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Abstract
Deep Neural Networks are brittle in that small changes

in the input can drastically affect their prediction outcome

and confidence. Consequently, research in this area mainly

focus on adversarial attacks and defenses. In this paper,

we take an alternative stance and introduce the concept of

Assistive Signals, which are perturbations optimized to im-

prove a model’s confidence score regardless if it’s under at-

tack or not. We analyze some interesting properties of these

assistive perturbations and extend the idea to optimize them

in the 3D space simulating different lighting conditions and

viewing angles. Experimental evaluations show that the

assistive signals generated by our optimization method in-

crease the accuracy and confidence of deep models more

than those generated by conventional methods that work in

the 2D space. ‘Assistive Signals’ also illustrate bias of ML

models towards certain patterns in real-life objects.

1. Introduction

The study of adversarial examples in computer vision is
often motivated by using human indistinguishable small
changes in an input image to cause model prediction er-
rors [25, 11, 21, 9]. In this threat scenario, the adversary
is allowed to perturb all pixels in an image such that the ℓp-
norm of the perturbation is constrained to be within a pre-
scribed bound. However, many of these attacks are shown
to be rather inefficient in real-life scenarios [8, 19]. Ad-
versarial patch attacks [5, 19, 17], where patches of certain
patterns are added to input images, are one of the best at-
tacks in the real-world.
Consequently, research in adversarial machine learning
(ML) has been focused around creating efficient attacks,
better defenses and exploring robustness in Deep Neural
Networks (DNNs) [1, 10, 3, 27, 18, 23]. In this paper, we
look at the problem on how a physical object or its image
can be guaranteed to be correctly recognized despite adver-
sarial conditions in the 3D scene. Perturbations on the input
images or alterations in the object are used to improve the
prediction confidence of the correct class through Assistive
perturbations.

We coined the term Assistive Signals to refer to any embed-
ded signal in the input that enhances the confidence score
of the prediction made by a classifier at inference time to

Models
Original Image

Pred. 

Label/Score
Image + Patch Pred. Label/Score

Vgg16 Convertible / 0.41 Tin Opener / 0.18

ResNet50 Sports Car / 0.43 Sports Car / 0.27

InceptionV4 Convertible / 0.62 Convertible / 0.83

SqueezeNet Sports Car / 0.46 Lighter / 0.87

MobileNetv2 Taxi / 0.7 Car (Wagon) / 0.25

Vgg16 Sports Car / 0.42 Whistle / 0.09

ResNet50 Convertible / 0.49 Convertible / 0.13

InceptionV4 Convertible / 0.71 Convertible / 0.78

SqueezeNet Lighter / 0.65 Digital Watch / 0.16

MobileNetv2 Sports Car / 0.12 Projector / 0.16

Figure 1: Arbitrarily added a non-adversarial black patch to a 3D

mesh of a car and classified the rendered images from different

angles. We considered as valid (in green) the predicted classes

related to cars.

recover with ‘good’ confidence the correct class. For ex-
ample, if a 3D object (e.g., car) is attacked by an adversary
modifying scene properties such as object pose or lighting
so that it is misclassified by a DNN, then ‘Assistive Signals’
embedded in the 3D object should ideally ‘assist’ the model
to correctly classify the object despite the adversarial con-
ditions. ‘Assisting’ a ML classifier is the main purpose of
the Assistive signals, and such signals can be expressed in
many forms including but not limited to Assistive Textures

and Assistive Patches. Therefore, the term ‘Assistive Sig-
nals’ confers enough meaning to give an intuition about its
purpose and is also sufficiently generic to include all future
work in regards to the many types of assistive signals that
could be created in this emerging area of research.
The concept of ‘Assistive Signals’ might seem similar to
adversarial attacks in that both approaches can perturb or
alter the input. It can also appear similar to defenses in that
both could improve the classifier’s confidence scores under
attack. However, despite the similarities between these con-
cepts, there are some key differences:

First, Assistive Signals are meant to improve the general
ability of classifiers to recognize the target object predicting
the correct class (in some cases with higher confidence).
Most defenses focus in the recovery of the accuracy only
when the classifier is under attack and the incorrect class
is predicted while degrading their performance in ‘normal’
conditions.

