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Abstract

Single-Image Super Resolution (SISR) is a classical

computer vision problem and it has been studied for over

decades. With the recent success of deep learning methods,

recent work on SISR focuses solutions with deep learning

methodologies and achieves state-of-the-art results. How-

ever most of the state-of-the-art SISR methods contain mil-

lions of parameters and layers, which limits their prac-

tical applications. In this paper, we propose a hard-

ware (Synaptics Dolphin NPU) limitation aware, extremely

lightweight quantization robust real-time super resolution

network (XLSR). The proposed model’s building block is

inspired from root modules introduced in [15] for Image

classification. We successfully applied root modules to SISR

problem, further more to make the model uint8 quantization

robust we used Clipped ReLU at the last layer of the net-

work and achieved great balance between reconstruction

quality and runtime. Furthermore, although the proposed

network contains 30x fewer parameters than VDSR [16] its

performance surpasses it on Div2K validation set. The net-

work proved itself by winning Mobile AI 2021 Real-Time

Single Image Super Resolution Challenge.

1. Introduction

Super Resolution is a classical computer vision problem

and it has been studied over decades. The aim of the prob-

lem is obtaining the high resolution image from either sin-

gle or multiple low resolution images. In both settings the

problem is ill-posed. Earlier in the literature the problem

is approached with traditional methods later with the ad-

vancement and success of deep learning, the problem is ap-

proached with deep-learning.

Deep learning first applied to SISR problem by Dong et

al. in [5] and achieved state-of-the-art results compared to

traditional methods with only 3 layers. Researchers real-

ized that upscaling the input image on the later stages of the

(a) Original: Div2K 0890

(b) XLSR (ours) (c) ESPCN (d) FSRCNN

Figure 1: Effect of quantization of existing methods and our

proposed method. Note the shift in colors and staircase gra-

dient on the sky of quantized ESPCN and FSRCNN outputs

network reduces computational resources and proposed FS-

RCNN [6] further more instead of ReLU, PReLU is utilized

as the activation function, while FSRCNN used deconvolu-

tion layer as the upscaling module. Shi et al. [24] proposed

another widely used upscaling layer so called Depth2Space

for real-time SISR problem. Later, VDSR [16] emerged

and increased the number of layers and number of parame-



Method Number of Parameters

EDSR [20] 43M

WDSR [28] 75M

VDSR* [16] 668K

IMDN [11] 500K

FSRCNN* [6] 25K

ESPCN* [24] 31K

XLSR (Ours) 22K

Table 1: Example set of number of parameters from high

performing deep learning networks.

(*) For a fair comparison of parameters model is assumed

to accept RGB input and scaling is x3

ters and showed that with the increased number of parame-

ters the reconstruction quality can be improved. Increasing

and complicating the network architecture trend continued

later on with EDSR [20] and WDSR [28] later on atten-

tion mechanisms applied to SISR in [22, 11] Indeed these

methods achieved superior reconstruction performance on

standard datasets.

While previously mentioned methods focus on recon-

struction quality, there are also other methods based

on Generative Adversarial Networks (GAN). GAN based

methods [18, 26] focuses on perceptual quality.

However, none of these methods and many more in the

literature can be directly applied and run in mobile devices

either because of extremely large number of parameters

and/or severely affected performances due to uint8 quanti-

zation, further more some specific hardware limitations may

also limit their applicability.

To solve the real-time image super resolution problem

with mobile device deployment requirement, we proposed

an extremely lightweight super resolution (XLSR) network

by investigating the limiting factors of the existing models

to run in mobile devices and modifying successfully applied

mobile network building blocks for different problems in

the literature (See Figure 2). Our method designed with re-

construction quality focus since Mobile AI 2021 Real-time

image super resolution challenge scoring formula was based

on PSNR as follows;

Score(PSNR, runtime) =
22.PSNR

C.runtime
(1)

Where C is a constant

Building an extremely lightweight network with low

number of parameters was not enough by itself since the

model for the challenge needs to be fully uint8 quantized.

