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Abstract

People with deafness or hearing disabilities who aim

to use computer based systems rely on state-of-art video

classification and human action recognition techniques that

combine traditional movement pattern recognition and deep

learning techniques. In this work we present a pipeline

for semi-automatic video annotation applied to a non-

annotated Peruvian Signs Language (PSL) corpus along

with a novel method for a progressive detection of PSL el-

ements (nSDm). We produced a set of video annotations

indicating signs appearances for a small set of nouns and

numbers along with a labeled PSL dataset (PSL dataset).

A model obtained after ensemble a 2D CNN trained with

movement patterns extracted from the PSL dataset us-

ing Lucas Kanade Opticalflow, and a RNN with LSTM

cells trained with raw RGB frames extracted from the PSL

dataset reporting state-of-art results over the PSL dataset

on signs classification tasks in terms of AUC, Precision and

Recall.

1. Introduction

The World Health Organization (WHO) stated that 466

million people world wide have disabling hearing loss, esti-

mating that by 2050 over 900 million people will have dis-

abling hearing loss that will represent a global cost of 750

million dollars annually [5].

The Peruvian Institute of Informatics and Statistics

(INEI) conducted a national disabilities survey with the ob-

jective of segmenting and acquiring a better understanding

about disabilities that affect the Peruvian population [3].

Results showed that 1.8% of the Peruvian population suf-

fer at least partial when not permanent deafness or hearing

limitations.

Peruvians with deafness or hearing limitations use the

Peruvian Signs Language (PSL) as their main communica-

tion medium. PSL is of mandatory usage at universities

and certain public institutions, henceforth the importance

of designing systems that are capable to support PSL in-

puts and outputs. Furthermore, in the same way as spoken

languages, signs languages also present local variations e.g.

people who live in Lima metropolitan area are not expected

to use the same set of signs as people in other parts of the

territory. This work uses the PSL variation used in Lima

due to the difficulty or inability to find datasets for other

PSL variations.

The Grammar and Signs research group of the Pontifi-

cal Catholic University of Peru (PUCP) built the first PSL

corpus [4] which is publicly available at the university dig-

ital archives. It is important to highlight that the corpus is

neither labeled or annotated and cannot be used as it is for

training or testing a model.

In this work we are approaching signs detection as a su-

pervised learning task. Supervised learning requires labeled

datasets to achieve satisfactory results during training and

inference tasks. At the time of writing this work there were

no labeled datasets available for PSL [2]. It configures a

gap that could prevent or hinder research work on Human-

Computer-Interaction at the Peruvian or Latin American

space.

Current advances in Computer Vision (CV) and Natural

Language Processing (NLP) make it possible to conceive

systems that are capable of detecting and transcribing ele-

ments of sign languages thereby improving systems acces-

sibility for people with physical limitations. This work re-

ports results of a research conducted with the goal of pro-

ducing a labeled PSL dataset for a set of signs limited to

nouns and numbers as well as a novel method for detecting

PSL signs by answering the following research questions:

• What are the currently available techniques for produc-

ing a labeled dataset for a set of signs limited to nouns

and number from the non-annotated PSL corpus?

• What are most relevant and currently available tech-

niques for training a model with the labeled dataset de-

scribed in the question above for detecting PSL nouns

and numbers?

• How precise and exhaustive is the model described in

the above question on the detection of PSL nouns and

numbers?



This work has the main objective of producing a simple

method that can be used as a baseline for other researchers

interested on studying signs language and their different ap-

plications on the Human-Computer-Interaction field.

The rest of the article is organized as follows. In sec-

tion 2 we review the related work on video classification for

human actions recognition using network architectures that

combine CNNs, 3D CNNs and movement patterns for better

features learning, we also review state-of-art pose estima-

tion techniques. In section 3 we introduce nSDm describ-

ing its design and architecture. In section 3.1 we describe

the video annotation and data pre-processing techniques ap-

plied to produce the labeled PSL dataset. In section 4 we

evaluate nSDm precision and recall and answer research

questions. In section 4.1 we describe the PSL dataset pro-

duced at PUCP and finally in sections 5 and 6 we present

our conclusions and future work.

