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Abstract

Currently, 3D pose estimation methods are not compat-

ible with a variety of low computational power devices be-

cause of efficiency and accuracy. In this paper, we revisit a

pose estimation architecture from a viewpoint of both effi-

ciency and accuracy. We propose a mobile-friendly model,

MobileHumanPose, for real-time 3D human pose estima-

tion from a single RGB image. This model consists of the

modified MobileNetV2 backbone, a parametric activation

function, and the skip concatenation inspired by U-Net. Es-

pecially, the skip concatenation structure improves accu-

racy by propagating richer features with negligible compu-

tational power. Our model achieves not only comparable

performance to the state-of-the-art models but also has a

seven times smaller model size compared to the ResNet-50

based model. In addition, our extra small model reduces in-

ference time by 12.2ms on Galaxy S20 CPU, which is suit-

able for real-time 3D human pose estimation in mobile ap-

plications. The source code is available at: https://

github.com/SangbumChoi/MobileHumanPose.

1. Introduction

Due to the rapid development of deep convolutional

neural networks and heatmap representation, 3D human

pose estimation has significant performance improvement.

This improvement helps to unlock many problems of

widespread applications in human-computer interaction,

robotics, surveillance, AR (augmented reality), and VR

(virtual reality). In particular, Mobile Augmented Real-

ity (MAR) has recently attracted much interest in both

academia and industry. Therefore, constructing a 3D hu-

man pose estimation model with the restricted computa-

tional power is an important task. However, the perfor-

mance gain of a deep learning-based model comes with a

wider channel size and deeper convolution layer [44]. This

leads to an increment of computing cost, which is not suit-

able for resource-limited devices such as smartphones.

Figure 1. The difference between residual and skip con-

catenation structures. The residual concatenation is im-

plemented between adjacent blocks with down/up-sampled

features. In contrast, skip concatenation is a pure concate-

nation between the encoder and decoder with the same di-

mension.

Unfortunately, only two papers [10, 18] have dealt with

the issue of model efficiency in various 3D human pose es-

timation papers. However, both methods have significant

drawbacks with the following reasons: (a) Although differ-

ential architecture search (DARTS) [10] might effectively

search the network architecture of 3D human pose estima-

tion, the number of parameters and computational costs are
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Figure 2. Example of the overall implementation process with our model in a mobile application. First, individually cropped

images are fed into the MobileHumanPose model and the model gives the 3D joint coordinates. Second, the 3D joint

coordinates are plotted on the 3D space with the corresponding skeleton. Lastly, in the visualization process, an effect behind

the skeleton is removed and the remaining part of the effect is left in a camera viewpoint. Finally, it enables us to use various

virtual 3D effects in a real-world application.

not affordable to run on mobile devices. (b) Hwang et al.

[18] have proposed a more efficient model concerning the

number of parameters and FLoating Operations Per Second

(FLOPS). However, its performance is unsatisfactory com-

pared to other state-of-the-art methods. Additionally, there

is no clear consensus of generating a lightweight model ex-

cept for using a teacher-student learning algorithm. Be-

sides these two papers, in the practical aspect, most of the

training frameworks are implemented by PyTorch [34] in

3D human pose estimation. However, using Tensorflow [1]

lite is the only option to use Android Neural Networks API

(NNAPI) delegate [25], which fastens the inference time of

some models.

To overcome the limitations, we propose a mobile-

friendly network, which considers both performance and

computational cost. During the training process, we ob-

served that a lightweight backbone (e.g., MobileNetV2

[38]) is usually well-trained for an image classification task

whereas having a problem of fine-tuning for a 3D human

pose estimation task. To solve this problem, we use a ran-

domly initialized model, which is not pre-trained on any

datasets. Besides that, we modify the number of channels

at the first four inverted residual blocks, activation function,

and add skip concatenation (see Fig. 1) inspired by U-Net

[37]. Specifically, we propose two different types of con-

catenation structures, which are skip and residual, respec-

tively. Comparing with the residual concatenation, the skip

concatenation structure propagates richer contextual infor-

mation from the encoder to the decoder part, it improves

accuracy while maintaining efficiency.

