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Abstract

Monitoring wildlife through camera traps produces a

massive amount of images, whose a significant portion does

not contain animals, being later discarded. Embedding

deep learning models to identify animals and filter these

images directly in those devices brings advantages such as

savings in the storage and transmission of data, usually

resource-constrained in this type of equipment. In this work,

we present a comparative study on animal recognition mod-

els to analyze the trade-off between precision and inference

latency on edge devices. To accomplish this objective, we

investigate classifiers and object detectors of various input

resolutions and optimize them using quantization and re-

ducing the number of model filters. The confidence thresh-

old of each model was adjusted to obtain 96% recall for the

nonempty class, since instances from the empty class are

expected to be discarded. The experiments show that, when

using the same set of images for training, detectors achieve

superior performance, eliminating at least 10% more empty

images than classifiers with comparable latencies. Con-

sidering the high cost of generating labels for the detec-

tion problem, when there is a massive number of images

labeled for classification (about one million instances, ten

times more than those available for detection), classifiers

are able to reach results comparable to detectors but with

half latency. 1

1. Introduction

The use of camera traps is a strategy for passive wildlife

monitoring that involves installing cameras with presence

sensors that, when triggered, activate a process of record-

ing short sequences of images or videos of animals. The

objective aimed on this strategy is to generate data showing

animal in their daily lives, without interfering with the ani-

mals’ natural behavior [13]. However, it is very common to

1Code and models are publicy available at https://github.com/

alcunha/filtering-empty-camera-trap-images

have a very large number of images collected with no ani-

mals (empty) due to sensor accidental triggering, e.g. about

75% of the images from the Snapshot Serengeti dataset do

not contain animals [18].

In recent years, several studies have investigated the use

of deep learning models to recognize animals in camera trap

images [2, 13, 17, 19, 24, 25]. Due to the development of

new technologies for this type of monitoring, embedding

models to identify animals directly in the devices may pro-

vide advantages. For instance, in projects whose equipment

is connected to a network, prior filtering avoids the unnec-

essary transmission of empty images, saving network band-

width and energy [4]. Another example are traditional ap-

proaches, which usually involve going to the capture points

to retrieve cameras and/or memory cards [22]. In this case,

discarding empty images can save data storage, extending

the time a camera can stay in the field collecting images

without needing maintenance.

Although there are studies comparing the performance of

several modern deep learning architectures on recognizing

animals in camera trap images [13, 17, 24], there are few

studies regarding the trade-off between model performance

and inference latency directly on edge devices. In [23],

Tydén and Olsson evaluate object detection models on a

Raspberry Pi applied to recognize animals. However, the

used image dataset is composed of 4,000 instances com-

prising only 8 species, limiting the scope of the conclu-

sions. In a similar strategy, Zualkernan et al. [27] evaluate

several classifiers on a Raspberry Pi aiming to identify an-

imals. Nonetheless, they do not detail latency assessment.

Finally, Schneider et al. [17] suggest that detection models

would be better than classification models for recognizing

animals, but requiring higher computational power on the

other hand. Thus, this work presents a comparative study

between classifiers and detectors of different complexities

running on edge devices to recognize nonempty images.

Our main findings are as follows:

• Detection models generally outperform classifiers with

comparable latency if they are trained on the same

camera trap image set.



• Classifiers can obtain high performance on empty im-

age identification, given the difficulty of generating la-

bels to train detectors. The performance, however, de-

pends on the amount of images available for training,

as well as on specific factors that can vary from dataset

to dataset.

• Models with a higher input resolution perform better.

Their inference latency can be kept low by reducing the

number of model filters at an acceptable performance

cost for the problem.

2. Related Work

Several works apply deep learning techniques to recog-

nise animals in camera trap images. Some studies classify

the species assuming that an animal has already been iden-

tified on the scene [24]. A second approach adds an ex-

tra class to the model to identify empty images, sometimes

called negative class or background class [2, 17, 19]. There

are also approaches composed of two stages. In the first

stage, a model recognizes whether there are animals in the

scene, while in the second stage another model is responsi-

ble for the species identification [13, 25].

