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Abstract

We study the problem of object detection from a novel

perspective in which annotation budget constraints are

taken into consideration, appropriately coined Budget

Aware Object Detection (BAOD). When provided with a

fixed budget, we propose a strategy for building a diverse

and informative dataset that can be used to optimally train

a robust detector. We investigate both optimization and

learning-based methods to sample which images to anno-

tate and what type of annotation (strongly or weakly su-

pervised) to annotate them with. We adopt a hybrid super-

vised learning framework to train the object detector from

both these types of annotation. We conduct a comprehensive

empirical study showing that a handcrafted optimization

method outperforms other selection techniques including

random sampling, uncertainty sampling and active learn-

ing. By combining an optimal image/annotation selection

scheme with hybrid supervised learning to solve the BAOD

problem, we show that one can achieve the performance of

a strongly supervised detector on PASCAL-VOC 2007 while

saving 12.8% of its original annotation budget. Further-

more, when 100% of the budget is used, it surpasses this

performance by 2.0 mAP percentage points.

1. Introduction

Object detection in images is a fundamental computer

vision problem with applications in many tasks including

face/pedestrian detection [43, 1, 20, 40, 11, 56], count-

ing [5, 22], and visual search [9, 38]. Building a success-

ful object detector encompasses three main dimensions: (1)

the image dataset to be annotated for training the detec-

tor. A larger dataset allows for a more accurate detector,

but the number of training images is limited by the an-

notation budget; (2) the annotation scheme used to label

the training images. One could annotate either image-level
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Figure 1: Budget-Aware performance of detectors with dif-

ferent levels of supervision. The models are trained on PAS-

CAL VOC 2007 trainval (VOC07), PASCAL VOC 2012 trainval

(VOC12) as specified in the legend. Our proposed Budget aware

object detection (BAOD) (green -∇- curve) has a higher mAP than

FSOD (yellow -|- curve) and WSOD (orange - - curve) methods

at most budgets. Given a larger unlabeled image pool (Blue -♦-

curve, VOC07+VOC12), our BAOD can reach a higher mAP us-

ing the same budget needed to annotate VOC07 with instance-level

labels. Since the dataset is finite, WSOD cannot increase its per-

formance with more budget.

labels (the categories of the objects are known but their

locations are unknown, denoted weakly supervised anno-

tation) or instance-level labels (both categories and loca-

tions are known, denoted strongly supervised annotation)

[40, 34, 28, 39]; (3) the detection model. Most works on

object detection fix the first two dimensions and only ex-

plore the third. In fact, they tend to focus on optimizing the

detection model based on one or more training datasets that

typically provide the same kind of annotations. In this pa-

per, we fix the detection model and investigate solutions in

the first two dimensions of the problem.
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A large group of object detectors fall under the um-

brella of Fully-Supervised Object Detection (FSOD) [44,

45, 14, 13, 10, 46, 17, 33]. It has been shown in re-

cent years that these techniques can reach high detec-

tion performance, especially with the introduction of large

datasets with strong annotations [51, 12, 34]. This require-

ment makes FSOD methods expensive and time consuming.

In contrast, Weakly-Supervised Object Detection (WSOD)

[3, 8, 23, 4, 62, 15, 31, 19, 48, 54, 21] aims at building ob-

ject detectors from cheaper but less informative image-level

or weak annotations.

In this paper, we propose a trade-off between dataset an-

notation cost and model precision in order to combine both

weak and strong annotations and train an object detector

with hybrid supervision. We put all the detectors on the

same footing when different annotation schemes are avail-

able. Ideally, detectors should only be compared when they

are trained using image datasets that offer the same amount

of information (not necessarily the same number of im-

ages). Since this notion is difficult to define quantitatively,

we take the training budget of a detector as a unifying sur-

rogate measure. Here, we define budget as the effort, or cost,

to annotate a dataset, thus combining the first two dimen-

sions of the detection problem: dataset scale and annotation

scheme. In fact, with a fixed budget and a set of unlabeled

images, the number of images we can label depends highly

on the annotation cost for each image. This cost varies sig-

nificantly between image- and instance-level annotations.