In addition, we construct large, small, and extra small

models for a fair comparison with a viewpoint of model per-

formance and efficiency. With 68.9% fewer parameters and

48.8% fewer FLOPS, our large model achieves compara-

ble result to state-of-the-art models, which is 51.4mm Mean

Per Joint Position Error (MPJPE) on the Human3.6M [20]

dataset, and 79.6% 3D Percentage of Correct Keypoints

(3DPCKrel) on the MuPoTS [29] dataset. We provide the

extra small model not only has a low model size (2.98MB)

without post-quantization but also overwhelming accuracy

of about 27.7mm compared to MoVNect (1.31MB) [18]

while having faster inference speed (12.2ms vs. 22.0ms).

Our main contributions are summarized as follows:

• We investigate the under-studied efficiency problem in

3D human pose estimation while existing methods are

focusing on improving the accuracy with the high com-

putational cost.

• We propose an efficient model, called MobileHuman-

Pose, for real-time 3D human pose estimation. It con-

sists of various modifications from MobileNetV2, the

skip concatenation from U-Net, and a parametric acti-

vation function. This architecture yields the best per-

formance with the restricted computational power (less

than 10 GFLOPS) compared to the similar alternative

[18].

• We contribute to develop a real-world mobile applica-

tion based on 3D human pose estimation by releasing

our code. Figure 2 visualizes the examples of visual

effects that can be derived from 3D pose estimation re-

sults.



2. Related work

Efficient architecture After the public release of

AlexNet [23] and VGG [40], many researchers have pro-

posed deeper and wider neural networks. However, there

was a gradient vanishing problem as the layer depth of

the network increases. To solve this problem, He et al.

[16] used residual connections to keep the signal strength

of back-propagation. While the above neural networks are

aimed at the performance of diverse tasks, some networks

are specifically intended for resource-constrained circum-

stances. For example, the inverted residual block has a

small number of parameters and low computational cost in

MobileNetV2 [38] by using depthwise convolution in the

expansion layers. Furthermore, Zhou et al. [53] pointed out

the bottleneck problem of the inverted residual block and

proposed MobileNeXt, which is the revised version of the

inverted residual block to enhance accuracy in diverse tasks.

In addition, many Neural Architecture Search (NAS)

based papers came out for model efficiency. MNasNet

[43] used the NAS algorithm specifically aimed at mo-

bile devices. Additionally, MobileNetV3 [17] is improve-

ment of MNasNet by using NetAdapt [49]. Besides using

cheap operators such as pointwise and depthwise convo-

lution, recently Han et al. [13] proposed ‘ghost module’,

which reduces a channel dimension to have low computa-

tional power while maintaining information.

In these existing networks, we study the compatibility of

various lightweight backbones in the pose estimation task

and examine the problem of weight initialization.

2D human pose estimation Existing 2D human pose es-

timation methods can be divided into bottom-up and top-

down approaches. The bottom-up approach [19, 22, 32] is

to search all possible candidates of human joints and obtain

the most accurate connection between the joints. Cao et al.

[7] used Part Affinity Field (PAF) to match corresponding

joints in multi-person circumstances.

In contrast, the top-down approach [9, 48, 33, 47] is to

use a human detector to find the bounding boxes of each

person in a single image. Individually cropped images are

fed into the model of the human pose estimator to extract a

2D heatmap for each joint. Tang et al. [45] proposed quan-

tized and densely-connected U-Net [37] to improve infor-

mation flow. Otherwise, Tosheve et al. [46] suggested ex-

tracting joints’ value with a fully connected layer to reduce

model complexity. The current state-of-the-art of this task

[4] not only used a hybrid network that consists of Hour-

glass [33] and U-Net [37] but also proposed soft-gated skip

connections to learn more complicated functions.

We investigate the effectiveness of the U-Net structure

used in 2D human pose estimation and transfer this effec-

tiveness to the 3D task by proposing two types of different

concatenations.

3D human pose estimation 3D human pose estimation

Method Avg.

Random Initialization 56.38

Pre-trained on ImageNet 57.09

Table 1. Performance comparison between a randomly ini-

tialized model and pre-trained model on ImageNet. For

evaluation, we used Human36M protocol 2 [20]. Metric:

MPJPE (mm).

methods can be categorized into two-stage and one-stage

approaches. The two-stage approach [8, 26, 51, 11] is sep-

arated by extracting 2D joints of humans and lifting them

into the 3D spaces. In contrast, the one-stage approach

[3, 41, 35, 50, 27, 39, 31] is based on a volumetric heatmap

to extract 3D joints. Sun et al. [42] introduced a volumet-

ric heatmap, which uses a regression method to estimate 3D

joints by integrating all weights by their probabilities. Since

the accuracy of two-stage approach is highly related to the

2D joint prediction, our method follows the one-stage ap-

proach.