From a different perspective, animal detection-based ap-

proaches first focus on localizing animals in images and

further classifying their species. In this context, MegaDe-

tector [1] is a model based on the Faster R-CNN [14] ob-

ject detector trained on a large number of camera trap im-

ages whose objective is to be a generalist animal detector.

MegaDetector was trained to be capable of localizing ani-

mals in images from different ecosystems in the world, even

species not seen during its training. Its primary idea is not

species identification but only to find and localize animals.

The species identification task must be performed by a clas-

sifier trained specifically for each project. However, since

not all images used for training MegaDetector are publicly

available due to licensing restrictions, it is not possible to

reproduce the same experimental conditions as in [1]. In

addition, Faster R-CNN requires high processing power and

is not suitable for running on edge devices [16].

In line with the idea of reducing complexity, some stud-

ies compare the accuracy of Convolutional Neural Net-

works of varied complexities in the task of extracting infor-

mation from camera trap images using classification mod-

els [13, 17, 23, 24]. Norouzzadeh et al. [13] trained several

architectures to recognize nonempty images. In their ex-

periments, the VGG16 architecture reached the best result,

precisely 96.8% of accuracy rate. It is noteworthy, however,

that ResNet18 achieved an accuracy of 96.3%, just 0.5% be-

low the accuracy attained by VGG16, and equal to or higher

than other deeper models in the same ResNet family. On the

other hand, even though ResNet18 is less complex, it was

not designed for inference on edge devices.

The scenario is different in [17], where Schneider et

al. evaluated more efficient and lightweight deep mod-

els, including the MobileNetV2 and NASNetMobile archi-

tectures, in animal species classification. These models,

designed specifically for computationally limited devices,

reached accuracy 2.5% and 5% (in absolute values) lower

than accuracy attained by DenseNet201 - the high-complex

baseline. As expected, DenseNet201 achieved the best re-

sult: accuracy of 95.6% when tested on images from the

same training locations; and 68.7% on images from loca-

tions not trained on.

Despite investigating more efficient and/or lightweight

deep models, previously mentioned works did not focus

on carrying out tasks on computationally limited devices.

This is precisely the objective aimed on Tydén and Olsson’s

work [23]. These authors study the trade-off between com-

putational performance and accuracy of the SSD [12] de-

tector and its optimized version SSDLite [16] (using Incep-

tionV2 and MobileNetV2 as backbones) to recognize ani-

mals using the Raspberry Pi development board. However,

the dataset investigated is composed of approximately only

4,000 images distributed among 8 classes, which may im-

pose a limitation to the scope of the conclusions provided.

Finally, in terms of classifiers, Zualkernan et al. [27]

evaluate InceptionV3, DenseNet121, ResNet18 and Mo-

bileNetV2 models on animal recognition using a dataset

composed of 34,000 images. Despite comparing all these

models in terms of accuracy, only InceptionV3 was evalu-

ated on a Raspberry Pi 4B to verify inference latency.

Therefore, in this work, several architectures developed

specifically for low computational power devices are ana-

lyzed to perform the task of animal recognition in camera

trap images. Instead of focusing on a specific set of species,

we analyse in this work the models’ ability to recognize an-

imals, regardless of their species, similar to the process pro-

posed for MegaDetector [1]. In this case, we test images

from the same training sites and from new locations, as it is

also done in [17]. However, unlike the latter, which inves-

tigated only classification models, in this work we compare

classification and detection models. In addition, we evalu-

ate other optimization approaches, such as quantization and

reducing the number of model filters.

3. Materials and Methods

Two datasets are investigated in this paper: 1) Cal-

tech Camera Traps; and 2) Snapshot Serengeti (SS). These

datasets are described below.

