
On Disentanglement and Mutual Information

in Semi-Supervised Variational Auto-Encoders

Elliott Gordon Rodrı́guez

Department of Statistics

Columbia University

eg2912@columbia.edu

Abstract

In the context of variational auto-encoders, learning dis-

entangled latent variable representations remains a chal-

lenging problem. In this abstract, we consider the semi-

supervised setting, in which the factors of variation are la-

belled for a small fraction of our samples. We examine how

the quality of learned representations is affected by the di-

mension of the unsupervised component of the latent space.

We also consider a variational lower bound for the mutual

information between the data and the semi-supervised com-

ponent of the latent space, and analyze its role in the context

of disentangled representation learning.

1. Introduction

Many recent works have focused on improving the in-

terpretability of latent variable representations in the varia-

tional auto-encoder (VAE) framework [18, 19]. Notably, the

β-VAE optimizes a modified objective, where the KL regu-

larization term in the evidence lower bound (ELBO) is up-

weighted in order to increase statistical independence in the

latent space [10]. Other augmentations of the ELBO have

been explored, similarly designed to encourage the desired

properties in the posterior distribution of the latent variables

[2, 16, 5, 7, 6]. In the semi-supervised setting, the labelled

datapoints can be used to construct a supervised penalty

term that is also added to the objective function [17, 28, 23].

In some – but not all – cases, this partial supervision can

lead to disentangled generative models [20, 3, 14, 27, 22].

While unsupervised models have the benefit of requiring

no labeled data, the identification of meaningful latent fac-

tors requires manual inspection of latent traversals for each

model of interest. Given the rotational invariance of the pri-

ors that are commonly used in such models, this identifica-

tion is sensitive to initialization, amongst other difficulties

[24, 26]. On the other hand, semi-supervised VAEs offer

the possibility to pre-specify latent components using the

labelled datapoints [17, 28, 4, 30].

In this abstract, we evaluate the quality of the learned

representations in the semi-supervised VAE, as the dimen-

sionality of the unsupervised latent component is varied.

We demonstrate empirically that, given sufficient capac-

ity, the semi-supervised component of the latent space is

ignored by the decoder. This phenomenon occurs regard-

less of whether the encoder model provides an accurate es-

timation of the semi-supervised latents. As a result, regu-

lating the dimension of the latent space controls a tradeoff

between disentangling and reconstruction quality.

In addition, we propose a novel modification of the

ELBO, designed to maximize the mutual information be-

tween the semi-supervised latent variables and the decoder

outputs. While the mutual information is intractable in the

models of interest, we can construct a variational bound [1]

that results in a differentiable objective. We also show that,

for the VAE, this bound is equivalent to enforcing cycle con-

sistency in the latent space, an idea with precedent in deep

generative models [15, 33, 14, 27].

2. Semi-supervised Variational Autoencoder

Given a set of unlabelled samples, D = {x(i)}i∈U ,

together with a subset of labelled pairs Dsup =
{(x(i),y(i))}i∈S , our goal is to learn a generative model

of the form [17]:

(i) (z,y) ∼ p(z,y),
(ii) x ∼ pθ(x|z,y).

Typically, we model pθ(x|z,y) = N (µθ(z,y),Σθ(z,y)),
where µθ and Σθ denote deep networks parameterized by

θ. In this setting, the marginal likelihood is intractable, as is

the posterior. Therefore, the true posterior is approximated

by a variational family qφ(z,y|x), typically also parame-

terized by a neural network. The model parameters θ and

φ can then be trained jointly by maximizing the evidence

lower bound on the marginal likelihood. For the unlabelled
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samples, the ELBO takes the standard form:

L(θ, φ;x(i)) := Eqφ(z,y|x(i))

[

log
pθ(x

(i), z,y)

qφ(z,y|x(i))

]

≤ log pθ(x
(i)). (1)

As for the supervised samples, where y
(i) is observed,

note that:

log pθ(x
(i),y(i)) = Eqφ(z|x(i),y(i))

[

log
pθ(x

(i), z,y(i))

qφ(z|x(i),y(i))

]

−KL(qφ(z|x
(i),y(i))||pθ(z|x

(i),y(i))).
(2)

Thus, using the non-negativity of the KL term, a similar

lower bound can be constructed:

Eqφ(z|x(i),y(i))

[

log
pθ(x

(i), z,y(i))

qφ(z|x(i),y(i))

]

≤ log pθ(x
(i),y(i)).