However, most of the pose estimation papers focus on

the performance and the models require high computa-

tional costs beyond the budgets of many mobile applica-

tions. Among various 3D human pose estimation papers,

only two of them introduce the model efficiency problem.

Chen et al. [10] used NAS to obtain a part-specific archi-

tecture in this task. As a result, the method achieved state-

of-the-art on various datasets. Hwang et al. [18] proposed

MoVNect, which is a combination of VNect [30] and Mo-

bileNetV2 [38]. They also used knowledge distillation to

transfer the information from the teacher model. However,

both methods [18, 10] did not satisfy the perfect balance be-

tween model accuracy and efficiency. To handle this prob-

lem, we propose a new lightweight model for 3D human

pose estimation from a single RGB image.

3. Proposed Method

3.1. Issue of initialization

Most of the 3D human pose estimation papers [48,

31, 18, 36, 39, 42] use backbone networks pre-trained on

the ImageNet dataset [23]. However, He et al. [14] re-

emphasized that a randomly initialized network is no worse

than the pre-trained network on the ImageNet dataset. To

prove this hypothesis in 3D human pose estimation, we an-

alyze the training loss of our backbone network when each

learning process is initialized from the following parame-

ters: random initialization and pre-trained on ImageNet. As

a result, the randomly initialized network has a lower eval-

uation error, which is 56.38mm Mean Per Joint Position Er-

ror (MPJPE) shown in Table 1.



(a) Baseline

(b) Residual concatenation

(c) Skip concatenation

Figure 3. An illustration of the proposed concatenation structure. The skip concatenation is used for our final model.

3.2. MobileHumanPose

Among the previous 3D human pose estimation meth-

ods, models proposed by Moon et al. [31] and Chen et al.

[10] focused on accuracy rather than efficiency. We fol-

low the basic encoder-decoder structure (e.g., bottleneck di-

mension and volumetric heatmap dimension) where the en-

coder performs global feature extraction and the decoder

estimates the pose estimation. However, we modified the

backbone block itself and channel size at the first four in-

verted residual blocks, an activation function, and imple-

ment the skip concatenation from U-Net [37].

Backbone network Although we choose the baseline

structure of Chen et al., it is necessary to find an appro-

priate lightweight backbone for model efficiency. We com-

pare the performance of the ResNet family [16] and that

of various lightweight networks (see Table 2). All back-

bones are implemented from the initial layer to the first

intermediate block that reaches 8 × 8 dimensions from

the aforementioned pose estimation structure. In Table

2, MNasNet [43] scores the lowest MPJPE among the

lightweight backbones. However, for a fair comparison with

MNasNet, MobileNetV2 [38] still has more computational

budget (3.36M/1.48G) to have a similar model efficiency

(4.23M/1.49G). Therefore, we modify the channel size at

the first four inverted residual blocks of MobileNetV2 for

performance gain. Finally, by comparing the modified ver-

sion of MobileNetV2 and MNasNet, we choose the former

network as our backbone.

Activation function Bulat et al. [5] show that perfor-

mance increases when the Parametric ReLU (PReLU) [15]

function is used in a 2D human pose estimation task. Since

the PReLU function has a learnable parameter contrast to

ReLU, it derives additional information in each layer. The

PReLU function, f is defined as the following equation:

f(yi) =

{

yi, if yi > 0

aiyi, if yi ≤ 0
, (1)

where ai and yi denote as a learnable parameter and input

signal.

Therefore, we apply PReLU to 3D pose estimation as

well. We also compare the PReLU and ReLU activation

functions with the same training condition in this study.

Figure 3 (a) shows the baseline of our method after mod-

ifying the activation function.



Skip concatenation Most of the functions (e.g.,

Conv2D, ReLU) in PyTorch [34] are counted as FLOPS.

Even though our baseline structure achieves great model ef-

ficiency, it is important to use FLOPS uncountable functions

(e.g., Concat, Bilinear) appropriately in a viewpoint of the

inference speed. Considering the above factor, we propose

two types of different concatenation structures. Specific de-

tails are shown in Fig. 3 (b) and (c).