3.1. Datasets

Caltech Camera Traps [2]: It contains 243,100 im-

ages taken from 140 capture locations in the Southwestern

United States. The instances were labeled in 22 categories,

and about 66,000 bounding boxes localizing animals were



also provided. For our experiments, we selected a subset of

images from the empty and nonempty classes, grouping into

the nonempty class images from all other categories that

have bounding boxes. Then, the dataset was partitioned into

training and validation set according to the locations recom-

mended in [9]. Moreover, a subset of the training partition

was split, consisting of 20 locations chosen at random, to

be used to adjust the training hyper-parameters (called here

validation dev). Due to the fact that some locations concen-

trate a large number of images of the empty class, which

may lead the models to be biased in certain backgrounds,

we decided to limit to 1000 instances per location the num-

ber of empty class instances in both training and validation

dev partitions. Table 1 summarizes the number of instances

obtained.

Class Training Val dev Validation

Empty 8574 2824 19892

Nonempty 32032 3877 23410

Table 1. Number of images used from the Caltech dataset. The

empty class of training and validation dev partitions was limited

to 1000 instances per location. The nonempty class is composed

of images with bounding boxes from all other categories.

Snapshot Serengeti [18]: This dataset currently con-

tains more than 7 million camera trap images collected over

11 seasons in the Serengeti National Park, Tanzania. In this

work, we use images from the first six seasons in order

to keep consistency with previous works using the Snap-

shot Serengeti dataset [13, 24, 25]. These images were di-

vided into training and validation sets according to the loca-

tions (SS-Site), as recommended in [10]. As was done for

the Caltech dataset, we have also created a validation dev

split for hyper-parameter adjustment. This partition was ob-

tained by randomly selecting 23 locations from the training

set. In addition to the SS-Site configuration, we have also

performed a partitioning by time (SS-Time) taking into ac-

count that the models could be used in images from new

seasons. To generate SS-Time, the first four seasons were

grouped into a training set, while the fifth season was used

as validation dev, and the sixth season as the validation set.

Finally, the dataset was adapted to represent a bi-class prob-

lem, where instances from the blank category were labeled

to the empty class and the others were used to compose the

nonempty class. We also balanced the classes for the train-

ing partition.

In addition, since there are approximately only 78,000

images from the nonempty class annotated with bounding

boxes, we also perform experiments using subsets of in-

stances (called small), which are balanced for the training

and validation dev partitions. The objective here is to per-

form a fair comparison between classifiers and detectors

when both are trained using the same number of images.

Unless otherwise specified, the experiments conducted in

this work use these subsets with fewer images. Details

about all data partitions of the Snapshot Serengeti dataset

investigated in this work are shown in Table 2.

Class Training Val dev Validation

SS-Site
Empty 524804 278578 535817

Nonempty 523891 84531 209183

SS-Site

(small)

Empty 51281 6041 535817

Nonempty 52081 6041 209183

SS-Time
Empty 516635 588406 383981

Nonempty 516630 225647 75328

SS-Time

(small)

Empty 43612 18957 383981

Nonempty 44579 18957 75328

Table 2. Number of instances used from the Snapshot Serengeti

dataset.

3.2. Architectures

The MobileNetV2 [16] architecture is a natural choice to

be used as a classifier baseline, since it was designed specifi-

cally for computationally limited devices. Besides the orig-

inal MobileNetV2 model (input resolution 224 × 224), a

version with input 320 × 320 was also used in our experi-

ments due to the fact that animals can appear very far from

the camera and visually small as a consequence [13].

Recently, a new family of models called Efficient-

Net [20] was developed, whose input resolution, depth

and number of filters are scaled together from the base

model. These models obtained superior performance on Im-

ageNet [15] when compared to models with a similar num-

ber of parameters and FLOPS, reaching the state of the art

with the most complex version (EfficientNet-L2). In this

work, the EfficientNet-B0 (224× 224) and EfficientNet-B3

(300 × 300) versions were chosen, since they have input

resolution comparable to MobileNetV2’s.

For the detectors, we investigate the SSDLite [16] with a

MobileNetV2 (320× 320 input) as backbone. Considering

that a new family of detectors was recently developed using

EfficientNets as backbones [21], we also included in our ex-

periments the EfficientDet-D0, which works with an input

resolution 512× 512, the smallest of this group of models.