(3)

The label information is further incorporated in a super-

vised loss term, log qφ(y
(i)|x(i)), to encourage the encoder

to learn a good mapping x 7→ y:

Lsup(θ, φ;x(i),y(i)) :=

Eqφ(z|x(i),y(i))

[

log
pθ(x

(i), z,y(i))

qφ(z|x(i),y(i))

]

+ α · log qφ(y
(i)|x(i)). (4)

An aggregated objective over all data can then be con-

structed:

L(θ, φ;D,Dsup) =
∑

i∈U

L(θ, φ;x(i))

+
∑

i∈S

Lsup(θ, φ;x(i),y(i)). (5)

3. Disentanglement and Mutual Information

Semi-supervised VAEs can struggle to disentangle a gen-

erative factor of interest, even when (partial) label informa-

tion is available for such a factor [28]. As we will demon-

strate empirically, the key difficulty lies in the mapping

y 7→ x. Intuitively, the autoencoder x 7→ (z,y) 7→ x

can separately learn a regression mapping x 7→ y and a re-

construction mapping x 7→ z 7→ x. As a result, the decoder

will ignore the latent variable y, failing to disentangle the

generative factors of interest. In other words, a disentangled

factor y(i) need not provide an ideal input for the decoder

to obtain a good reconstruction of x(i). If so, the decoder

will tend to focus exclusively on its first input, z.

In order to address this shortcoming, we propose aug-

menting the semi-supervised objective (Eq. 5) with a mu-

tual information term between x and y (but not z). The

mutual information is taken under the generative model,

in other words, between the semi-supervised component

of the decoder input, and the decoder output. Intuitively,

this term encourages the information available in y, which

contains the disentangled latent variables of interest, to

flow through the decoder. Previous works have evaluated

information-theoretic criteria in variational autoencoders

[32, 8, 11, 31, 29]; here we apply a similar ideas specifi-

cally to the semi-supervised component of the latent space.

Let us denote the mutual information under the genera-

tive model as:

I(x,y) = H(y)−H(y|x), (6)

where H(y) = −Ep(y)[log p(y)] and H(y|x) =
−Epθ(y,x)[log pθ(y|x)] denote the entropy of y and the

conditional entropy of y|x, respectively. While the first

term H(y) is a constant and can be ignored for the pur-

poses of optimization, the second term H(y|x) involves the

intractable posterior and cannot be computed directly. How-

ever, we can construct a variational lower bound [1], again

using the non-negativity of the KL divergence:

−H(y|x) = Epθ(y,x)[log pθ(y|x)]

= Epθ(y,x)[log qφ(y|x)]

+ Epθ(y,x)

[

log pθ(y|x)

log qφ(y|x)

]

= Epθ(y,x)[log qφ(y|x)]

+ Epθ(x)[KL(pθ(y|x)||qφ(y|x)]

≥ Epθ(y,x)[log qφ(y|x)]

=: Ĩ(θ, φ). (7)

Importantly, this bound no longer depends on the intractable

posterior, allowing for efficient gradient optimization via

the reprameterization trick [18]. Namely, we can construct

a differentiable Monte Carlo estimate as follows:

1. Draw samples of (z,y) from the prior.

2. Feed them through the decoder network, and

add the appropriate noise distribution (as per the

reparametrization trick) to generate synthetic samples

of x.

3. Feed the synthetic samples back through the encoder

network to obtain “reconstructed latents” (ẑ, ŷ).
4. Compute the “latent error” between the original y and

the reconstructed ŷ, as measured by the log-probability

of qφ (in the normal case, −‖y − ŷ‖2). Note that ẑ is

not used for estimating Ĩ(θ, φ).

This procedure admits a simple interpretation: for the mu-

tual information to be high, the values of y should affect the

decoder output in such a way that the encoder can, in turn,

map back to the values of y that generated such an output.
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Model Identity error Lighting error Log-likelihood Reconstruction RMSE Mutual Information

Baseline 3.5% (±3.4) 17.6% (±1.8) 214.4 (±3.7) 0.70% (±0.03) -0.15 (±0.02)

dim(z)=10 3.3% (±2.0) 17.0% (±3.7) 211.1 (±4.7) 0.74% (±0.05) -0.16 (±0.02)

dim(z)=2 3.2% (±2.8) 11.9% (±8.7) 184.2 (±22.8) 1.05% (±0.29) -0.08 (±0.06)

γ=0.1 4.3% (±3.1) 8.3% (±1.1) 202.0 (±6.4) 0.79% (±0.05) -0.04 (±0.01)

γ=1.0 6.5% (±3.5) 7.2% (±1.7) 199.2 (±14.4) 0.82% (±0.13) -0.03 (±0.02)

γ=10.0 8.2% (±3.9) 7.5% (±1.9) 163.3 (±18.6) 5.82% (±0.58) -0.02 (±0.03)

Fully-sup 1.9% (±1.5) 3.1% (±3.8) 222.7 (±4.1) 0.59% (±0.03) -0.05 (±0.04)

Table 1. Evaluation metrics on held-out data. Estimation errors shown in parenthesis correspond to two standard errors over 16 random

initializations of the model. The descriptor in the first column shows where each model differs from the baseline model. The last column

shows a Monte Carlo estimate of the mutual information lower bound (Eq. 7), a quantity that depends only on the trained model and not the

held-out data. Note that the mutual information is applied to the lighting component only (since the baseline model was able to disentangle

the identity component).