For the residual concatenation, we use an average pool-

ing function to match the dimension in the encoder part and

use a bilinear function in the decoder part. We use a pure

concatenation of two different outputs that have the same di-

mension in the skip concatenation. Bulat et al. [4] claimed

that at least for some cases, residual connections will not

fully perform and degrade the performance. Accordingly,

we choose the skip concatenation, which can derive the low-

level feature signal from the encoder to the decoder in con-

trast to the residual concatenation.

Loss We use the L1 loss [31, 10] between the ground-

truth and predicted coordinates. Our loss L is defined as the

following equation:

L =
1

J

J
∑

j=1

‖Pj − PGT
j ‖, (2)

where GT denotes the ground-truth.

4. Experiment

4.1. Datasets and settings

Datasets and evaluation metrics We used Human3.6M

[20] and MuCo-3DHP [29] as 3D human pose datasets.

While training Human3.6M, we employed the additional

2D human pose MPII dataset [2]. A z-value for 3D coordi-

nate becomes zero for the input of this training while using

MPII. Human3.6M dataset is split into two protocols named

Protocol 1 and Protocol 2. Protocol 1 consists of S1, S5, S6,

S7, S8, S9 for training and S11 for testing. Protocol 2 con-

tains S1, S5, S6, S7, S8 for training and S9, S11 for testing.

For the evaluation of pose estimation methods, two popular

metrics are used: Mean Per Joint Position Error (MPJPE)

for protocol 1 and Procrustes Analysis Mean Per Joint Po-

sition Error (PA-MPJPE) for protocol 2.

For another training process, we used MuCo-3DHP and

the additional 2D human keypoint detection COCO dataset

[24]. MuCo-3DHP is a 3D single-person pose dataset,

which consists of MPI-INF-3DHP dataset. The test set,

MuPoTS-3DHP, includes 20 real-world scenes with the

ground-truth of 3D poses for up to three subjects captured

in outdoor circumstances. We adopted a 3D Percentage of

Correct Keypoints (3DPCKrel) evaluation metric after root

alignment with ground-truth data.

Implmentation details We used a random initialization

method based on the experiment of section 3.1 because the

Backbone Param. FLOPS Avg.

GhostNet 2.02M 1.21G 83.73

MobileNetV3 4.28M 1.39G 70.94

MobileNeXt 1.83M 1.39G 61.27

MobileNeXt* 1.83M 1.39G 61.19

MNasNet 4.23M 1.49G 55.85

MobileNetV2 3.36M 1.48G 56.38

MobileNetV2* 3.36M 1.48G 57.09

ResNet18 12.55M 3.46G 56.96

ResNet18* 12.55M 3.46G 53.45

ResNet50 28.42M 7.36G 54.80

ResNet50* 28.42M 7.36G 53.79

Table 2. Comparison with various backbone networks. * in-

dicates the corresponding network pre-trained on ImageNet.

Metric: MPJPE (mm).

pre-trained backbone is not necessary for the performance

gain. The initial learning rate is set to 10−3 and divided

by a factor of 10 at the 17th and 21th epochs. The Adam

[21] optimizer with a mini-batch size of 24 was used in this

training. We trained the MobileHumanPose mdoel for 25

epochs with two NVIDIA TITAN RTX GPUs, which took

three days. We performed the data augmentation followed

by [31], which includes rotation, horizontal flip, color jit-

tering, and synthetic occlusion [52]. We also presented the

horizontal flip augmentation in the testing phase.

Framework We used the PyTorch [34] framework for

training our baseline and the TFLite [1] framework for im-

plementing in mobile devices. The default hyperparameter

values (i.e., momentum, epsilon, and other values) between

PyTorch and Tensorflow are fixed to PyTorch values when

training on Tensorflow.

4.2. Comparison with various backbones

As shown in Table 2, the performance of GhostNet [13],

MobileNetV3 [17], and MobileNeXt [53] is not robust

enough compared to the remainder, so we excluded these

candidates. We chose the best performing backbone, which

has the different channel size at the first four inverted resid-

ual blocks in MobileNetV2 [38].

4.3. Ablation study

Initialization and channel modification Table 3 shows

that our modified version of MobileNetV2 [38] has lower

MPJPE in both random initialization and pre-trained on the

ImageNet dataset [23].