3.3. Implementation Details

Image preprocessing for classification: We chose a

standard procedure for image preprocessing. Initially, a ran-

dom rectangular crop of the image is applied with aspect

ratio and area sampled in [3/4, 4/3] and [65%, 100%], re-

spectively. Then, each image is scaled to the input size of

each architecture and a horizontal flip is applied with 50%
probability. Next, we apply data augmentation using Ran-

dAugment [3] with parameters N = 2 and M = 2. Finally,



the pixel values of the image are scaled in [−1, 1] for Mo-

bileNetV2 and in [0, 1] for EfficientNets. During validation,

the preprocessing consists of only image resizing and pixel

scaling depending on the architecture.

Classifiers training procedure: Each model was ini-

tialized with ImageNet pre-trained weights and then trained

during 10 epochs using the Stochastic gradient descent

(SGD) on an NVIDIA GeForce GTX 1080 Ti graphics card.

The initial learning rate was 0.01 for a batch size of 256 and

scaled linearly according to the batch size effectively used,

which varied according to the model due to the graphics

card limited memory, as shown in Table 3. The learning

rate was linearly increased from 0 to the initial rate during

30% of the steps of the first epoch and then reduced using

the cosine decay scheduling, as suggested by He et al. [5].

Architecture Batch size Learning rate

MobileNetV2 (224) 128 0.005

MobileNetV2 (320) 64 0.0025

EfficientNet-B0 32 0.00125

EfficientNet-B3 16 0.000625

Table 3. Batch size and initial learning rate used for each classifier.

The initial learning rate is scaled linearly according to the batch

size b, defined by 0.01× b/256.

Detectors training procedure: Both detectors were ini-

tialized with weights pre-trained on COCO [11] and then

trained on each dataset using the Tensorflow Object Detec-

tion API [6]. We have used the standard training proce-

dure for each detector, besides 32 and 8 as batch size for

SSDLite+MobileNetV2 and EfficientDet-D0 respectively.

The learning rate and the number of training epochs were

adjusted according to the performance measured on the val-

idation dev partition. These values are shown in Table 4.

Model Dataset
Learning

rate

Training

steps

SSDLite+MNetV2
Caltech 0.008 12000

SS 0.004 36000

EfficientDet-D0
Caltech 0.008 50000

SS 0.001 150000

Table 4. Training hyperparameters for detectors. The same hyper-

parameters were used for both time and site partitioning of Snap-

shot Serengeti (SS).

3.4. Evaluation Procedure

In order to compare detectors and classifiers, predic-

tions related to the bounding box coordinates were ignored.

Thus, only the detection confidence value that represents the

class with the highest score was used as the detected label.

Taking into account that the confidence threshold can

be adjusted to avoid nonempty images discarding, we de-

cided to use the precision-recall curve as a graphical tool to

compare the general performance of the models considering

all possible thresholds. To compare the models effective-

ness when discarding empty images, i.e., the true negative

rate (TNR), the confidence threshold of each model was ad-

justed so that the recall for nonempty images was set to 96%

– a value reached by models investigated in [13].

We used a Raspberry Pi 3 model B running Raspbian

GNU/Linux 10 as a reference edge device to assess the

models’ latency. The models were converted to the Ten-

sorFlow Lite format without quantization and their latency

was calculated using the native benchmark tool provided by

TensorFlow2. The reported latency values were calculated

as the average over 50 runs for each model. Additionally,

we also evaluate the models version obtained as a result of

post-training quantization [7]. In this scenario, a subset of

500 training instances was employed to calibrate the op-

erations to work with the integer type, while maintaining

model inputs and outputs as floating point to keep the orig-

inal model interface.