2. Related Work

2.1. Action Recognition

Human action recognition is an extensively studied field.

Action recognition dataset like UCF101, HMDB51, THU-

MOS14 are available, researches tried to solve the human

action recognition problem using different approaches in-

cluding Optical Flow and 3D CNN [6].

Optical Flow, is defined as the pattern obtained from

the motion of objects, surfaces and edges in a visual scene

caused by the relative motion between the observer and a

scene. It is computed by distributing movement velocities

and brightness across frames. It is a key concept in ac-

tion recognition from videos [9]. Optical flow estimation is

treated as an image reconstruction problem. Given a frame

set, the optical flow is generated and allows to reconstruct

one frame from the others [10]. Formally, taking the optical

flow displacement field as input and training a CNN with

it, then the network should have learned useful representa-

tions of the underlying motions. Even though Optical Flow

represents the movement between a set of frames, if camera

motion is considered as an action motion, it may corrupt the

action classification [8]. Various types of camera motion

can be observed in realistic videos, e.g., zooming, tilting,

rotation, etc.

Motion Boundary Histogram (MBH) is a simple an

efficient way to achieve robustness during human action

detection when camera movements are mixed within the

recorded actions by computing derivatives separately for

the horizontal and vertical components of the optical flow.

Since MBH represents the gradient of optical flow, locally

constant camera motion is removed and information about

changes in the flow field is kept. MBH is more robust to

camera motion than optical flow, thus more discriminative

for action recognition.[8]. 3D CNN are not as effective as

optical flow to detect human actions on its own, 3D CNN

can be trained to learn optical flow so we can avoid costly

computation and storage and obtain task-specific motion

representation [10] and increase models performance, pre-

cision and recall on human action recognition.

2.2. Pose Estimation

Pose estimation is also an extensively studied field.

Techniques based on key points have shown state-of-art re-

sults on human pose estimation. An approach on key points

estimation [7] uses Point of View Determination and Key

Points Prediction components. Point of View Determina-

tion is formulated by the prediction of three Euler angles

(azimut, elevation and cyclotation) generating a global posi-

tion estimate, then a local appearance is modeled by obtain-

ing a heat map that corresponds to the spatial distribution

likelihood for each key point, finally key points predictions

are obtained by combining heat maps obtained in a previ-

ous stage with a conditioned likelihood at the point of view

predicted in the previous stage.

Key points detection methods based CNNs have received

an special attention in Human Pose Detection problems.

CNNs methods are divided in bottom-up and top-down.

Bottom-up methods process images from low resolution to

high resolution, focusing first on detecting joints before as-

sociating them to human actions. Top-down methods focus

first on detecting human subjects and then estimating the

human pose to predict key points.

The datasets MPII and COCO have been used in state-

of-art methods obtaining good results[1] and establishing

a framework for future work in combination with classic

approaches like optical flow for recognizing patterns move-

ment between frames by increasing accuracy on key points

detection.

2.3. Video Classification

Bag of Words (BoW) or Bag of Visual Words (BoVW)

based on natural language processing techniques is one of

the simplest and oldest local descriptor encoding strategies.

In its simplest form, it consists of (i) clustering with k-

means a collection of descriptor vectors from the training

set to build so-called visual vocabulary, (ii) as signing each

descriptor to its nearest cluster center from the visual dictio-

nary, and (iii) aggregating the one-hot assignment vectors

via average pooling [9], when applied to Computer Vision

is a technique used to create images representations or fea-

tures vectors used that can be learned by CNNs, resulting

on improved images classification and video classification.

Feature trajectory detection are much improved using sta-

tistical methods like Fisher Vectors obtaining better results

over traditional BoW Fussing parallel CNN.. The Bag of

Visual Words representation suffers from sparsity and high

dimensionality, in the other hand representations obtained



Figure 1. Video annotation process

using the Fisher Vectors kernel are more compact and dense

which results on better results for image and video classifi-

cation problems.