Activation function Table 4 shows the effectiveness of

activation functions. Using the PReLU function achieves

2.65mm lower MPJPE contrast to the ReLU function.

Whereas the PReLU function requires additional back-

propagation memory consumption on GPU due to the extra



Backbone Param. FLOPS Avg.

MobileNetV2 3.36M 1.48G 56.38

MobileNetV2* 3.36M 1.48G 57.09

MobileNetV2† 3.36M 1.74G 55.53

MobileNetV2∗† 3.36M 1.74G 56.24

Table 3. Comparison between random initialization and

pre-training methods on the Human36M protocol 2 [20]. *

and † indicate the network pre-trained on ImageNet and the

modified version of the initial four inverted residual blocks,

respectively. Metric: MPJPE (mm).

Activation Param. FLOPS Avg.

ReLU 4.03M 5.43G 54.09

PReLU 4.03M 5.43G 53.09

Table 4. Comparison with different activation functions.

The default value of the width multiplier and intermedi-

ate layer size is set to 1.0 and 2048, respectively. Metric:

MPJPE (mm).

Res.

con.

Skip

con.
Param. FLOPS Avg.

- - 4.03M 5.43G 53.09

X - 7.25M 11.45G 54.77

- X 4.07M 5.49G 51.44

Table 5. Comparison of different ways to construct the var-

ious types of concatenation. The default value of the width

multiplier and the intermediate layer size is set to 1.0 and

2048, respectively. Metric: MPJPE (mm).

variable of slope, there was no significant difference with

the ReLU activation function in terms of throughput and in-

ference time, which allows us to use PReLU in a real-world

application.

Concatenation structure Table 5 shows the effective-

ness of concatenation in the baseline architecture. Com-

pared to Fig. 3 (a) and (c), it indicates that the skip concate-

nation derives richer information to a deeper layer of the ar-

chitecture to enhance the performance of this task. The per-

formance result of Fig. 3 (a) and (b) shows that the residual

concatenation is not performed well even though FLOPS

and the number of parameters dramatically increased due to

enlarging a channel size in each layer.

Cost effectiveness We extensively examined our pro-

posed architecture design from a viewpoint of two dimen-

sions: backbone width multiplier and the channel size at the

intermediate layer (see the intermediate layer shown in Fig.

3). We defined our small model as 0.75 width multiplier

and 512 channels in the intermediate layer and large model

as 1.0 width multiplier and 2048 channels in the interme-

diate layer. Table 6 shows the result of architecture effi-

Methods
Width

multi.

Inter.

layer
Param. FLOPS Avg.

Ours-S 0.75 512 2.24M 3.92G 56.94

Ours 1 512 3.33M 5.44G 54.24

Ours 0.75 1024 3.43M 3.93G 56.57

Ours 1 1024 3.58M 5.46G 54.79

Ours 0.75 2048 2.80M 3.96G 53.39

Ours-L 1 2048 4.07M 5.49G 51.44

Table 6. Cost effectiveness analysis of our proposed model.

Metric: MPJPE (mm).

ciency and the performance of diverse architectures. Since

the width multiplier is related to the whole encoder struc-

ture, reducing this parameter gave a strong architecture ef-

ficiency, which is related to the throughput and inference

time. However, the result also shows a strong dependency

between information capacity and width multiplier. On the

other hand, the results of 512 and 1024 intermediate chan-

nel sizes show a relatively small performance variation in

contrast to 1024 and 2048. This indicates that the bottle-

neck of information capacity relies on the encoder part and

512 intermediate channel size is enough to be implemented

in a small model.

4.4. Comparison with state­of­the­art methods

We compared the performance and efficiency on Hu-

man3.6M [20] and MuPoTS [29] including the state-of-the-

art methods. Figure 4 shows the qualitative result by using

our large model in various images.

H36M Table 8 shows the comparison of various mod-

els on Human3.6M protocol 2. In a viewpoint of accuracy,

our large model achieves 51.44mm Mean Per Joint Posi-

tion Error (MPJPE), which is a comparable result in con-

trast to state-of-the-art methods. However, computational

costs (i.e., FLOPS and number of parameters) of our model

have only 5.0 times fewer number of parameters (4.07M vs.