Second, current literature in adversarial ML focus on
the software/algorithmic side, where attack or defense tech-



niques are developed for. Instead, the Assistive Signals are
operating in the physical space, i.e. how we alter the ap-
pearance of an object to protect it from being misclassified
(e.g. a car).

Third, Assistive Signals make the object itself easier to
classify. For example, if a self-driving manufacturer com-
pany improves the design of their cars to be more ‘de-
tectable’ using the insights from Assistive Signals (i.e, Ro-
bust Patterns), they would be making their cars more recog-
nizable in general, agnostic to any computer vision system
improving road safety.
Our biggest motivation for the creation of Assistive Signals
embedded into objects is the fact that fooling a model in
the 3D scene is easier than making it robust, as demon-
strated by Zeng et al. [26] and Alcorn et al. [2]. Hence,
Assistive Signals are a more challenging task than creating
adversarial signals. Figure 1 illustrates how even a simple
non-adversarial black patch (i.e. occlusion) and changes in
the 3D scene properties such as camera view and lighting
can affect significantly the confidence scores of different
ImageNet-based [15] models. Therefore, creating crafted
adversarial attacks for physical objects is not necessary to
fool a model when even simple changes in the environment
pose a significant threat to the model. These challenges
can be addressed using Assistive Signals by improving the
object’s design using the insights from Robust Patterns, or
modifying the appearance of existing physical objects with
Assistive Textures and Patches. The main contributions of
this paper are thus three-fold:
• We propose the first ‘adversarial’ learning technique that

optimizes perturbations in the input for the purpose of
improving the confidence score of an image classification
model instead of degrading its performance.

• We propose an algorithm1 that can generate Assistive tex-
tures and patches that are invariant to 3D physical prop-
erties such as the camera orientation and lighting condi-
tions etc.

• We introduce the concept of Robust Patterns that can be
extracted from our Assistive Signals to illustrate bias in
DNNs.

2. Problem Definition

Let x ∈ R
H×W×3 denote an image with height H , width

W and three color channels (i.e, RGB). A perturbation
ρ is quasi-imperceptible if d(x, x + ρ) < ǫ, where d is
a distance metric and ǫ is a small number. Let y =
{p1, . . . , pm} ∈ Rn be the probabilities of the predicted
labels 1,..., m. If C is an image classifier, then C : x →
{k(x), pk(x)}, where k(x) is the label of x with the high-
est confidence pk(x). An assistive image is defined as
xasst = x + ρasst, such that if C(x) = {k(x), pk(x)} and
C(xasst) = {k(xasst), pk(xasst)}, then k(x) = k(xasst)
and pk(xasst) > pk(x). In other words, the classifier re-
turns the same correct label with a higher confidence. In
contrast, adversarial signals have the opposite aim, where
xadv = x+ ρadv return the incorrect label.

1Code available at https://github.com/elcronos/assistive-signals

Algorithm 1: Assistive Textures

Input: A render functionR, ensemble of classifiers C, 3D mesh/scene

parameters Θ, a maskM, target label yt, step size α, number of

iterations γ
Output: UV/Vertex texture Θt

MaskedTextureR, C,Θ, yt, α, γ
ξ ← 0
while ξ ≤ γ do

Θt ← applyMask(Θt,M)
I ← R(Θ)
L = L(C(I), yt)
Θt ← Clip(Θt + α∇L, 0, 1)
ξ ← ξ + 1

if has mask(M) then

P ← getPatch(Θt,M)
else

P ← None

return Θt,P

3. Assstive Signals Generation

Most adversarial attacks focus on how to digitally alter nat-
ural images [16, 20, 6, 22]. We focus in the alteration of
3D meshes as a proxy for real life, where we can simulate
different camera-views and illumination conditions in the
scene. In this section we present how Assistive Signals are
generated using 3D mesh models (Alg. 1).
A rendering function R takes shape parameters Θs, cam-
era parameters Θc, lighting parameters Θl and texture pa-
rameters Θt as inputs and outputs a batch of rendered
RGB images I. Let’s define the inputs for R as Θ =
{Θs,Θc,Θl,Θt}. The function R computes the gradients

of the output image with respect to the input parameters ∂I
∂Θ .