To make the model quantization robust and keep it still run-

ning fast on the deployment platform, instead of ”Linear”

activation function, which is common at the very last layer

of SISR deep learning models, we used ”Clipped ReLU”

and carefully tuned training methodology. Note that this is

required since added non-linearity at the last layer, although

helps with quantization, unfortunately makes the model op-

timization harder due to extra flat optimization surface. It

is shown that the model trained with this mentality is very

robust to quantization and only ∼0.3dB PSNR drop is ob-

served on the quantized model with standard tensorflow

post training quantization compared to float16/32 model’s

PSNR on Div2K validation dataset.

2. Related Works

Successful deployment of deep learning models to mo-

bile devices opens broader application areas to these mod-

els and increases their usability along with academic con-

tribution. These motivations lead to advancements on both

AI specific hardware and on the mobile friendly models.

Hardware focusing on deep learning deployment started

with the efforts of Qualcomm and Arm later on contin-

ued with specialized AI silicon from many different ven-

dors [14]. On the other hand, many researchers focusing

on mobile deployment, come up with many different ideas

for mobile friendly models. The examples of these ideas

are; for Object detection SqueezeNet [12] which achieves

AlexNet [17] performance on ImageNet with 50x lesser

number of parameters. MobileNetV1 [9] uses depthwise

separable convolutions and achieves better performance

than SqueezeNet. ShuffleNet [31] further increases Ima-

geNet performance with lighter requirements by utilizing

group convolutions and channel shuffling operator. Sim-

ilar to ShuffleNet, DeepRoots proposes the usage of 1x1

convolutions instead of channel shuffling. For face verifica-

tion, MobileFaceNets [3] uses depthwise separable convo-

lutions and bottleneck layers to build an application specific

lightweight network. For image super resolution IMDN

[11] uses channel splitting to build a lighter network. Dif-

ferent from previous approaches, NASNet [33] searches for

the optimal architecture and surpasses many state-of-the-art

methods.

Apart from focusing on network itself, the literature also

focuses on quantization [32, 10, 4, 19] since in many cases

quantization is not an option but a hardware declared must.

On the other hand, it has been shown by Hinton et al.

[8] that knowledge distillation can help a simple model to

achieve/surpass a complex model’s performance. Further-

more, Mishra et al. [21] combined knowledge distilling

with quantization. Another methodology using a pretrained

complex model while building a lighter weight model is;

channel sparsification and pruning, with this methodology

a complex model can be slimmed by removing unnecessary

channels from the filters [7]

Although the most of the aforementioned methods are
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Figure 2: Our proposed network

designed for different areas other than SISR, they can be

still very useful while building a real-time performant SISR

model. Many of these ideas are succesfully applied to the

SISR problem [30, 29] The methodologies to run/design a

performant deep learning method for mobile devices can be

summarized as follows;

• Hand-Designed Architectures

• Efficient Building Block Design

• Network Pruning / Sparsification

• Network Quantization

• Network Architecture Search (NAS)

• Knowledge Distillation

In this paper, we followed the first and second method-

ologies while creating our submission into Mobile AI 2021

Real-Time Single Image Super-Resolution Challenge [13].

The reason and motivation for this approach was; there were

many different hardware limitations of the deployment plat-

form (Synaptics Dolphin NPU) that needs to be taken into

account in the challenge which are harder to incorporate

into a common method. Furthermore, the challenge re-

quired full uint8 quantization of the model (not allowing

partial quantization such as leaving the first and the last lay-

ers floating, which are known to be severely affecting the

accuracy if quantized [4]). The full uint8 quantization re-

quirement adds extra complexity to the problem since, SISR

problem is severely affected by the quantization operation

if the model at the hand is not designed/trained/quantized

properly.