20.4M) and 2.6 times fewer FLOPS (5.49G vs. 14.1G) in

contrast to the model of Chen et al. [10]. In addition, we

evaluate a small model of our method. Our small model

achieves 56.94mm MPJPE with having 2.24M number of

parameters and 3.92 GFLOPS.

Table 7 shows the comparison of various models on Hu-

man3.6M protocol 1. The tendency of the evaluation score

is similar to Table 8. However, the average difference be-

tween the large and small model is decreased compared to

Table 8.

MuPoTS For the multi-person 3D pose estimation task,

we used RootNet [31] to estimate the absolute coordi-

nate for each person. In Table 9, we compared with the

small model of Chen et al. [10] and Moon et al. [31].

Among 20 scenes on MuPoTS, our large model achieves



Methods Dir. Dis. Eat. Gre. Phon. Pose Pur. Sit. SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg. Param.

Martinez [26] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7 -

Fang [12] 38.0 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7 -

Sun [42] 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6 34.00M

Moon [31] 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0 34.34M

Chen [10] 27.5 30.9 34.0 35.5 32.4 30.8 31.9 32.7 41.9 36.3 39.1 28.4 23.3 37.1 27.0 32.7 20.40M

Ours-S 30.3 32.9 38.4 35.4 34.9 32.1 32.3 37.6 49.6 38.2 42.2 31.3 26.9 37.8 31.6 35.7 2.24M

Ours-L 31.0 32.7 37.5 34.3 35.1 31.4 32.1 37.3 47.9 38.7 40.6 30.6 26.2 37.5 30.6 35.2 4.07M

Table 7. Comparison with state-of-the-art methods on Human3.6M using Protocol 1. Metric: PA-MPJPE (mm).

Methods Dir. Dis. Eat. Gre. Phon. Pose Pur. Sit. SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg. Param.

Hwang [18] 72.4 83.4 76.9 82.1 101.9 70.4 91.8 156.5 193.0 92.8 108.4 85.1 76.8 97.2 70.5 97.3 1.03M

Mehta [30] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5 14.60M

Martinez [26] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9 -

Fang [12] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4 -

Moon [31] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3 34.34M

Sun [42] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6 34.00M

Chen [10] 41.4 48.6 42.0 45.3 47.1 42.3 46.0 57.9 62.1 47.8 51.2 43.6 36.1 51.1 41.4 47.3 20.40M

Ours-S 51.1 58.7 49.9 53.0 58.3 48.9 53.0 70.9 77.5 58.2 61.0 51.9 42.9 58.6 50.0 56.9 2.24M

Ours-L 45.5 51.8 45.9 48.4 52.1 43.7 48.2 63.6 70.2 52.4 56.2 46.2 40.2 54.9 45.4 51.4 4.07M

Table 8. Comparison with state-of-the-art methods on Human3.6M using Protocol 2. Metric: MPJPE (mm).

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg.

Mehta⋆[28] 89.7 65.4 67.8 73.3 77.4 47.8 67.4 63.1 78.1 85.1 75.6 73.1 65.0 59.2 74.1 84.6 87.8 73.0 78.1 71.2 72.8

Chen†[10] 93.1 76.7 79.9 78.2 83.6 64.6 79.0 72.5 87.6 88.3 76.1 79.4 71.1 70.6 77.7 86.6 87.1 80.3 79.5 72.0 79.2

Moon [31] 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2 81.8

Ours-S 89.5 72.1 72.4 75.4 81.0 67.1 80.2 64.0 83.7 89.6 76.5 80.9 68.4 68.2 80.9 89.5 88.4 82.8 72.8 68.7 77.6

Ours-L 91.0 82.5 77.1 74.3 84.1 67.9 79.2 76.0 84.0 90.7 74.5 77.5 68.1 76.0 77.7 88.0 87.9 82.7 78.3 75.0 79.6

Table 9. Comparison with state-of-the-art methods on MuPoTS-3D using all ground-truth. ⋆ denotes as stage ii and † denotes

as a small model of the corresponding paper. Metric: 3DPCKrel(%).

superior performance in contrast to the small model of

Chen et al. on half of the scenes and scores state-of-the-

art performance on few scenes. Additionally, our large

model (2.24M/3.92GFLOPS) outperforms the small model

of Chen et al. (13.0M/10.7GFLOPS) in a viewpoint of

model efficiency. Qualitative results can be seen in Fig. 5.