Typically, annotating a bounding box around an object in

an image is significantly more expensive than simply an-

notating its category [40, 51]. Therefore, an FSOD method

with the same budget as a WSOD method contains fewer

images in its training set.

We explore strategies to build better object detector mod-

els when constrained with a training budget, a novel prob-

lem we coin budget-aware object detection (BAOD). As

such, we focus on choosing the best images for training

and how to annotate them. For this, we survey several se-

lection methods to sequentially choose both the image and

type of annotation following an active learning paradigm.

Additionally, we propose a novel hybrid training procedure

for object detectors that can use both strong (instance-level)

and weak (image-level) annotations. Figure 1 shows that ac-

tively selecting images and their annotations to sequentially

train a hybrid supervised detector outperforms its FSOD

and WSOD counterparts, when the budget is larger than

20% of the budget needed to annotate VOC2007 trainval

at the instance-level. Moreover, the yellow curve shows that

we can reach an even higher mAP if we use the same budget

of VOC07 to annotate images from both datasets VOC07

and VOC12.

Contributions. (1) We propose the BAOD problem and

present a new evaluation criterion Budget-Average mAP

for object detection algorithms. This criterion takes into ac-

count both detection performance and budget. (2) We study

several strategies (e.g. optimization and learning-based) to

select both training images and their annotation scheme.

(3) We propose a hybrid supervised learning strategy that

combines category and localization information to train a

robust detection model that handles both weak and strong

annotations. (4) Following a BAOD approach (i.e. combin-

ing intelligent image and annotation scheme selection with

hybrid supervised learning), we show that the mAP test

performance on VOC07 can be improved by 2 percentage

points for the same budget used to annotate the training set

of VOC07 (by combining it with VOC12). We also show

the opposite, i.e. that state-of-the-art test performance on

VOC07 can be achieved, while saving 12.8% of the budget

used in strongly annotating its training set.

2. Related Work

2.1. Fully Supervised Object Detection (FSOD)

With the development of deep learning, many CNN

based methods have been proposed to solve the FSOD

problem, such as YOLO [45], SSD [36], RCNN [14], and

its variants [46, 13, 10, 17, 33]. Although these methods

achieve impressive detection results, providing them with

large-scale instance-level (bounding-box) annotations for

training is costly.

In this paper, we constrain the annotation budget and

focus on how to reach the best detection performance

within this budget by intelligently selecting between both

weak and strong annotations. Su et al. [53] reported that it

takes 26 seconds to draw one bounding-box without qual-

ity control, and 42 seconds with it. There has been recent

progress in developing tools to further reduce annotation

time (most recently to 7 seconds) [39, 40, 28]. Our work

investigates a complementary aspect of annotation to em-

phasize that some images do not need to be strongly anno-

tated to achieve excellent performance. While our discus-

sion of budget aware object detection only considers the

labor cost for image annotation, we note that sequentially

training detection models also consume computational re-

sources. However, given the continual development of hard-

ware acceleration and re-organization, which leads to steady

decrease in their cost, manual annotation remains the more

expensive component in the detection problem.

2.2. Weakly Supervised Object Detection (WSOD)

If there are no instance-level labels available at train-

ing time, a WSOD method can be trained. Most classi-

cal approaches cast WSOD as a Multiple Instance Learn-

ing (MIL) problem [52, 31, 19, 48, 3, 21]. Bilen et al.[4]



were the first to utilize a deep CNN (denoted as the weakly

supervised deep detection network or WSDDN) to solve

this problem. WSDDN selects positive samples by mul-

tiplying the score of recognition and detection. Zhang et

al.[59] proposed a simple yet effective post-processing step

to mine pseudo ground truth bounding boxes used for itera-

tive FSOD training.

We use weak supervision to improve pseudo object la-

bels. These labels are generated from a previously trained

detector, and are post-processed through a pseudo label

mining process. The image-level labels help remove false

predictions that correspond to a wrong object category.