Figure 1. Conditional dependence structure for our baseline semi-

supervised VAE [28]. x represents an image sample, y encodes

the identity of the subject and the lighting of the image, and z

encodes all other generative factors.

In other words, our mutual information criterion reduces to

a measure of cycle consistency in the latent space, an idea in

the spirit of [15, 33, 14, 27], but applied specifically to the

semi-supervised component y. Adding the mutual informa-

tion lower bound (Eq. 7) to our objective function (Eq. 5)

gives rise to a new optimization problem:

min
θ,φ

{L(θ, φ;D,Dsup) + γĨ(θ, φ)}, (8)

where γ is a hyperparameter that controls the relative

strength of the mutual information term.

4. Experiments

Our experimental setup uses the Extended Yale Face

Database B [9, 21], as processed by [12]. This dataset con-

tains a total of ∼1,700 images of 38 subjects under 45 il-

lumination conditions. All samples are labelled with the

identity of the subject and the lighting angle of incidence,

allowing us to fit both semi-supervised and fully-supervised

models.

Our baseline model is a semi-supervised VAE composed

of a 4-layer encoder, a 4-layer decoder, and an additional

layer mapping y to z,1 with dim(y) = 39 and dim(z) = 20

1We found empirically that such a layer had minimal impact on results.

(Figure 1) [28]. The unsupervised latent components z fol-

low independent standard normal prior distributions. The

semi-supervised latent y is composed by a 38-level cate-

gorical variable modeling the identity of the subject,2 and

an additional scalar variable modeling the lighting of the

image, i.e., the angle of incidence. 15% of the labels were

made available during training.

Our evaluation criteria include:

(a) Reconstruction quality, measured both qualitatively

and quantitatively, by log-likehood and reconstruction

RMSE.

(b) Classification accuracy for the identity component of

y.

(c) Regression error for the lighting component of y.

(d) Disentanglement, measured qualitatively as well as

through the mutual information lower bound of Equa-

tion 7.

Our results, summarized in Table 1, compare the baseline

model against:

(i) A fully-supervised objective, where 100% of the labels

are made available during training (Figure 2).

(ii) Models with reduced latent dimension (Figure 3).

(iii) An objective with the mutual information term, at

varying strengths γ (Figure 4).

5. Discussion

Figure 3 illustrates that regulating the dimensionality of

the unsupervised latent component is highly effective for

achieving disentangled representations. Intuitively, a low-

dimensional z corresponds to a narrow “information bottle-

neck”, encouraging the decoder to draw more heavily on

the information encoded in y. In fact, sufficiently reducing

dim(z) resulted in a disentangled representation for both

2During optimization, categorical latent variables are relaxed via the

Gumbel-Softmax distribution [13, 25].
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Figure 2. For a fixed input image, we show the model reconstruction, as well as latent traversals obtained by varying the identity and

lighting components of y. The baseline model (semi-supervised) fails to disentangle the lighting factor, which becomes possible under full

supervision (bottom right).
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Figure 3. Similar to Figure 2, for two semi-supervised models of reduced latent dimension. The semi-supervised model with just 2

dimensions for z (bottom row) achieves a disentangled representation for both identity and lighting, of comparable quality to the fully-

supervised model (Figure 2).

γ
=

1
0
.0

γ
=

1
.0

γ
=

0
.1

Input Recon. Varying identity Input Recon. Varying lighting

Figure 4. Similar to Figure 2, for three semi-supervised models with varying strength γ applied to the mutual information term in the

objective function. Note the mutual information is applied to the lighting component only. As its strength increases, the reconstruction

quality degrades with little improvement in disentanglement.

identity and lighting, of similar quality to the fully super-

vised model (compare Figures 2 and 3). However, there is

some tradeoff between disentanglement and reconstruction

quality, since a lower dim(z) implies a less flexible model,

in this case leading to a small increase in reconstruction er-

ror (top 3 rows of Table 1). It is also worth remarking that

a reduction in dim(z) improves the out-of-sample accuracy

of the semi-supervised mapping x 7→ y, even though its

network architecture remains unchanged (of course, its gra-

dients will change due to shared weights and biases). This

suggests that the autoencoder x 7→ (z,y) 7→ x can act

as a regularizer on the classifier x 7→ y. On the other

hand, the mutual information term (Eq. 7) only provides

small improvements toward disentangling the latent space,

at the expense of a significant decrease in reconstruction

quality (Figure 4). This behavior indicates a similar trade-

off between reconstruction quality and cycle consistency in

the latent space. Taken together, these results indicate that

learning disentangled representations requires a fine balanc-

ing act between model architecture, objective function, and

partial supervision.
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