4. Experimental Results

4.1. Classifiers vs. Detectors

In order to compare the performance of classifiers and

detectors as fairly as possible, the models were trained us-

ing subsets composed by instances of the nonempty class

annotated with bounding boxes. Despite of the fact that

these subsets were generated using a much smaller amount

of the total images available for classification, leading to

possible sub-optimal models, this number of instances can

provide a more realistic perspective of the problem. Indeed,

as pointed out by Schneider et al. [17], the vast majority of

small-scale research projects focused on camera trap do not

have a large amount of labeled images.

Results: Figure 1 shows the precision-recall curves of

the investigated models for each dataset. As expected,

detectors outperformed classifiers in all datasets, espe-

cially Caltech. Considering a confidence threshold produc-

ing 96% of recall, EfficientDet-D0 was able to eliminate

more than twice as many empty images when compared

to the classifiers using Caltech dataset. In terms of SS-

DLite+MobileNetV2, it also obtained a significantly higher

true negative rate (at least 19% in absolute values), as re-

ported in Table 5. The scenario is quite similar for the Snap-

shot Serengeti dataset, since detectors also outperformed

classifiers by a significant margin (at least 8% of precision).

Figure 2 shows some images to illustrate the results attained

in our experiments.

2https://www.tensorflow.org/lite/performance/

measurement
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Figure 1. Precision-recall curve for the nonempty class. Detectors reached higher performances, with wider advantage on the Caltech

dataset. Best viewed in color.

Caltech SS-Site SS-Time

Model CPU Precision TNR Thresh. Precision TNR Thresh. Precision TNR Thresh.

Efficientnet-B0 801ms 60.26% 25.50% 0.355 50.32% 63.00% 0.153 33.08% 61.90% 0.159

Efficientnet-B3 3205ms 56.42% 12.75% 0.305 57.21% 71.97% 0.155 39.27% 70.87% 0.170

MobileNetV2-224 324ms 58.60% 20.18% 0.228 57.72% 72.55% 0.188 30.51% 57.11% 0.126

MobileNetV2-320 638ms 58.58% 20.13% 0.239 62.84% 77.84% 0.191 35.74% 66.13% 0.147

SSDLite+MNetV2 838ms 67.03% 44.42% 0.166 75.32% 87.72% 0.167 47.14% 78.89% 0.147

Efficientdet-D0 4686ms 73.31% 58.86% 0.148 79.14% 90.12% 0.150 47.35% 79.06% 0.143

Table 5. Comparison of precision for the nonempty class and the true negative rate (TNR) where the confidence threshold of each model

was adjusted to achieve a recall of 96% on the nonempty class. The reported CPU latency corresponds to the Caltech dataset, but it is

similar to the others, being calculated from the average of 50 runs. The true negative rate indicates the percentage of images without

animals that would no longer be stored unnecessarily.

The poor classifier performance on the Caltech dataset

can be due to several factors, such as the low variability

of backgrounds, the size of animals, camouflage, quality of

images, among others. However, our experiments were not

designed to identify these nuances intrinsic to this dataset.

On the other hand, this may be an interesting topic to be

investigated in future work.

Latency-precision trade-off: Table 5 shows the latency

for the inference of each model. Although EfficientDet-

D0 offers a strong baseline for the problem, its latency is

more than four seconds, which is prohibitive because cam-

era trap images are usually obtained within one second be-

tween them. In this context, SSDLite+MobileNetV2 may

be deemed to attain superior performance since its latency

is below one second and it eliminated at least 10% more

images than the classifiers with comparable latencies.

4.2. Training with more Images

A common way to improve model performance is to

use more training instances [8]. Following this strategy,

an experiment was carried out to train the classifiers us-

ing the subsets of the SS dataset. This dataset contains

ten times more images than the one used in the previ-

ous experiment. Figure 3 and Table 6 summarize the re-

sults attained in this scenario. The results indicate that

classifiers outperformed detectors. We can highlight that

MobileNetV2 (224) reached performance similar to SS-

DLite+MobileNetV2, with less than half of inference la-

tency though. It is important to note, however, that all de-

tectors were trained using data subsets from the previous

experiment. Therefore, in order to provide a fair compari-

son, a similar amount of training instances used to train the

classifiers should be used to train the detectors. On the other

hand, obtaining more annotated instances for the detection

problem is expensive. This is the reason we do not show

results using the same dataset for training classifiers and de-

tectors. However, we can conclude based on the results ob-

tained in this experiment that, depending on the number of

labeled instances available, classifiers can be a viable option

for the problem of identifying empty images, also showing

better efficiency in terms of computational resources.



