
BAOD: Budget-Aware Object Detection
(Supplementary Material)

We provide solutions for the proposed optimization functions in the first section. We also show the Budget vs mAP curves
for the most relevant experiments and some visualizations of weakly and strongly labelled images chosen by the best method
BAOD. Finally, we give the raw data of the compared experiments, including the medium cost one.

1. Solutions to Optimization Functions
1.1. Image Sampling

In section 3.1.1 and 3.1.2 of the draft, we proposed two linear functions to approximation the mAP increment. Then we
try to maximize it with some restrictions. However, the integer programming problem is NP-hard, so it cannot be solved in
polynomial time. Since the Branch and Bound Algorithm (B&B) takes more than 24 hours to find a global solution, we take
the relaxation of the original integer program and uses a collection of linear restrictions. Then the relaxation Eq.1 can be
solved in linear time.

x̂1, x̂2, x̂3 = argmax
x1,x2,x3∈[0,1]N

s>(x1 + x3) + (µ− s)>x2

s.t. x3 ≤ ψ
x1 + x2 ≤ 1−ψ

1>(ax1 + bx2 + cx3) ≤ d

1>(ax1 + bx2 + cx3) ≥ d− a

(1)

We take three floats ε1, ε2, ε3 to threshold x̂1, x̂2, x̂3. Every element in xk larger than εk is set as 1, otherwise it is 0.

x1
∗ = 1{x̂1 > ε1}

x2
∗ = 1{x̂2 > ε2}

x3
∗ = 1{x̂3 > ε3}

(2)

It is acceptable that we use an approximate global solution of the original problem, but the solution needs to be feasible.
More specifically, the first two constraints have highest priority to satisfy because we cannot give an invalid action (e.g. It’s
impossible to annotation an image both weakly and strongly, but it might appear from the solution).

If we set ε1 = ε, ε2 = 1− ε, ε3 = ε, where ε exhaustively goes from 0 to 1 to satisfy the last two budget constraints. It can
be proofed that the solution Eq.2 is also feasible from the original constraints.

Proof. (1) Assume ψ(k) = 0, where k can be the index of any element of vector x̂1. Since x̂1, x̂2, x̂3 is feasible, the first
inequality in Eq.1 shows

x̂3(k) ≤ 0 =⇒ x̂3(k) = 0. (3)

The second inequality in Eq.1 gives the inequality for x̂1 and x̂2.

x̂1(k) + x̂2(k) ≤ 1 =⇒ 1− x̂2(k) ≥ x̂1(k) =⇒ 1{1− x̂2(k) < ε} ≤ 1{x̂1(k) < ε} (4)

When we apply Eq.2 to check the two restrictions, the discrete solutions x1
∗,x2

∗,x3
∗ are still feasible.

x∗3(k) = 1{x̂3(k) > ε} = 1{0 > ε3} = 0 = ψ(k)
x∗1(k) + x∗2(k) = 1{x̂1(k) > ε}+ 1{x̂2(k) > 1− ε}

= 1{x̂1(k) > ε}+ 1{1− x̂2(k) < x̂2(k)}
≤ 1{x̂1(k) > ε}+ 1{x̂1(k) < x̂2(k)} ≤ 1 = 1− ψ(k)

(5)

(2) If ψ(k) = 1, we have
x̂3(k) ≤ 1 =⇒ x̂3(k) = 1

x̂1(k) + x̂2(k) ≤ 0 =⇒ x̂1(k), x̂2(k) = 0
(6)

Similar to previous discussion, we can have x∗3(k) ≤ 1 and x∗1(k) = 0, x∗2(k) = 0 to fit the two inequalities.



1.2. Pseudo Label Mining

In the article, we give another optimization function to do noise cleaning. This procedure checks the consistency between
the image and instance-level annotations, and it removes abundant pseudo labels.

Given an image Ik with the weakly annotation ω ∈ {0, 1}K , where K is the number of categories. We assume the first
detection model (teacher model) givesM positive predictions for the localization P ∈ RM×4, classificationA ∈ {0, 1}M×K ,
and the positive class confidence vector pm ∈ [0, 1]M . Eventually, the pseudo label mining returns a sparse M -dimensional
binary vector y as Eq.7, where α = 0.3, β = 3.

min
y∈{0,1}M

−y>pm
s.t. y>A(1−w) = 0

∀yi,yj=1IoU(Pi, Pj) ≤ α
|y|0 ∈ [1, β]

(7)

In this problem, our objective function takes high confidence predictions by choosing y ∈ {0, 1}M . In the first constraint,
y>A accumulates the selected predictions by their categories. The following inner product with 1−w returns zero only when
all the predicted classes are in the weak annotation. On the other hand, the second constraint removes the heavily overlapped
predictions while the third one make the binary vector y sparse. We develop Alg.1 to solve the above optimization.