While inferring Θs and Θc from I is a common task using
differentiable renders [14], to calculate our assistive tex-
tures, we will focus on inferring the parameter Θt. We as-
sume the parameter Θt to be either a Vertex or UV Texture.
In addition, C is a visual classifier. Let y be the true label
and yt the target. We use cross-entropy as the loss function
L for image classification networks such as those trained on
ImageNet. We use the Clip mathematical function to keep
the RGB values of the texture in the range [0,1] or [0,255].
Algorithm 1 illustrates the general steps to generate an As-
sistive Texture Θt targeting the label y for the rendered
views I calculated for a given 3D mesh object. Therefore,
given all the parameters needed, the algorithm first gen-
erates images from a 3D mesh object using the rendering
function R and parameters Θ, the number of images gen-
erated in this step corresponds to the number of cameras
passed in Θc. The Assistive Texture algorithm applies the
full/partial perturbations over the texture Θt, which can be
a Vertex or UV texture. If a mask M is provided, the al-
gorithm will apply a partial perturbations in the object to
create Masked Textures or Assistive ‘3D’ Patches. Masked
Textures and Patches work similarly in practice, however,
we differentiate the patches in that the perturbation is lo-
calized in a “relatively” small area of the 3D object (e.g. a
car with a small square-shaped assistive patch on the side)
whereas Masked Texture could cover the majority of the
‘car’ in this example, but with the exception of windows,
front lights, etc. In the 3D space, we can apply a patch sim-
ilarly to the approach by Brown et al. [6] only when dealing



with a UV Texture. In that case, an extra argument such as
a 2D mask with the location of the patch is needed. On the
other hand, for a Vertex Texture, every vertex in a mesh can
optionally store an RGB color value. For this case, a mask
can be a 1D vector for each binary values for each vertex.

4. Experimentation

In this section we perform experiments to test the ef-
fectiveness of Assistive Signals for different tasks such as
improving the confidence score in 2D images w.r.t. their
ground truth label, the ‘Recognizability’ of different 3D ob-
jects when using Assistive Textures and Patches in the 3D
space, and explaining visual salience features that might
contribute to make an object more recognizable to a deep
learning classifier.

4.1. Assistive Patches

UV Texture

3D Model

Vertex Texture

Batch Rendering 

Camera

Illumination

Neural 

Rendering

Visual 

Classifier Car

Loss

UV Texture + Patch Location

Backpropagation

Assistive Patch 

Optimization
U

Mask

Figure 2: Example of Assistive Patch optimization using a 3D

mesh of a car for a visual classifier (DenseNet121 here) following

the steps from Algorithm 1.

Original Model Model with Assistive Patch

+ =

Airliner/ 0.59 Airliner/ 0.88 Airliner/ 0.55
Asst. Patch

Airliner/ 0.88 Airliner/ 0.95 Airliner/ 0.94

=

Warplane/ 0.85 Missile / 0.51Warplane / 0.70

+

Aircraft Carrier/ 0.67 Aircraft Carrier/ 0.83 Aircraft Carrier/ 0.84

Tram / 0.6 Tram / 0.39 Tram / 0.47

+ =

Tram/ 0.95 Tram/ 0.82 Tram/ 0.54

Airliner Patch

Aircraft Carrier

Tram

Figure 3: Assistive Patches created for 3 different objects. Each

patch was optimized with differentiable rendering using batch ren-

dering sizes of 15, which includes different views of the object

and changes in illumination. The patches were optimized for

ResNet50 [12].