3. Method

3.1. Video Annotation

The PSL dataset is non-annotated because there is not a

direct relation between the instant when a sign is emitted

and when its translation to Spanish is delivered. We pro-

pose a semi-automatic video annotation pipeline described

in Figure 1 for cleaning, pre-processing and analyzing PSL

videos in order to produce an labeled PSL dataset that can

be used for training nSDm using supervised learning. The

pipeline is described in detail in sections 3.1.1, 3.1.2, 3.1.3

and 3.1.4

We used the PSL dataset to train and test a set of neural

networks described in detail in sections 3.2, 3.3 and 3.4

Implementation details can be found at

https://github.com/erichuizapucp/signs-recognition

3.1.1 Semi Automatic Video Clean Up

The PSL recordings described on 4.1 contain a consider-

able amount of noise introduced during recording sessions.

It makes difficult to easily find video intervals that clearly

show a relation between signs emitted by the informant and

the translation delivered by the translator. Noise factors are

the following:

• Multiple participants speaking during the session.

• Conversations between participants that are not rele-

vant to emitted sings.

Video Start End Alignment

01-session-01-part-01.mp4 00:30 00:55 center

01:15 01:29 center

00:53 01:07 center

08:12 09:01 center

02-session-01-part-01.mp4 00:15 00:21 center

00:15 00:21 center

00:53 01:07 center

02:43 02:47 center

17:33 18:01 left

Table 1. Noise free video segments extract

• High frequency of large silent periods.

A manual video cleanup process is required to find noise

free video intervals. This process requires watching all

videos available at the PSL corpus for manually annotate

the instant when an informant started emitting sings along

with the instant when the translator delivered a translation.

Table 1 shows a manual annotation example.

The recordings show the informant in two alignments

(centered and left), the manual video clean up process also

stores the informant alignment, we use the alignment anno-

tation later in the process during the video frames extraction

to create the labeled PSL dataset.

3.1.2 Video Pre-Processing

Non-annotated PSL videos require processing before any

metadata can be extracted, we propose a sequence of pre-

processing tasks that take advantage of the annotation gen-

erated on 3.1.1. A video splitting processor generates a

set of video chunks using the ffmpeg multimedia frame-

work and stores produced video chunks in Amazon S3 for

later usage. Audio within video chunks is then transcribed

by an audio transcription processor, using the Amazon

Transcription service, we selected the Amazon Transcrip-

tion service because it provides an accurate mapping be-

tween audio participants and transcribed words along with

useful metadata that describes the start and end time when

words are pronounced by the translator.

At the moment of writing this work Amazon Transcrip-

tion service only supported Spain and US Spanish. This

caused certain words that are specific for Peruvian Spanish

not being fully recognized, in order to improve transcription

accuracy we built a custom vocabulary containing Peruvian

expressions which improved Peruvian words recognition,

for the matters of this work Peruvian words that remained

unrecognized were omitted and not processed.



3.1.3 Audio Transcription Analysis

Audio transcription requires additional processing in order

to produce useful information that leads to a successful

PSL signs detection. Bag of Embedding Words (BoEW)

is a widely used technique on Natural Language Process-

ing tasks providing a easy and flexible way to list the most

relevant words based on frequency. This work is focused

on detecting nouns and numbers (our method is designed to

be progressively improved to handle a wider set of PSL ele-

ments) assuming that nouns (numbers are a subset of nouns)

suffer less variations in spoken Spanish than verbs, pro-

nouns, adverbs and adjectives, and provide more semantic

value than conjunctions, prepositions and interjections.

We used Amazon comprehend for text analysis, specifi-

cally the syntax detection functionality which will provide

a comprehensive list of detected language elements along

with a score from 0.0 to 1.0 indicating the detection ac-

curacy, we have selected the ones that have at least a 0.8

accuracy score and omitted the rest, this process was au-

tomated using a transcription detection processor which

uses BoEW to provide a list of most relevant nouns and

numbers based on appearance frequency.

Once a weighted list of nouns and numbers is gener-

ated a mapping showing when nouns and numbers appear in

videos is required, moving forward called Samples Meta-

data. Table 2 shows mapping metadata extracted from PSL.