(a) EffNet-B0: 0.70, EffNet-B3: 0.67, MNetV2-

224: 0.73, MNetV2-320: 0.60, SSDLite: 0.11,

EffDet-D0: 0.13

(b) EffNet-B0: 0.42, EffNet-B3: 0.57, MNetV2-

224: 0.12, MNetV2-320: 0.80, SSDLite: 0.16,

EffDet-D0: 0.10

(c) EffNet-B0: 0.99, EffNet-B3: 0.99, MNetV2-

224: 0.99, MNetV2-320: 0.99, SSDLite: 0.87,

EffDet-D0: 0.88

(d) EffNet-B0: 0.13, EffNet-B3: 0.03, MNetV2-

224: 0.29, MNetV2-320: 0.31, SSDLite: 0.15,

EffDet-D0: 0.05

(e) EffNet-B0: 0.99, EffNet-B3: 0.99, MNetV2-

224: 0.99, MNetV2-320: 0.99, SSDLite: 0.90,

EffDet-D0: 0.94

(f) EffNet-B0: 0.22, EffNet-B3: 0.66, MNetV2-

224: 0.48, MNetV2-320: 0.91, SSDLite: 0.77,

EffDet-D0: 0.70

Figure 2. Sample classification results reached by the investigated models highlighting their confidence for the nonempty class. The top

row depicts images from the Caltech dataset and the bottom row from the Snapshot Serengeti dataset. The first column depicts instances

of the empty class while the remainder are nonempty images with the animals highlighted.
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Figure 3. Precision-recall curve for the nonempty class of classifiers trained in sets with ten times more images from the SS dataset. The

curves of the detectors refer to the models trained on the original smaller set. Best viewed in color.
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Figure 4. Latency vs. area under the precision-recall curve (PR AUC) for various versions of MobileNetV2 in the SS. The results refer to

the models converted to TensorFlow Lite (floating point and integer) and evaluated in a subset of 5,000 test instances. Best viewed in color.

SS-Site SS-Time

Model Precision TNR Precision TNR

Efficientnet-B0 73.92% 86.78% 48.81% 80.25%

Efficientnet-B3 87.67% 94.73% 64.28% 89.54%

MNetV2-224 75.18% 87.63% 49.12% 80.50%

MNetV2-320 82.89% 92.26% 58.61% 86.70%

Table 6. Comparison of precision for the nonempty class and the

true negative rate (TNR), with a recall at 96%, for classifiers

trained in sets with ten times more images from the SS dataset.

Note the significant improvement in the performance of the clas-

sifiers, exceeding by a large margin the detectors trained in the

original set.

4.3. Model Optimization

It is possible to observe from results shown in previous

sections that models dealing with higher image input res-

olutions achieved higher performance but at the expense of

greater inference latency. In order to reduce latency of these

models, we performed an experiment using the SS dataset

and MobileNetV2 (320). In this experiment, the number of

filters was reduced by adjusting the alpha parameter. We

also evaluated the post-training quantization of the models.

Since the swish activation function used by EfficientNets

is not very well supported for quantization [26], models of

this family were not used here. In addition, models eval-

uation was carried out on a sample of 5,000 instances ob-

tained from the validation set, because the TensorFlow Lite

quantized models are not optimized for inference on x86

architectures and graphics cards used for training.