Adversarial patches [6, 4] have been tested before in the
physical world usually by printing the adversarial patterns
and then taking pictures of the altered scene containing the
patch. One characteristic that makes adversarial patches
powerful is the ability of being universal (i.e. they can be
applied to any image or scenery). In Table 1, we show the
comparison between Assistive Patches using the traditional
EoT framework from Brown et al. [6], which optimizes us-
ing transformations on images to make the patch location
invariant and our approach optimizing the patches in 3D
scene to be light/position invariant (See Fig. 2 and Alg. 1),

Table 1: Confidence scores (correct class) for four 3D models im-

aged from three different views where the illumination was also

changed for each view (See Fig. 3). Using DenseNet121 [13],

assistive patches created using conventional methods (optimized

with 2D images) [6] fail or give low confidence for the correct

class. However, 3D assistive patches (optimized with 3D neu-

ral rendering) always improve the confidence score of the correct

class for all views. If the DNN is unable to predict the correct class

an x mark is shown instead of the the confidence score.

Original
2D Assistive

Patches

3D Assistive

Patches

Views Views Views

3D Model 1 2 3 1 2 3 1 2 3

Airliner 0.59 0.88 0.55 0.57 0.89 0.60 0.88 0.95 0.94

Car 0.65 x x 0.73 x x 0.97 0.8 0.71

Aircraft Carrier x x x x x x 0.67 0.83 0.84

Tram 0.60 0.39 0.47 0.76 0.42 0.46 0.95 0.82 0.54

Table 2: Transferability of assistive textures generated from dif-

ferent deep models. Correct class confidence scores for a 3D

model imaged from three different views where the illumination

was also changed for each view are shown. Crosses mean the pre-

dicted class was incorrect. First row shows the original object. Fa

is a full assistive texture with ǫ = 0.01 and n = 50 iterations.

M1 a is masked assistive textures with perturbation ǫ = 0.01 and

n = 10 iterations. An x mark is shown when the given DNN

predicts the incorrect class.

ResNet50 DenseNet121 InceptionV3Train/Test

1 2 3 1 2 3 1 2 3Views

Original x x x x x x x 0.87 0.33

ResNet50 0.99 0.98 0.99 0.4 0.74 0.7 x 0.6 x

DenseNet121 0.13 0.37 0.6 0.99 0.99 0.99 x 0.84 x
Fa

InceptionV3 x 0.29 0.09 x x x 0.99 0.99 0.99

ResNet50 0.99 0.99 0.99 0.33 x 0.21 0.6 0.99 0.69

DenseNet121 x x x 0.99 0.99 0.99 0.96 0.99 0.84
M1

InceptionV3 x x x x x x 0.99 0.99 0.99

which render views of the 3D object from multiple angles
and optimizes the patch end-to-end from the rendered im-
ages to the 3D mesh object (i.e, differentiable rendering).
In Table 1 we show that our approach is better than 2D
Assistive Patches optimized using the traditional algorithm
EoT. Usually, Patches optimized using 2D images fail when
tested in the real-world. A more effective approach is sim-
ulating the 3D environment and train the patches under dif-
ferent light conditions, cameras, etc. like in our approach.
Moreover, in Figure 3, we show different 3D objects and
the Assistive Patches created for those objects. Once we
apply an Assistive Patch, the confidence score with regards
to the 3D object in the scene improves. This holds for dif-
ferent illumination conditions and camera viewpoints in the
3D scene.

4.2. Assistive Textures

Our method uses differentiable rendering, which allows
to optimize the texture end-to-end from the rendered im-
ages to the 3D mesh object to make it location, lighting,
and camera view-point invariant.
In the case of masked textures, we can leave out certain
regions e.g. the windows, lights and tyres of a car. For in-
stance, Figure 4 compares an unconstrained full body tex-
ture (row b) to Masked Textures (row c and d) on a 3D
model from the ShapeNetCoreV2 [7] dataset. The masked



Car (wagon)

0.99

Original Ɛ=0, n=0

Masked Assistive Texture Ɛ=0.01 n=10

lawn mower

0.28

amphibious car

0.49

amphibious car

0.35

loupe

0.23

Car (wagon)

0.99

Car (wagon)

0.98

Car (wagon)

0.99

Full Assistive Texture Ɛ=0.1 n=50

Car (wagon)

0.99

Car (wagon)

0.98

Car (wagon)

0.98

Car (wagon)

0.98

a)

b)

c)

Figure 4: Assistive Textures for 3D model of a car from

ShapeNetCoreV2 [7]:(a) The original object is misclassified by

InceptionV4 [24]. (b) Full assistive texture. (c) Masked assistive

texture after 10 iterations contrained with ǫ = 0.01.