2.3. Hybrid Supervised Learning

In our work, we study hybrid supervised learning for

object detection. This type of learning exploits multiple

types of supervision during training. Semi-supervised learn-

ing is a special case of this family, since it learns a model

from a set of labeled and unlabeled data. Several works

[32, 49, 6, 29, 42, 57, 60] try to solve the generic semi-

supervised learning problem through teacher-student learn-

ing. They first train a teacher model from the strongly anno-

tated subset, then the predictions obtained from the teacher

model on the unlabeled data are used to regress a second

model that is called the student model. Chéron et al. [7] also

used several kinds of annotations to train an activity recog-

nition model, and they revealed that strongly annotating ev-

ery training sample is not necessary to achieve noteworthy

localization results in the video domain.

In our case, since images can be labeled either weakly or

strongly, a hybrid supervised dataset is always considered.

Inspired by Rosenberg’s work [42], we train a teacher- stu-

dent model to use the hybrid dataset. Our teacher detector

is learned from strong annotations only, while the student

detector is learned from both ground-truth and/or processed

pseudo object labels.

2.4. Active Learning

In general, active learning is a sequential decision mak-

ing process that iteratively selects the most useful examples

an oracle should annotate and add to the labeled training set.

It aims at training more accurate models with the minimum

data required. This field has been widely studied in the con-

text of image and video classification [41, 2, 27, 25, 61, 16],

object detection [50, 47, ?, 28, 26, 39, 24], action local-

ization [18], human pose estimation [35] and visual ques-

tion answering [37]. A commonly used approach to select-

ing new training images is by means of their entropy score

[55]. The intuition is that higher entropy examples attribute

to more learning information. More recent research directly

predicts the improvements of adding a new sample to the

training set, and uses this measurement as a selection crite-

ria [27]. As specified in previous work, active learning aims

at maximizing performance while minimizing the human

cost in labeling the training samples [41, 35, 18].

The BAOD problem can also be formulated as a sequen-

tial decision making process. We study a few well-known

selection techniques in our new active learning pipeline,

which contains two active processes: (1) select the next

batch of training images to annotate and (2) decide the type

of annotation for each selected image. Thus, we focus on

the annotation sequence that can provide the most useful

information to the detector. To the best of our knowledge,

we are the first to use active learning and hybrid training to

study object detection.

3. Budget Aware Object Detection (BAOD)

In this section, we explore several ways to sequentially

create an object detection dataset with a fixed budget, which

includes both image-level and instance-level annotations.

Then, we introduce a hybrid supervised learning procedure

to take advantage of this hybrid labeled training set. A com-

plete overview of the whole active learning procedure is

shown in Figure 2.

Figure 2: Overview of active learning pipeline to construct a

hybrid labeled dataset. For any weakly labeled or unlabeled im-

age in the image pool (circular shapes), the selection method (bot-

tom blue rectangle) decides which type of action to apply on the

image based on the sample function and image status: weakly la-

bel (x1) or strong label (x2, x3). Then such image is appended into

the hybrid dataset and we train an object detection model with the

hybrid supervision.

3.1. Hybrid Dataset using Active Learning

Our hybrid supervised dataset should consider which im-

ages to include in training and how to label them. To tackle

this problem, we propose an active hybrid learning frame-

work which acts as an active learning agent to simulate the

annotation process. At every active step t , we have a budget

constraint d to spend on annotations. Each image in this set

belongs to one of three pools: unlabeled Ut , weakly labeled

Wt , or strongly labeled St . At each active step, the hybrid



supervised dataset Wt∪St is used to train a hybrid detector,

which will be described in detail in Section 3.2. This detec-

tor is used to find a selection function that takes an action on

Ut or Wt pools. As shown in Figure 2, we have three possi-

ble actions with their associated cost: (1) annotate strongly

x1 (i.e. send the image from Ut to St ), (2) annotate weakly

x2 (i.e. send the image from Ut to Wt ), or (3) strongly an-

notate a weakly annotated image x3 (i.e. send the image

from Wt to St ). Once the actions have been made, the im-

age sets Ut , Wt , and St are updated. We proceed iteratively

until we either run out of images in Pt = Ut ∪Wt or run

out of budget d .

To this end, we study three active learning sam-

pling functions (Random, Uncertainty, and Learning Ac-

tive Learning [27]) within four action selection methods:

Random Sampling (RS), Uncertainty Sampling (US), Opti-

mization based on US and Optimization based on Learning

Active Learning (LAL).