The deployment hardware limiting factors can be sum-

marized as

• Elementwise operations such as (Addition, Subtrac-

tion) is not optimized

• Reshaping and transpose operations are not optimized

and extremely slow

• Per-channel quantization is not supported

• Multiple and especially long skip connections require

a lot of data swaps with slow CPU DRAM

3. Proposed Method

In this section, we describe the details of the proposed

network and the motivation behind the design ideas while

connecting these with literature and hardware limitations.

As mentioned before, we designed our proposed architec-

ture by hand and adopted an efficient building block for

SISR problem inspired from [31, 15, 27].

3.1. Building Block Selection

Group convolutions are first used in AlexNet although

the GPU hardware limitation forced such methodology. It

has been shown that when used wisely, group convolu-

tions can increase accuracy while decreasing computational

costs. Because of these properties, they are often used in

mobile focused networks. They are used in ResNeXt along

with skip connections, in ShuffleNet with cascaded chan-

nel shuffling and in DeepRoots with cascaded 1x1 convolu-

tions.

From the point of the view of the SISR problem chal-

lenge and hardware limitations, using channel shuffling is

infeasible since reshape and transpose operations are not

optimized in the deployment hardware which eliminates

ShuffleNet Block. Skip connections and residual in resid-

ual type of structures help with model converge and allow

deeper architectures and are utilized in many state-of-the-art

networks. However, multiple parallel skip connections are

slow and elementwise addition is not optimized and hence

ResNeXt block is not very well optimized for the deploy-

ment hardware.



1x1 Conv

Concat

ReLU

3x3 Conv

Channel Split

Figure 3: Building block used in the proposed network

On the other hand, when channel shuffling operator is

relaxed to 1x1 convolution (to still allow interchannel com-

munication) or skip connection in ResNext block is re-

moved, we arrive at the building block used in our network

(See Figure 3). Note that instead of group convolutions,

depthwise convolutions can also be a candidate for building

block. However, as noted by Sheng et al. in [23] depth-

wise convolutions can cause large quantization error when

used without special precaution, this is what we have also

observed empirically in our experiments.

An important aspect we have also taken into account

while designing our proposed model was elementwise op-

erations are not optimized in the deployment hardware.

Thus, we avoided all addition and scaling operations and

used concatenation operation when necessary and input data

scaling and normalization were not used.

3.2. Quantization Friendly Architecture

While deploying deep learning models to mobile de-

vices, it is very common to use quantization especially 8-

bit quantization is very important since it is naturally sup-

ported by many mobile hardware as with the deployment

hardware of Mobile AI 2021 Real-time single image super

resolution challenge. However, applying uint8 quantization

scheme to any well performing (in float32 or float16) super

resolution model and hoping to arrive at a well performing

integer quantized model is very naive and usually not work-

ing well in practice (See Figure 4). To get over this problem

and still have a well performing model, the model should

be modified and made quantization friendly. On the other

hand, this modification should be subtle and still be quickly

executable, otherwise it would contradict with real-time in-

ference requirement.

To make a model quantization friendly, we should first

focus on the reasons behind why quantization adversely af-

fects the accuracy. Linear output activation function is very

common among super resolution models and it helps with

the model optimization. Although, not strictly enforced

when the model converges we are pretty sure that the out-

put will be bounded in between 0-255 (or 0-1.0). However,

if such a model is quantized, the quantized output tend to

be dull and accuracy can drop about 5-7dB compared to

float16/32 model. The reason we believe is the following;

during the earlier steps of training, the output is not guaran-

teed to be in between 0-1.0 and intermediate activations can

also be unbounded or might contain outliers. Later on, if

we continue with training the training data enforces bound-

edness in the model output indirectly. However, the inter-

mediate activations of the model are not acted upon and the

model may converge to a point near where its intermediate

activations are unbounded, since model usually visits these

points in the early stages of the training. These allowed in-

termediate unbounded activations create outliers (very large

a few numbers). The outliers in intermediate layer activa-

tions, when uint8 quantized leads to some important infor-

mation carrying, comparably low amplitude values to be ze-

roed out. Hence effective signal energy reaching to the last

layer drops, which results in dull colors and drastic PSNR

drops.