The results shown in Figure 4 reinforce the role of in-

put resolution, since a MobileNetV2 with half the filters

(MobileNetV2-0.50) but higher resolution (320) obtained

overall performance superior to the performance of the stan-

dard model (MobileNetV2 (224)). In Table 7, we may

observe that it is possible to reduce about 23% of model

latency due to both quantization (SS-site) and number of

filters reduction (SS-time), maintaining compatible perfor-

mance. It is worth mentioning that the quantized version of

the SSDLite + MobileNetV2 detector did not obtain good

results at the 96% recall level used. These results indicate

the importance of assessing the performance of the models

after quantization, especially when the confidence threshold

is adjusted at certain levels. One way to avoid this problem

would be quantization-aware training.

To assess this, we fine tuned the models MobileNetV2-

224 and MobileNetV2-0.75-320 trained on SS-Site using

quantization-aware training for 2 epochs with the initial

learning rate divided by 10. In this case, we were able to

improve the results of the quantized versions, as shown in

Table 7. Unfortunately, we were not able to assess SSDLite

in the same way due to the fact that Tensorflow Object De-

tection API did not support quantization-aware training for

TF2 at the experiments’ time.

Although the focus of this work is the latency-precision

trade-off, we also measured the memory usage of each

model, as shown in Table 7. Quantized models have a sig-

nificant reduction in memory usage compared to the float-

ing point models. However, when observed the amount of

RAM available on Raspberry Pi (1GB), the memory re-

quired by the most complex model is very low (33.5MB),



SS-Site SS-Time

Model CPU Memory Precision TNR Precision TNR

MobileNetV2-224

Float 322ms 22.7MB 58.20% 73.07% 25.67% 45.33%

Int8 237ms 9.3MB 55.52% 69.99% 26.18% 46.74%

Int8 (quant aware) 239ms 9.8MB 57.31% 72.10% - -

MobileNetV2-0.50-320
Float 259ms 19.7MB 54.86% 69.15% 27.76% 50.86%

Int8 237ms 9.6MB 51.50% 64.70% 26.67% 48.09%

MobileNetV2-0.75-320

Float 484ms 19.8MB 64.89% 79.72% 31.37% 58.71%

Int8 408ms 13.3MB 59.50% 74.49% 30.44% 56.87%

Int8 (quant aware) 413ms 13.4MB 61.38% 76.41% - -

MobileNetV2-320
Float 635ms 33.5MB 66.65% 81.25% 30.34% 56.65%

Int8 485ms 13.9MB 66.70% 81.28% 30.98% 57.95%

SSDLite+MobileNetV2
Float 840ms 31.7MB 73.68% 86.62% 39.50% 71.09%

Int8 575ms 13.6MB 36.83% 35.72% 19.27% 20.90%

Table 7. Performance comparison of MobileNetV2 models for various widths on the SS dataset. The models were converted to TensorFlow

Lite and evaluated using a sample of 5,000 instances randomly chosen from the validation set.

therefore, not affecting the performance of other processes

that may be running on the device.

5. Conclusion

In this work, we presented a comparative study between

detection and classification models in the context of iden-

tification of nonempty images of animals on edge devices.

Our results showed that detection models outperform clas-

sifiers when both are trained using the same training set, but

their superior inference latency can limit their use on edge

devices. Moreover, depending on the dataset, it is possible

to train classifiers to obtain satisfactory results, especially

when there is massive number of images available, as in

the Snapshot Serengeti dataset. When detector is essential,

e.g. Caltech dataset, but the model’s latency is not within

the design requirements, it may be necessary to use hard-

ware accelerators, such as EdgeTPUs or DSPs. Another

limitation to detectors is the difficulty on obtaining new

instances annotated with bounding boxes, which is time-

consuming and expensive. In this situation, one possibility

is to use techniques tackling few or no labels, such as semi-

supervised learning and self-supervised learning. Other al-

ternative is training an agnostic detection model designed

to run on edge devices, inspired by MegaDetector. Regard-

ing the optimization strategies evaluated, the post-training

quantization proved to be effective, but it requires a care-

ful evaluation of the resulting model, which may decrease

its performance due to the quantization process. However,

quantization-aware training may solve this issue. Finally,

using models with fewer filters but with higher resolution

was also effective. Therefore, techniques such as knowl-

edge distillation and model pruning are interesting direc-

tions for future work.
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