3.1.4 Samples Generation

Our method requires PSL elements to be represented as a

set of RGB frames and a calculated Optical Flow using the

Lucas-Kanade method, both representations are inputs of

two different models as presented on 3.4.

Translation Delay Factor: The difference in time be-

tween the instant when a sign is emitted and when a trans-

lation for that given sign is delivered is uncertain, we are

calling that uncertainty the translation delay factor, we are

trying to approximate it using a constant value, we chose

a three seconds translation delay factor assuming that most

of the translations will occur between three seconds after a

sign is emitted.

A RGB Samples generation processor uses samples

metadata in combination with the translation delay factor to

determine frames that represent a given PSL element. We

use OpenCV to extract frames and store them following a

hierarchical folder structure that nSDm data loaders will use

to feed data into the RGB branch in the nSDm model archi-

tecture 3.4.1 during training and testing.

An Optical Flow Samples generation processor uses

video frames and the hierarchical folder structure gener-

ated by the RGB samples generation processor to calculate

an Optical Flow representation for PSL elements and store

them in a hierarchical folder structure that will also be used

Token Video Start End

cine 02-session-01-part-01-00.mp4 4.19 4.75

cine 02-session-01-part-01-01.mp4 1.19 1.75

terror 02-session-01-part-01-01.mp4 3.82 4.4

parque 02-session-01-part-01-03.mp4 8.97 9.3

casa 02-session-01-part-01-03.mp4 10.12 10.57

pareja 02-session-01-part-01-04.mp4 3.91 4.36

noche 02-session-01-part-01-04.mp4 4.49 4.92

noche 02-session-01-part-01-04.mp4 7.91 8.2

Table 2. Shows metadata extacted from the PSL dataset: (1)To-

ken could be a noun or a number (2)Video Path shows the video

where the token was detected (3)Start Time time when the token

reproduction starts (4)End Time time when the token reproduction

ends.

by the nSDm data loaders to feed the optical flow branch

on the nSDm model architecture 3.4.1 during training and

testing. We selected optical flow as a samples generation

strategy due to its ability to represent movement traces from

previous frames. It is particular useful for representing body

movement patterns executed by informant while emitting a

PSL sign. A PSL sign is made up of different body move-

ments including: elbow, arms, neck, eyes, shoulders and

hands, which are performed quickly, a way to detect move-

ment traces between frames allows to generate a single im-

age representation of all movement involved on a sign. See

figure 6 for details.

3.2. Opticalflow Model

The model uses a 2D CNN architecture to learn features

from Opticalflow samples calculated from RGB frames us-

ing the Lucas Kanade method for features tracking. Opti-

calflow samples hold features tracked from an entire frames

set sequentially that way all the features found across frame

sets are condensed in a single image.

3.2.1 Model Architecture

The Opticalflow model architecture described in Figure 2

uses a Resnet152 backbone pre-trained with ImageNet. We

used a fine tuning transfer learning approach, the backbone

produces a 7x7x2048 output that then is passed to a Global

Average Pooling layer for obtaining a flattened output of

1x1x2048 which is then passed to a dense layer for logits

computation and finally to a softmax activation function for

classes probability computation.

3.3. RGB Recurrent Model

The model uses a RNN architecture to learn features in a

sequential way from RGB frames set generated by the video

annotation pipeline see Figure 1. RGB frame sets hold a se-

quence of images representing a PSL element. We selected



Figure 2. Opticalflow model architecture

a RNN architecture based on Natural Language Processing

text based techniques that already shown good results.

3.3.1 Model Architecture

The RGB recurrent model architecture described in Figure 3

receives a sequence of decoded video frames bidirectionally

where each frame set represents a PSL sample, frames were

resized to 128x128 for GPU memory optimization during

training decreasing considerably the number of training pa-

rameters. Frame set samples length varies on each sample

requiring a layer to mask entries ensuring same length sam-

ples. We decided on using a bidirectional approach because

we found benefits on learning features from left to right and

right to left in the same way as text based NLP. It uses a

many-to-one architecture with LSTM cells that hold state

of 64 units length, the output produced by the recurrent lay-

ers is then passed to a dense layer for logits computation and

subsequent softmax activation function for classes probabil-

ity computation.