With this motivation we believe if the intermediate layer

activations are forced not to visit these outlier creating

points from the beginning of the training, the model would

be more quantization friendly. This is exactly what hap-

pens when the model is trained with Clipped ReLU at the

last layer. A model trained with this mentality results in

only ∼0.2-0.5dB loss with respect to its floating counter-

part. This is better seen in Table 2 where we trained our

proposed model without Clipped ReLU and quantized the

resulting model and noted Div2K [1] validation accuracy.

Activation PSNR (fp32) PSNR (uint8) Drop

Linear 30.11 24.72 5.39

Clipped ReLU 30.10 29.82 0.28

Table 2: Effect of Clipped ReLU and Div2K Validation Set

PSNR Results with floating and uint8 quantized models

Note that Clipped ReLU is

Clipped ReLU(x) = max(0,min(x, 1)) (2)

so it is very cheap to calculate. Thus the computational

burden added to the model is minimal which is desired.



Furthermore, although placing a single Clipped ReLU

was enough to regularize the intermediate activations of our

proposed network, when a model gets deeper, regularization

effect might vanish for deeper layers, to overcome this issue

we suggest to change a few of the ReLU’s with Clipped

ReLU’s. We believe that clipping only a few ReLU’s is

enough to regularize the intermediate activations though we

have not experimented on this idea for this paper. Also note

that for intermediate Clipped ReLU’s clipping value does

not need to be 1 and it should either be experimentally found

or it should be included in the optimization as done in [19].

One drawback of using Clipped ReLU at the output layer

is unfortunately the model is harder to optimize since it cre-

ates a lot of flat regions with minimal or no derivative direc-

tion. Because of this reason, to converge to a better model,

a few training tricks needs to be employed which are ex-

plained in training details.

4. Experiments

4.1. Datasets

We used the supplied Div2K Dataset [1] for the chal-

lenge and no extra data is used. The dataset consist of

800 high quality training images and 100 validation images

along with 100 test images. During the challenge the test

images were not released. Due to this, while reporting our

results we only used validation set results (which are not

used either for training or validation). For a fair compari-

son, on standard benchmark datasets (Set5, Set14, BSD100,

Manga109, Urban100) with the existing work, we used our

floating point model and used Y channel of our output.

4.2. Training Details

For training, we splitted 800 training images into two

sets, we used the first 792 of training images for training

while keeping last 8 images for validation. We cropped

random 32x32 LR images and for data augmentation we

used geometric transformations (8 transformations - origi-

nal, rotations, flips) with equal probability. Furthermore, to

give more robustness to illumination changes we randomly

scaled the intensity of images with 1, 0.7 and 0.5 randomly.

As the loss function, we used Charbonnier loss [2] with

ǫ = 0.1 as defined in (3) since it is the smoother version

of L1 and we empirically found out that it works better with

Clipped ReLU

Charbonnier(x) =
√

x2 + ǫ2 (3)

As mentioned above, the critical part of the model devel-

opment was to include Clipped ReLU activation function.

This is however on the other hand results in a harder prob-

lem. So to still be able to converge to a performant model

following tricks were utilized;

Method PSNR SSIM Runtime Score

XLSR (ours) 29.58 0.86 44.85ms 51.02

2nd Method 29.41 0.8537 38.32ms 47.18

3rd Method 29.52 0.8607 62.25ms 33.82

4th Method 28.82 0.8428 76.61ms 10.41

5th Method 28.92 0.8486 718.32ms 1.28

Table 3: Mobile 2021 Real-Time Single Image Super Res-

olution Results and Scores on Div2K Test Dataset (not re-

leased)

• We used a triangular cyclic learning rate scheduling

strategy [25], which starts with a very low value (5e-

5) for the first epoch and quickly increases to the top

value(25e-4) in 50 epochs and slowly decreases to a

low value till 5000 epochs (1e-4).