For RS, we randomly choose an active batch of images

at each active step to include into Wt or St. For US, images

are sorted in descending order of uncertainty (measured by

entropy) to choose high uncertainty images to train on with

full supervision1, based on an uncertainty score denoted as

sk, and the top images are included into Wt or St. We ad-

here to the following annotation policy for RS and US when

a budget constraint is enforced. For both RS and US, we

prioritize weak labels first. In other words, so long as the

budget constraint is not exceeded, (1) the image batch that

is selected in each active step for these two methods will

only contain images from Ut that will be weakly labeled or,

(2) if Ut becomes empty, images from Wt will be selected

and get a strongly label.

There are several ways to evaluate sk for an image [55,

40]. We follow convention and model this score in Eq. 1:

sk =
1

M

M
∑

i=1

∑

p∈p
i

−p log(p) (1)

This is an entropy measure for each of the M bounding

boxes in an image using the classification score predicted

by the current detection model. Collecting M predictions

from an image Ik, each prediction has a probability score

vector pi ∈ [0, 1]c for the c object categories.

Below, we explain the remaining active selection meth-

ods: Optimization based on US and LAL.

3.1.1 Optimization Based Active Selection using US

At the t-th active step, let Pt = {Ik}
N
k=1

be the N images

that can be further annotated, and s ∈ R
N be their cor-

responding uncertainty scores (as defined above). We have

1We also conducted an experiment in which images in US were sorted

in ascending order and low uncertainty images were chosen in every step.

We discuss this in greater detail in the supplementary material.

three possible action vectors x1,x2,x3 ∈ {0, 1}N , as de-

fined earlier. If the k-th element of xi is 1, we annotate the

image Ik using option i. Assume the next active batch of

annotations has a linear impact on the model performance

increment δt.

δt = f1(Pt)
⊤

x1 + f2(Pt)
⊤

x2 + f3(Pt)
⊤

x3 (2)

To quantitatively show the contribution of new images, we

also assume that the uncertainty score is a complete statistic

of an unlabeled or weakly labeled set of images. Then, we

can simply approximate (f1, f2, f3) as linear functions. We

observe that many active learning studies [30, 18] have ex-

perimentally shown that incorporating images with a higher

uncertainty score in training may further improve the detec-

tor, but at the risk of having more difficulty in producing

true positive predictions. Therefore, we model (f1, f2, f3)
as linear functions that tend to favor actions x1, x3 over ac-

tion x2 for images with high enough uncertainty score (i.e.

higher than the median). As such, and by combining the

intuitions above, the expected increment in performance is

modeled as:

δt ≈ s
⊤(x1 + x3) + (µ1− s)⊤x2 (3)

For the active selection method based on optimization

using US, we seek to maximize δt, while staying within the

budget constraint. To model this latter constraint, we define

a as the cost of strongly annotating an unlabeled image, b

as the cost of weakly annotating an unlabeled image, and c

as the cost of strongly annotating an already weakly labeled

image. Therefore, this selection method seeks to solve the

following binary optimization problem for (x1, x2, x3):

max
x1,x2,x3∈{0,1}N

s⊤(x1 + x3) + (µ1− s)⊤x2

s.t.



















x3 ≤ ψ

x1 + x2 ≤ 1−ψ

1
⊤(ax1 + bx2 + cx3) ≤ d

1
⊤(ax1 + bx2 + cx3) ≥ d− a

(4)

Here, we define a vector ψ as the indicator vector for

images that have already been weakly annotated, i.e. the k-

th component of ψ is 1 if Ik ∈ Wt and 0 otherwise. Using

this indicator, the first two constraints in Eq (4) enforce that

only one action is performed on each image, i.e. among all

the k-th components of (x1, x2, x3), only one can be 1.

The third and fourth constraints enforce that the budget be

used as much as possible in each active step.