3.4. Novel Signs Detection Model (nSDm)

We propose a novel model for signs detection that en-

semble the two neural networks architectures described in

sections 3.2.1 and 3.3.1 with the objective to learn visual

features like edges, corners and ridges (CNN) and at the

same time patterns learned from a time based series of in-

puts (RNN) to boost the performance on detecting PSL el-

ements. CNN network receives optical flow inputs and the

RNN branch receives RGB frames extracted from the la-

beled PSL dataset described in 3.1.

We designed two neural network architectures for

nSDm, both architectures use pre trained Opticalflow and

RGB models as base models and applies different model

ensemble techniques on top of them. This architectures are

described in detail in section 3.4.1.

For this work we selected the Tensorflow/Keras func-

tional API for its ability to define combined models along

with a versatile data extraction and transformation layer.

Figure 3. Recurrent RGB model architecture

3.4.1 nSDm V2 Model Architecture

Pre-trained Opticalflow and RGB recurrent models are en-

semble using transfer learning with all layers freeze along

with a flexible data input pipeline for data feeding, transfor-

mation and normalization.

The Input pipeline accesses the labeled PSL samples

and applies transformations preparing the data for upper

layers, transformations were applied for both Opticalflow

and RGB frames, PSL Opticalflow samples were resized

to be compliant with ImageNet pre-trained models using

a 224 by 224 shape and three channels for color images

in the other hand PSL RGB samples were resized to a

128x128 shape for GPU memory optimization, data aug-

mentation transformations were not applied due to the na-

ture of the experiment where samples were captured using

similar light conditions and camera orientations, PSL sam-

ples were transformed to tensors and normalized to floats in

the [0, 1] interval. We removed the last dense layers (classi-

fiers) from both base models with the objective to add a sin-

gle classifier in an outer layer. We concatenated the outputs

and finally added a Dense layer with a softmax activation

function to convert logits into probabilities used for a cor-

rect sign classification. nSDmV2 architecture is described

in Figure 4.



Figure 4. nSDmV2 model architecture

4. Experimentation

4.1. Dataset Description

The PSL dataset was developed by the PUCP Grammar
and Signs research group in 2014 and consists in a set of
videos recorded during the interviews of 24 individuals, 12
male and 12 female informants, all of them are Lima Peru
residents and reported to be born with a permanent deafness
condition or acquired the condition before the acquisition of
Spanish.

The dataset consists in 718 video clips recorded with a
ADR-CX220 SONY HD camera which included an embed-
ded microphone. The camera focused only the informant
but also recorded questions, instructions and translations.

The video clips were recorded in three sessions with the
following participants: A coordinator, a PSL [2] translator
and a informant.

Recording Session 1: A 45-60 minutes semi structured
interview that included: Biographic information as well as
habits, anecdotes, opinion about cultural subjects and elici-
tation of names, states and actions.

Recording Session 2: The informant was presented with
a set of 55 cards describing actions and were asked to
choose a set of them in order to build a coherent story that
was subsequently told by the informant.

Recording Session 3: A PSL [2] conversation facilitated
by the coordinator happening between the informant and
the translator.

During all the sessions a PSL [2] translator performs a
translation after a word or phrase is completed.

4.2. Video Annotation Results

The video annotation pipeline described on3.1produced
an annotated PSL dataset suitable for using it in a super-
vised learning experiment. The annotated dataset is divided
in two main parts (RGB and Optical Flow samples).

Figure 5. PSL number ”Two” RGB representation

Figure 6. PSL number ”Two” OpticalFlow representation

4.2.1 RGB Annotation Results

It is a hierarchical folder structure where each detected sam-
ple is hold in a folder named with the detected noun or num-
ber containing the video frames Figure5 shows how video
frames are stored.

4.2.2 Optical�ow Annotation Results

It is a hierarchical folder structure based on the RGB
samples folder structure, the Optical�ow nature of tracing
movement between frames allow to produce a single im-
age for each detected PSL combining all video frames into
a single image representing the movement occurred during
the sign execution, Figure6 shows an example of an Opti-
cal�ow generated sample.