Algorithm 1: Noise Cleaning

Input : Weak annotation ω ∈ {0, 1}K , localization P ∈ RM×4, classification
A ∈ {0, 1}M×K , the positive class confidence for M predictions
pm ∈ [0, 1]M , α, β;

Output: a binary vector y ∈ {0, 1}M ;
1 y = 1;
2 for i=1:M do
3 if not A(i, :) < ω, y(i) = 0;
4 end
5 y′ = NMS index for [P,A], do it by class with threshold α
6 y = y. ∗ y′

7 if sum(y) > β then
8 assign the top β remained predictions to y
9 end



2. Budget-mAP Curves
We present the original Budget vs mAP curves for the figures 4,5,6 and 7 in the draft, respectively. These curves show

mAP before integration, which are more detail and noisy. Please check section 4 for the table representation.

Figure 1. left: Budget-mAP curves using strongly annotated images for three different sampling methods: Orange bars Random Sampling
fully supervised (RS). Blue bars samples from most uncertain images (US). Green Bars samples from the least uncertain images (SUS).
Grey bars samples from Learning Active Learning sampling (LAL). right: Budget-mAP curves using fully and hybrid training pipelines.
Orange bars compare the two training pipelines using random sample while Blue bars show both pipelines using US sampling.

Figure 2. left: Budget-mAP curves using FSOD, hybrid training, and optimization methods. Blue bars show US using FSOD. Orange bars
show RS hybrid baseline. Gold bars show US Optimization (BAOD). Dark Grey Bars show LAL Optimization. right: Budget-mAP curves
using a lower cost for strong annotations. Blue Bars represent FSOD with US sampling. Orange Bars represent Hybrid training with RS
sampling. Gold Bars represent US Optimization. All the methods use a smaller gap between the weak and strong annotation costs.



3. Visualizations
Below we show some visualizations of strongly labelled and weakly images for LAL based Optimization and US based

Optimization.

Figure 3. LAL Visualizations of some Strongly and Weakly labelled images during different steps. We can observe that the weakly image
for step 4 is turned to a Strongly one in the last step.

Figure 4. US Visualizations of some Strongly and Weakly labelled images during different steps. We can observe that images that were
weakly and strongly for LAL are the opposite for US. For US we can observe an improvement choosing the difficulty of the images once
the model improves.



4. Raw Experiment Data
On table 4, we showcase the raw number of the curves in the main paper experiments that were not reported on the main

paper.

Budget Percentages Full
H∗ CR∗∗ 10.80 15.79 20.77 25.76 30.75 35.74 40.73 45.72 50.71 55.70 60.69 65.68 80.70 100

RS 7 H 0.414 0.505 0.547 0.572 0.597 0.622 0.630 0.643 0.652 - - - 0.692 0.71
US 7 H 0.430 0.506 0.519 0.552 0.599 0.621 0.623 0.651 0.657 - - - 0.695 0.71

SUS 7 H 0.397 0.502 0.546 0.575 0.602 0.62 0.633 0.636 0.648 - - - 0.682 0.71
LAL 7 H 0.429 0.495 0.545 0.569 0.58 0.606 0.634 0.64 0.644 - - - 0.692 0.71

RS 3 H 0.408 0.562 0.576 0.608 0.612 0.637 0.651 0.655 0.663 - - - - 0.71
US 3 H 0.433 0.462 0.586 0.62 0.638 0.647 0.658 0.672 0.676 - - - - 0.71

OPT-US 3 H 0.433 0.529 0.594 0.624 0.643 0.646 0.665 0.668 0.679 0.689 0.687 0.691 - 0.71
OPT-LAL 3 H 0.389 0.529 0.59 0.62 0.638 0.645 0.661 0.674 0.677 - - - - 0.71

US 3 L 0.412 0.498 0.509 0.527 0.573 0.613 0.626 0.653 0.664 0.675 0.673 - - 0.71
RS 3 L 0.412 0.492 0.519 0.517 0.539 0.587 0.614 0.633 0.641 0.662 0.664 - - 0.71

OPT 3 L 0.42 0.518 0.548 0.586 0.609 0.62 0.64 0.648 0.665 0.67 0.683 0.689 - 0.71
RS 3 M 0.443 0.554 0.576 0.6 0.62 0.62 0.654 0.652 0.655 0.672 0.675 0.689 - 0.71

OPT 3 M 0.433 0.544 0.582 0.608 0.632 0.643 0.652 0.664 0.677 0.684 0.687 0.693 - 0.71
Budget - - 10.8 20.8 30.8 40.8 50.8 60.8 70.8 80.8 90.8 92.8 96.8 - - -

VOC0712 3 M 0.356 0.566 0.611 0.641 0.674 0.672 0.696 0.701 0.715 0.717 0.72 - - 0.73
Budget - - 11.09 13.62 18.1 22.58 27.06 31.53 36.15 40.49 44.97 49.45 53.93 - - -

RL 3 H 0.433 0.525 0.561 0.579 0.603 0.615 0.634 0.645 0.648 0.657 0.664 - - 0.71
* H for Hybrid Learning
** CR for cost ratio of strong and weak annotations

Table 1. Raw experimental data from the curves in the main paper. Each one of the entrace in the table is one fully-trained Faster-RCNN
model from Imagenet weights.