The linear binary problem in Eq (4) is NP-hard in gen-

eral, so exact solvers (e.g. the Branch and Bound Algo-

rithm) tend to have long run-times especially when N is

large. As a tradeoff between optimization accuracy and per

active step run-time, we employ a conventional linear relax-

ation of the original problem to form an approximate linear
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Figure 3: Illustration of the Hybrid Learning framework. Given an image collection with hybrid labels, we firstly use a warm-up

detection model to generate pseudo instance labels (e.g. black solid rectangles in the inference phase.) After cleaning noise, the second

detection model learns from both the ground truth and pseudo instance labels.

program (LP), which can be efficiently solved at large-scale

with off-the-shelf LP solvers. More details about this prob-

lem are shown and proven in the supplementary material.

3.1.2 Optimization Based Active Selection using LAL

The uncertainty score s is not the only selection mea-

sure that has been studied in the active learning literature.

In the Learning Active Learning (LAL) method proposed

by Konyushkova et al. [27], the increment in performance

function δt is learned to be a function of the current model

state as well. More concretely, given images Ik ∈ Pt

and the current detection model, we build a feature vec-

tor v = [Ot, s] that concatenates both the current model

state Ot, represented as the average precision curves un-

der five different Intersection over Union (IoU) thresholds,

and the uncertainty scores s. Following the LAL method in

[27], we train a Support Vector Regression (SVR) model to

regress the actual increment in mAP performance from v

at each active step for both weak and strong annotation ac-

tions. Obviously, these SVRs are trained on a separate de-

tection dataset than the one used to evaluate BAOD. At each

active step and by denoting the output predictions of these

SVRs as hw and hs, we formulate the same constrained op-

timization problem in Eq (4) but with the learned objective:

δt ≈ h
⊤
wx2 + h⊤

s (x1 + x3) (5)

3.2. Hybrid Supervision for Object Detection

At each active step, we train a hybrid supervised detector

using both strong and weak supervision, i.e. using images

from Wt and St (refer to Figure 3 for an illustration).

Teacher-Student Model. In this framework, we train an

initial detector with the initial strongly annotated image

set S0. In each active step afterwards and to overcome un-

desirable local minima, we learn this detector using pre-

training on Imagenet [51]. However, the model can also be

fine-tuned from previous active steps to reduce computation

time. Training on St at each active step can only learn a de-

cent detector, but it can also transfer knowledge to weakly

annotated images. This detector works as a teacher that pre-

dicts objects in every image in the weakly labeled image set

Wt. If these predictions are post-processed properly, they

can be viewed as pseudo labels, which we merge with the

ground truth instance-level labels in St to train a fully su-

pervised student detector. The student detector is also pre-

trained from Imagenet. Since it has both strong and weak

annotations from training samples in Wt ∪ St, we expect

the student detector to perform better than its teacher.

Post-processing. The predictions from the teacher model

at each step have many redundant or erroneous pseudo la-

bels. We use minimal knowledge to post-process them so as

to focus our study on the active selection methods and the

benefit of hybrid training. More concretely, given an image

Ik with a weak annotation ω ∈ {0, 1}c, where c is the num-

ber of categories, we assume that the teacher model gives

M positive predictions with localization P ∈ R
M×4 (4

components defining a bounding box), classification A ∈
{0, 1}M×c, and the confidence score for each of theM pos-

itive predictions q ∈ [0, 1]M . P , A and q are obtained

from the teacher model. Among these M predictions, we

seek to mine the pseudo labels in the form of a sparse M -

dimensional binary vector y that solves the following con-

strained optimization:

max
y∈{0,1}M

y⊤q

s.t.











y⊤A(1−w) = 0

IoU(P i,P j) ≤ α ∀ yi, yj = 1

1 ≤ ‖y‖0 ≤ β

(6)

The intuition behind solving this problem is that we

seek to maximize the confidence score across all pseudo

labels indexed by y. The first constraint enforces image-

level consistency of the pseudo labels with the ground

truth weak annotations. The second constraint removes pre-

dictions that are highly overlapping (similar to an Non-

Maximal-Suppression post-processing step). The third con-

straint enforces a sparsity condition on y, thus limiting the

number of possible pseudo labeled bounding boxes (poten-

tial objects) to be between 1 and β. In our experiments, we



take (α = 0.3, β = 3). Details on this optimization are in

the supplementary material.