assistive textures have been optimized only on specific ar-
eas of the car as opposed to its full body perturbation. In
the case of row (c), where the perturbation applied is quasi-
unnoticeable if compared to the original model (a), the
assistive signal improves significantly the right class ‘car
(wagon)’. An interesting point to note is that full textures
tend to be smoother compared to masked textures which ap-
pear more ‘patchy’ or noisy. One possible explanation for
this phenomenon is that by completely removing the texture
from the 3D object (a car), we encourage the full texture op-
timization to find these ‘Robust Patterns’, which are high-
level features that are not present in the original 3D object.
In contrast, when creating a masked texture, the texture is
partially removed leaving out important features (e.g, win-
dows, tyres) and hence, the algorithm does not need to find
those important features anymore and focuses on optimiz-
ing other features that look like noisy patterns similarly to
conventional crafted perturbations. Moreover, we tested if
the assistive textures optimized using differentible render-
ing for one deep model are transferable to other deep mod-
els. Results are shown in Table 2. We can observe that the
full assistive texture Fa transfers reasonably well across dif-
ferent CNN-models. M1 also transfers well across different
DNNs and do not need a high magnitude of perturbation.

4.3. Robust Patterns

Patterns created in ℓp-unconstrained assistive textures
can reveal visual salient patterns, which are human-readable
and can be used to provide some insights into what patterns
are more detectable to a model. This is what we refer to
as Robust Patterns. Figure 5 illustrates an example of ro-

bust pattern that can be used as a method for explainability,
but more importantly, it can also provide information about
what patterns from the latent space of the trained model are
more recognizable to a deep neural network. Full textures
are highly transferable to other DNNs, this means that the
visual salient patterns contains ‘universal’ shared abstrac-
tions of the target object that are understood by other DNNs.
In some other experiments, we found that they can also pro-

3d Object Assistive Texture

Differentiable Rendering Our Assistive 3d Texture 

Optimization

Robust Patterns highlighted (white)

Jeep car / 0.75 Jeep car / 0.99
Other Jeep Images

Assistive Textures Combines different 

features from images in the latent space

wagon car / 0.87

Jeep car / 0.88

Highlighted Patterns (red)

Figure 5: Robust Design example: First column shows an exam-

ple of a 3D model (jeep). The second column highlights robust

patterns (white lines). The original rendered image has rounded-

shaped front lights. In the second column, after applying a full

assistive texture from the original 3D object, we can observe that

the visual salience patterns such as front lights and grilles changed

significantly (e.g., having rectangle-shaped front lights instead of

rounded and a different design for the grill).

vide insights into what colors are more detectable for an
specific object. For instance, depending on the country the
body of a traffic light can be sometimes gray (metallic), yel-
low or black. However, the robust patterns obtained from
different ImageNet classifier models indicate that ‘black’ is
the preferable color. This also gives intuitions into what sort
of data was used for training an specific algorithm.
In Figure 5, we found other images corresponding to dif-
ferent models of existing jeep cars outside the ImageNet
dataset and we noticed the similarities of the patterns high-
lighted by the robust patterns with other jeep models. In the
process of the texture optimization, the algorithm finds pat-
terns from the latent space that if combined and applied to
the texture it improves the confidence score of the targeted
class. In the third column we highlighted the features from
different jeep cars that are similar to the ones displayed in
the assistive texture. Despite the original 3D model having
rounded lights and very narrow grilles, in the optimization
the assistive signal seems to combine different features from
other jeep models to create a new design.

5. Conclusion

We introduced the concept of Assistive Signals which, as
opposed to Adversarial Examples, aim to improve the confi-
dence score of the ground truth class. At the same time, we
provided the first comprehensive study about the efficacy of
Assistive Signals simulated in a 3D environment and pro-
vide algorithms for the creation of textures and patches. Our
approach re-purposes image perturbation for “good” going
beyond deceptive signals with the aim of fooling a model.
Future directions could extend outside the imaging bound-
aries and tackle similar problems in other type of data such
as Point Clouds, Videos, Sound, etc.
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