• Trained the model with mini batch size 16 for 5000

epochs with each epoch containing 100 mini batches.

At the end of each epoch, we calculated the validation

set PSNR (last 8 images of training set) and saved the

best model for quantization

• Used Adam optimizer with default beta1=0.9 and

beta2=0.999 and epsilon=1e-8 values

• Initialized Conv2D layers with He-Normal with 0.1

Variance Scaling [20] The motivation behind this was

to initialize kernels to closer to zero and avoid large

numbers which might in turn create outliers in activa-

tion

For quantization, we used standard Tensorflow Post-

Quantization strategy and trained the model on NVIDIA

RTX 2080 Super. It takes about 2 hours to train our pro-

posed model in that hardware.

Our quantized model achieves the following runtimes in

Samsung Galaxy A21s using AI-Benchmark Tool 1 [14];

• CPU Runtime 1130ms

• NNAPI Runtime 1150ms

• GPU Delegate Runtime 620ms

XLSR also achieves an exceptional target platform run-

time of 45ms. Table 3 shows the results from Mobile AI

2021 Real-Time Super Resolution Challenge [13].

PSNR results of our proposed method, compared with

some of the work in the literature on the standard bench-

mark dataset and Div2K validation set can be seen in Ta-

ble 4. Note that for a fair and consistent comparison with

the literature, the result presented here are from our float32

model. Comparison of our quantized model with quantized

FSRCNN and ESPCN can be found in Table 5.

1https://ai-benchmark.com/download



Dataset Scale Bicubic FSRCNN ESPCN VDSR IMDN EDSR XLSR (ours)

Set5 x3 30.41 33.16 33.13 33.66 34.36 34.65 33.42

Set14 x3 27.55 29.43 29.42 29.77 30.32 30.52 29.73

B100 x3 27.22 28.60 28.50 28.82 29.09 29.25 28.55

Urban100 x3 24.47 26.48 26.41 27.14 28.17 28.80 26.71

Manga109 x3 26.99 30.98 30.79 32.01 33.61 - 31.63

Div2K(Val) x3 28.22 - - 30.09 - 31.26 30.10

Table 4: Comparison of our proposed method with public benchmark scores of other methods. Note that for fair and consistent

comparison with the literature, we used our floating point model and and converted RGB output of our method to Luminance

(Y) channel only while calculating PSNR for all dataset except Div2K

(a) Original: Div2K 0833

(b) HR

(c) ESPCN

(d) XLSR (ours)

(e) FSRCNN

(f) Original: Div2K 0823

(g) HR

(h) ESPCN

(i) XLSR (ours)

(j) FSRCNN

Figure 4: Example Images from Div2K Dataset. Note false colors and staircase gradient effect on quantized ESPCN and

FSRCNN output



Model FSRCNN* (dB) ESPCN* (dB) XLSR (dB)

float32 29.67 29.54 30.10

uint8 21.95 23.93 29.82

drop 7.72 5.61 0.28

Table 5: Effect of quantization on the existing methods and

our method on Div2K validation (x3 scale) set. (*) Our

implementation and training of the models to convert them

to RGB input and RGB output

5. Conclusion

In conclusion, we proposed a real-time single image su-

per resolution method driven by the hardware constraints

of the Mobile AI 2021 challenge, although it is driven by

the target hardware, the resulting model is very efficient in

terms of runtime and model parameters. We believe it can

run in many mobile hardware with high performance. The

proposed model easily surpasses many reported PSNR re-

sults of famous FSRCNN and ESPCN models and it even

reaches VDSR in most of the public datasets and surpasses

its performance on Div2K validation set though it has 30x

fewer parameters. Furthermore, the proposed architecture is

very robust to uint8 to quantization and only 0.28dB PSNR

drop is experienced when compared with float16/32 model.

This property of the model makes it a really good candidate

for many mobile devices.
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