4. Experiments and Analysis

4.1. Experimental Setup

Datasets. As in most WSOD methods, we use the PAS-

CAL VOC 2007 (VOC07) or 2012 (VOC12) datasets [12] to

perform most of the experiments. Given the active learning

pipeline of our method, we emulate the active learning pro-

cedure using VOC07-12 annotations to selectively annotate

20 categories in 5011 images in VOC07 or 16551 images

in the union of VOC07 and VOC12 (VOC0712). All detec-

tion models are evaluated on the VOC07 test dataset. For

each annotation type (weak or strong), we assume that each

image has a fixed annotating cost/time, which is not neces-

sarily true in practice but it simplifies the analysis. In most

of the experiments, we set (a = 34.5, b = 1.6, c = a − b),
in unit seconds, according to the annotation procedure of

[51]. In Section 4.4, we vary these cost value to (a = 7, b =
1.6, c = a− b) following the more efficient annotation pro-

cedure of [40]2. The cost of fully annotating VOC07 trainval

is denoted as 100% (or total) budget for every experiment.

Evaluation Metrics. To evaluate the active selection

methods with the hybrid detector, we compute a budget-

performance curve at various budget limits. The budget axis

varies the percentage of the total budget, and the model de-

tection performance is taken to be mAP. In doing so, we

propose a new budget-aware metric denoted as Budget-

Average mAP, measured as the normalized area under the

budget-mAP curve for a certain budget range. We take three

ranges [10%, 30%], [30%, 50%], and [50%, 100%] to eval-

uate our experiment such that three to five data points are

located in each range and the metric is less affected by

noise. The first range starts from 10% since we need a small

fully labeled warm up set to initialize the fully supervised

detector, and start our pipeline. This warm up set is ran-

domly selected and fixed in all experiments. The last bud-

get range is wider because the performance curve saturates

at high budgets, and we observe more subtle changes in per-

formance. All budget-performance curves are shown in the

supplementary material.

Implementation Details. In every active step, we

choose Faster-RCNN as the object detection model (teacher

and student), which is trained in the hybrid supervised way

described in Section 3.2. Both teacher and student models

use VGG16 as the backbone network pre-trained on Im-

ageNet [51]. We follow the default setup in [58] to train

Faster-RCNN. During training, the total number of epochs

is set to 10, the learning rate is 0.01 for the first 8 epochs

and 0.001 for the remaining. The batchsize is set to 16 on

2We left more discussion on the annotating time assumption in the sup-

plementary material.

four-GPU cluster nodes equipped with Titan Xp. The stu-

dent model is cloned from the ImageNet pretrained VGG16

in every active step and has the same training schedule as

the teacher model3. For LAL experiment, we collect 10 cat-

egories from the MS-COCO dataset [34] to train the SVRs.

Since the LAL method is dataset agnostic [27], we take the

SVR training categories to be different from the 20 cate-

gories in PASCAL VOC.

4.2. Advantages of Uncertainty Sampling and Hy­
brid Training

Uncertainty Sampling. In order to explore the influence

of the uncertainty score on model performance, we emulate

the annotation process of the oracle using VOC07 and in-

corporate it into the active learning pipeline with only strong

annotations and use a FSOD method to train our model. We

use two selection methods (RS and US) to build the dataset

for FSOD. From the first two columns in Table 1 that com-

pare these two sampling methods, we see that collecting

images with large uncertainty score is more effective and

preferable than random sampling in the three budget ranges.

Hybrid Training. Table 1 also shows the influence of the

active selection scheme on model performance but when the

hybrid supervised learning process is used to combine weak

and strong annotations at each active step. We again use RS

and US to select the images in each step for hybrid train-

ing. It is clear that both hybrid methods outperform their

corresponding FSOD counterpart at every budget range, es-

pecially when the budget range is low (under 50%).

Table 1: Budget-Average mAP using fully and hybrid training

pipelines with random and uncertainty selection. Uncertainty

sampling is always better than random sampling selection, and hy-

brid training is always better than FSOD.

