, the proposed

approach achieves better results than the classical approach

with less dispersion. Furthermore, the metrics in Table 3

show the same behavior, where the MAE, RMS error,

and the ℓ∞ norm are significantly lower with MarkerPose.

These results show the potential of our approach for highly

accurate pose estimation applications.

Figure 9. Rotation angle measurement results of MarkerPose and

the classical method. A total of 6 pairs of consecutive frames were

used.

Similarly to the displacement experiment, the 3D Eu-

clidean distance between centers is reported in Table 4,

where using the seven frames acquired, the distance be-

tween c0 and c1 centers and the distance between c0 and

c2 centers, are estimated and the same metrics are used for



Figure 10. Results of our center point detection method for synthetically applied motion blur and lighting changes to a test input image.

Method MAE RMS ℓ∞
MarkerPose 0.0322° 0.0413° 0.0687°

Classical 0.1107° 0.1290° 0.2317°
Table 3. Rotation experiment: angle metrics evaluation of the six

pairs of frames.

these estimations. The metrics between the c0 and c2 cen-

ters are better with our proposed method. For the metrics

between c0 and c1, the classical method is better except for

maximum error.

MarkerPose Classical method

d(c0, c1) d(c0, c2) d(c0, c1) d(c0, c2)
MAE (mm) 0.1537 0.2639 0.1315 0.3001

RMS (mm) 0.1548 0.2642 0.1416 0.3011

ℓ∞ (mm) 0.1896 0.2867 0.2150 0.3387

Table 4. Rotation experiment: metrics of the distance between the

centers c0 and c1, and the centers c0 and c2, using the frames ac-

quired for angle estimation.

5.2. Evaluation with Synthetic Effects

We evaluated the proposed method under low lighting

conditions and motion blur. The transformations were ap-

plied synthetically to the image, and the results are shown in

Fig. 10. For motion blur, six different kernels sizes were ap-

plied to the original image, and center detection was carried

out. Synthetic darkness was applied by scaling the original

image with a factor α. These α values range from 0.25 to

0.039. Those results show the robustness of our point de-

tection method.

The distance estimation experiment was carried out

again using the same dataset for different lighting changes

with α values ranging from 0.5 to 0.0625. An α value of 1

does not represent a lighting change. The results are re-

ported in Table 5. These results show the robustness of

MarkerPose to low lighting conditions, where even for the

darkest case (α = 0.0625) we obtain highly accurate re-

sults.

α MAE (mm) RMS (mm) ℓ∞
1 0.0461 0.0544 0.1164

0.5 0.0451 0.0539 0.1352

0.25 0.0476 0.0557 0.1404

0.125 0.0528 0.0603 0.1313

0.0625 0.0568 0.0723 0.2130
Table 5. Performance metrics for the distance estimation results for

different lighting scaling values α from 0.5 to 0.0625. For α = 1
there are no changes in the images.

5.3. Pose Estimation for a 3D Freehand Ultrasound
System

To showcase the highly accurate pose estimation result

from MarkerPose, we describe an experiment with the 3D

freehand ultrasound (US) technique [10]. It consists of

tracking the pose of a US probe while simultaneously ac-

quiring US images. This procedure allows for mapping the

2D US scans to a volume by using a predefined transforma-

tion obtained via calibration [14].

For this experiment, we used the same stereo vision setup

and the US machine Biocare iS20. To evaluate our proposed

pose estimation method, we reconstructed and estimated

a cylinder’s diameter with the US images. This cylinder

was submerged in water for ultrasound visualization into

another cylindrical object for easy acquisition. An exam-

ple of stereo and US images during acquisition is shown in

Fig. 11, where the measured object is inside.

Figure 11. Example of 3D freehand ultrasound acquisition with

the estimated pose with the MarkerPose method. The acquired

ultrasound image shows a ring-like structure corresponding to the

measured cylinder object.



For this experiment, 94 ultrasound images were ac-

quired along the central axis of the cylinder. We semi-

automatically segmented the images for 3D reconstruction.

The reconstruction results with our pose estimation method

are shown in Fig. 12, which is in agreement with the ref-

erence shape. Moreover, with this point cloud, we esti-

mated the cylinder’s outer diameter through least squares.

For that, we use the outer points of the 3D coordinates. The

estimated diameter with the point cloud was 15.999 mm,

whereas the cylinder’s diameter measured with a caliper

was 15.82 mm. This result corresponds to an absolute er-

ror of 0.18 mm, which shows the method’s suitability for

highly accurate pose estimation applications.

Figure 12. 3D reconstruction results of the measured cylinder ob-

ject with the 3D freehand ultrasound technique and the proposed

pose estimation method. 94 2D ultrasound slices were used for 3D

reconstruction.

5.4. Runtime Evaluation

We measured execution time for both of our point de-

tection stages independently and for the entire MarkerPose

pipeline. We use an NVIDIA Tesla P100 in a cloud com-

puting platform in Python for runtime evaluation. Our first

stage with the SuperPoint-like network takes 2.7 ms approx-

imately for a single 320×240 image. A forward pass in the

second stage with the EllipSegNet runs in 2.3 ms approxi-

mately for a single 120×120 array. Our entire pose estima-

tion method, for two input 1280 × 1024 images, including

2D points undistortion in both views, triangulation, and fi-

nally rotation matrix and translation vector estimation, runs

at around 62 FPS. These results show the suitability of our

proposed approach for real-time applications.

The same experiments were carried out with a GPU

NIVIDA GTX 960M on a laptop using Python. A for-

ward pass with the SuperPoint-like network runs at about

32.6 ms. A forward pass with the EllipSegNet takes 6.1 ms

approximately. The entire pose estimation pipeline runs on

average at 12 FPS. These results show that our method can

achieve real-time performance even in an environment with

fewer computational resources.

6. Conclusions

The need for highly accurate pose estimation is linked

to applications that require reliable object tracking, like in

the case of freehand ultrasound and other computer vision-

based navigation and guidance systems. In most cases, the

use of infrared or electromagnetic tracking devices leads

to expensive systems which are not routinely used. Here,

we have proposed MarkerPose: a real-time, highly accurate

pose estimation method based on stereo triangulation using

a planar marker detected with a deep neural network ap-

proach. Our multi-stage detection architecture leads to fast

marker keypoint ID identification and sub-pixel keypoint

detection at full image resolution by exploiting ellipse fit-

ting using EllipSegNet, an introduced lightweight network.

We showed the potential of the proposed method for accu-

rate pose estimation and tracking under different lighting

and motion blur conditions, and with a biomedical appli-

cation. Future work involves designing novel markers that

further exploit the capabilities of the proposed method.
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