4.5. Inference analysis

Since our method contains a heavy computation func-

tion, which is a softmax function to give actual 3D joint

coordinates from a volumetric heatmap, we compared both

the softmax and non-softmax model in the inference stage

because the softmax function can be easily implemented in

C++ to reduce the inference time. To be specific, the out-

put after the softmax function is denoted as Pj and before

is PS
j , which is an output of the volumetric heatmap.

Pj = E(softmax(PS
j )) ∈ R1×1×3,

PS
j ∈ R1×64×64×64,

(3)

where j indicates a single joint in the human body.

In this experiment, we define ‘Throughput’ usually

known as frame per second when the batch size is set to

one [6]. It is a variable to measure the speed performance

of the model in diverse processing units. N is denoted as the

number of iterations, which is 100, B is the optimal batch

size, which is one, and T is set to the total inference time of

the whole inference process.

Throughput =
NB

T
. (4)

We compared the inference time of Hwang et al. [18],

Moon et al. [31], and our models. In Table 10, we used

Titan RTX Graphic Processing Unit (GPU) to evaluate the

PyTorch [34] framework experiment, and TFlite is based

on the Tensorflow [1] framework tested on Galaxy S20.

Our large model outperforms the model of Moon et al. in

all sectors, which are throughput, inference time, accuracy,

and model size. Our extra small model is specially aimed

for a mobile application, which has 0.5 width multiplier,

512 channels in the intermediate layer, and half resolution

(32× 32× 32) of the volumetric heatmap compared to the

original shape (64× 64× 64). Our extra small model has

the comparable size (2.98MB) to MoVNect (1.31MB) [18]

but advances 27.7mm MPJPE and reduces 9.8 ∼ 12.2ms

inference time.



Methods
PyTorch - Titan RTX (Throughput) TFlite - Galaxy S20 (ms)

Avg. Param.
TFlite

size (MB)GPU CPU GPU NNAPI

Moon†∗[31] 107.0 ± 0.7 251.0 ± 4.9 231.0 ± 2.7 809.0 ± 10.4 53.3 34.34M 133.90

Ours-L† 141.6 ± 1.3 108.0 ± 6.9 109.0 ± 3.2 135.0 ± 5.6 51.4 4.07M 5.59

Ours-S† 147.4 ± 1.1 85.2 ± 3.2 87.4 ± 2.8 110.0 ± 4.5 56.9 2.24M 3.81

Hwang⋆[18] - 22.0 ± 5.0 25.2 ± 4.9 32.0 ± 5.2 97.3 1.03M 1.31

Ours-XS† 161.7 ± 1.3 12.2 ± 4.2 13.0 ± 4.0 21.1 ± 5.6 69.6 0.96M 2.98

Table 10. Measuring throughput on Titan RTX and inference time on Galaxy S20 settings. The higher value in throughput

and lower value in inference time designate better performance. † indicates the baseline architecture without the softmax

layer. ∗ and ⋆ indicate official/unofficial implementation in both frameworks, repectively. Metric: MPJPE (mm).

Figure 4. Qualitative results on various images crawled from the Web.

Figure 5. Qualitative results on MuPoTS.

4.6. Applications

Our proposed model can be implemented on various mo-

bile applications that have a suitable format for 3D avatar

control. In particular, our extra small model has extremely

low inference time, it is capable of a real-time application.

We developed Android and Unity3D a custom dispatcher to

communicate 3D joints coordinate to use various visual ef-

fects from Unity3D. We will also release our code for a de-

velopment of mobile applications based on 3D human pose

estimation.

5. Conclusion

In this paper, we mainly focused on constructing a

lightweight model and improving accuracy with detailed

experiments. We claimed that the lightweight backbones

are not performing well in the pose estimation task. To

handle this problem, we suggested the modified version of

backbone network based on MoblieNetV2 [38]. Also, we

employed the skip concatenation and the parametric acti-

vation function to improve the accuracy while maintaining

cost efficiency in contrast to the baseline architecture. Ac-

cordingly, we constructed MobileHumanPose, which is the

most precise and compact model that can be implemented

in mobile devices. The strategies implemented in this pa-

per are not only restricted to the top-down and one-stage

methods but also can be used in all kinds of 3D human pose

estimation. We hope that this work gives a new idea for

real-time 3D human pose estimation in mobile devices.
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