Selection Method FSOD Hybrid

Sampling Function RS US RS US

Low Budget Range 52.5 53.1 56.4 55.1

Mid Budget Range 62.5 63.6 64.5 65.8

High Budget Range 67.9 68.7 68.7 69.3

4.3. Optimization­Based Active Selection

Here, we evaluate the optimization-based selection

methods (using US and LAL) described in Section 3.1,

when they are combined with hybrid supervised training.

Table 2 compares these methods by measuring their aver-

age mAP at each budget range and compares them to the

RS and US selection methods for references. These results

indicate that the optimization methods are the best ways to

combine and use the hybrid annotations at every budget,

where the optimization-based US method is slightly better

3The source code of the framework will be made publicly available.



1 2 3 4 5 6 7 8 9 10 11 12
Active Step

0

10

20

30

40

50

60

70

80

90

100

C
os
t 
P
er
ce
n
ta
ge

Easy Medium Hard

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Active Step

0

10

20

30

40

50

60

70

80

90

100

S
el
ec

te
d
 I
m

ag
e 

P
er

ce
n
ta

g
e

Easy+Weak

Easy+Strong

Medium+Weak

Medium+Strong

Hard+Weak

Hard+Strong

All+Weak

All+Strong

Figure 4: Comparison of the cost and image number on every active selection step. Left: Budget usage distribution to learn different

difficulty categories. More budget is used to annotate Easy images (green area) at beginning. The cost spent on Hard images (red area) grows

up when the active model is mature. Right: Selected images distribution in different difficulty categories and different annotation type. The

selection agent gives more weak annotations (light color) at the first steps. Given more budget, the proportion of strong annotations (dark

color) increase. We run out of unlabeled images after 9-th step. The mapping is motivated and shown in the supplementary material.

than its LAL counterpart. As such, we denote the former

method as the BAOD approach, which was mentioned and

highlighted in Figure 1. Interestingly, we observe that the

RS method requires 62% of the total VOC07 budget (all

images are strongly annotated) to achieve 95% of the detec-

tion performance at that budget (i.e. 67.4% mAP). In com-

parison, the BAOD method requires only 48.5% of the total

budget to reach the same performance. This performance

gap attests to the effectiveness of this method. We include

more results in the supplementary material.

Table 2: Budget-Average mAP using simple hybrid training

and optimization methods. US based optimization is slightly

better than LAL one. The optimization methods perform better

than the simple hybrid random selection and uncertainty selection

methods in the three budget ranges.

Selection Method Hybrid Optimization

Sampling Function RS US LAL US (BAOD)

Low Budget Range 56.4 55.1 56.3 57.1

Mid Budget Range 64.5 65.8 65.9 66.0

High Budget Range 68.7 69.3 69.3 69.5

4.4. Effect of Per­Image Annotation Cost

The cost of strong annotations can vary due the anno-

tation strategy that is used. For instance, Papadopoulos et

al. [40] created a method that reduces the time needed to

draw bounding boxes to 7 seconds per image on average.

Here, we use this cost (a = 7) to study the behavior of

our BAOD method given a smaller gap between strong and

weak annotation. We report these results in Table 3, which

depicts the best performing FSOD method and the RS hy-

brid baseline for reference. We observe the same relative be-

havior between the methods as in the case when a was sev-

eral times higher. However, the performance gap between

these methods decreases in this case because the number

of images that can be weakly annotated for the cost of one

strong annotation is much smaller.

Table 3: Budget-Average mAP using a lower cost for strong

annotations. If we assume the weak and strong annotation costs

are more close (7 seconds and 1.5 seconds), US based optimization

(BAOD) still performs better than the simple hybrid random selec-

tion and uncertainty selection methods in the three budget ranges.

Selection Method FSOD Hybrid Optimization

Sampling Function RS US US (BAOD)

Low Budget Range 53.1 52.3 54.2

Mid Budget Range 62.8 63.1 63.6

High Budget Range 68.3 68.6 69.3

4.5. Improving Detection using Fixed Budget

This experiment simulates a real-world application of

our method. We combine VOC07 and VOC12 data to simu-

late a larger pool of unlabeled images (called VOC0712)

to choose from. As reported in Table 4, when the bud-

get is set at 87.2% of the total budget (annotation bud-

get for VOC07), we learn an object detector whose perfor-

mance is the same as an FSOD detector trained on the entire

strongly labeled VOC07 training set. This is a budget sav-

ing of 12.8%. Now, if we choose to use this total budget

on VOC0712, our method achieves a 73.0% mAP, which is

2% improvement over the aforementioned FSOD detector

on the same VOC07 test set. If all the 16551 images in the

union of VOC07 and VOC12 set are strongly labeled, we

use an extra 230% of budget and only improve 3.4% mAP.
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Figure 5: Visualization of the selected images in each step. Left: Two examples in the warm-up set which is fully annotated by 10%

budget. Up-Right: Strongly annotated images per step. They are hard examples including occlusion, multiple instance or tiny scale. Bottom-

Right: Weakly annotated images per step. They are simple in the beginning but the difficulty increases when the detector is mature.

Table 4: Simulation of a larger unlabeled image pool. With

87.2% budget, BAOD achieves the same performance as a detector

trained on fully annotated VOC07. If the budget equals to the total

budget of VOC07, BAOD achieves 2% mAP improvement over

FSOD with the same budget. Further annotating all the images

can only improve 3.4% mAP.

Train Set Pool VOC07 VOC0712

Max Budget* 100% 87.2% 100% 330%

Final mAP 0.710 0.710 0.730 0.764

* The values are normalized by VOC07 trainval set cost.

4.6. Easy Images and Weak Annotation First

We analyze the cost and number of images selected at ev-

ery active selection step to investigate which type of training

examples are more helpful in the sequential training pro-

cess. Based on the final mAP of each category in VOC07

[13], we divide the twenty categories into three groups:

Easy, Medium, and Hard.The left plot of Figure 4 illustrates

that BAOD spends more budget to annotate Easy categories

(shown in the green area) in the first several steps, while

the cost of Hard categories (red area) increases when the

detector becomes more accurate. These results align with

concepts from curriculum learning, in which a larger num-

ber of easy samples can be trained on first to bootstrap the

model and then hard samples are introduced progressively.

The right plot of Figure 4 measures the percentage of se-

lected images per active step that belong to various subsets

of the data (combinations of annotation type chosen and dif-

ficulty). Interestingly, the BAOD model tends to select more

weak annotations at the beginning from all three groups of

objects, since this kind of label is cheap and informative.

Given a larger budget, the agent increases the proportion of

strong annotations to further improve model performance.

Note that there are no new weakly labeled images after ac-

tive step 9 because all the images are already annotated.

4.7. Qualitative Results of the Active Selection

Figure 5 shows some selected strongly and weakly la-

beled images based on the BAOD experiment in section

4.5. Each row of the images is from the dog category in the

VOC07 or VOC12 trainval set, and each column of images

is selected at the same active step.

We show that in the first five active steps, strongly anno-

tated images contain dog instances that are difficult to detect

due to occlusion, multiple close instances or small-scale.

In contrast, the selected weakly annotated images during

the same steps are relatively easier to locate. As the model

gets mature the difficulty for both levels of annotations in-

creases. For example, the image chosen in step 4 contains

three small dogs, and the dogs appeared in step 5’s images

are small and black which makes them barely visible.

5. Conclusion

In summary, we introduce a novel budget-aware perspec-

tive to study the unexplored dimensions of the object detec-

tion problem. With a fixed budget, we compare both opti-

mization and learn based sample methods to build diverse

hybrid supervised object detection datasets which consist

of both image level supervision and instance level super-

vision. The evaluation of detectors that learned from these

budget fixed datasets shows that the handcrafted optimiza-

tion method on uncertainty score outperforms other gen-

eral active learning methods including random sampling,

active learning, and reinforcement learning (shown in sup-

plementary material). With the optimal set-up, our proposed

budget-aware approach can achieve the performance of a

strongly supervised detector on PASCAL-VOC 2007 while

saving 12.8% of its original annotation budget. Further-

more, when 100% of the budget is used, our approach sur-

passes this performance by 2 percentage points of mAP.
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