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Abstract

Along with the rapid development of real-world applica-

tions, higher requirements on the accuracy and efficiency of

image super-resolution (SR) are brought forward. Though

existing methods have achieved remarkable success, the

majority of them demand plenty of computational resources

and large amount of RAM, and thus they can not be well

applied to mobile device. In this paper, we aim at designing

efficient architecture for 8-bit quantization and deploy it on

mobile device. First, we conduct an experiment about meta-

node latency by decomposing lightweight SR architectures,

which determines the portable operations we can utilize.

Then, we dig deeper into what kind of architecture is bene-

ficial to 8-bit quantization and propose anchor-based plain

net (ABPN). Finally, we adopt quantization-aware training

strategy to further boost the performance. Our model can

outperform 8-bit quantized FSRCNN by nearly 2dB in terms

of PSNR, while satisfying realistic needs at the same time.

Code is avaliable at https://github.com/NJU-

Jet/SR_Mobile_Quantization.

1. Introduction

Single image super-resolution (SISR) is a classical and

long-standing problem in low-level computer vision. The

goal is to reconstruct a high-resolution (HR) image accord-

ing to its degraded low-resolution (LR) counterpart. It has

been applied widespreadly in multiple diverse fields, such

as HDTV [15], magnetic resonance imaging [49, 24], satel-

lite sensor image reconstruction [10, 30], and underwater

applications[6, 29]. The difficulty of SISR is that numerous

HR images can map to an identical LR image even through

the same degradation model. To find a relatively satisfac-

tory result in the infinite solution space, plenty of tradi-

tional SISR algorithms have been proposed in the literature,

including but not limited to, interpolation-based [44, 57],

image statistics-based [11, 12], patch-based [3, 7, 14] and

example-based [13, 4, 41] methods.
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Since the dawn of deep learning, CNN-based meth-

ods have made further progress in SISR. SRCNN [9] in-

novatively employed a three-layer CNN to directly learn

the mapping function and led to significant improvements

compared with conventional methods. After that, more

and more creative ideas are introduced, such as residual

learning [31, 35, 38], feature fusion [60, 37, 52], well-

designed loss function[35, 38, 46] and attention mecha-

nism [58, 8, 19, 55], advancing the performance of SISR.

In recent years, the communities have noticed the de-

ployment issue on mobile device. Most superior models are

designed for desktop purposes so they can not be directly

applied to mobile environment. In order to strive towards

the ultimate goal of applying SISR technology to real-world

applications where computational resources are limited, im-

age restoration on smart-phone contests [23, 43, 56] have

been held to shed a light upon this problem. Meanwhile,

most mobile devices are embedded with deep learning ac-

celerators, and some benchmark suites [22, 45] are devel-

oped to measure their performances. For creating mobile-

friendly models, there are two basic ideas. One is toward

network optimization which can be mainly categorized into

quantization [27, 48], pruning [2, 5] and knowledge distil-

lation [42, 54]. The other is toward lightweight architecture

design[20, 19, 1, 55]. Our focus is how to create a gen-

eral SISR network architecture which is beneficial to 8-bit

quantization.

In spite of achieving prominent improvements, yet there

are drawbacks in two aspects. First, the obtained models are

usually evaluated on desktop CPUs and GPUs, making it

nearly impossible to estimate the actual inference time and

memory consumption on real mobile hardware. Second,

even recent state-of-the-art (SOTA) lightweight models in-

clude dozens of convolution nodes [38, 1, 20] and time-

consuming nodes such as attention [19, 55], making them

impracticable for realistic use-cases (e.g. restore twenty-

four 1080P video frames per second). We resolve the draw-

backs by researching meta-node latency on mobile hard-

ware and digging deeper into what kind of architecture can

really make sense to INT8 quantization. In summary, our

main contributions are as follows:
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• We investigate meta-node latency on mobile hardware

according to SOTA lightweight SISR architectures,

which yields portable operations.

• We propose anchor-based residual learning strategy,

which is much faster than nearest neighbor resize on

mobile device, and can largely improve the INT8 quan-

tized model performance by nearly 2dB without any

parameter cost.

• We propose anchor-based plain net (ABPN) for mobile

SISR, which is able to restore twenty-seven 1080P im-

ages (x3 scale) per second, maintaining good percep-

tual quality as well.

2. Related Work

2.1. Overview of image super­resolution

Recently, deep learning based methods have achieved

dramatic improvements in various kinds of tasks including

SISR. Dong et al. [9] innovatively introduced a deep learn-

ing model called SRCNN to reconstruct HR image in an

end-to-end manner. Although SRCNN outperforms hand-

crafted models by a large margin, it entails high compu-

tational loads due to learning in the HR space. To solve

the problem, shi et al. proposed ESPCN [47] to replace the

bicubic filter with a more efficient sub-pixel convolution. In

the same period, Kim et al. [31] deepened the network to

twenty layers, indicating that the depth is crucially impor-

tant for SISR task. Subsequently, Ledig et al. [35] intro-

duced residual block (RB) [17] to maximize the power of

residual learning. Furthermore, based on SRResNet [35],

Lim et al. [38] presented an enhanced deep super-resolution

network (EDSR), which made a breakthrough by removing

unnecessary modules in RB and had a far-reaching impact

on the succeeding studies [60, 58, 1, 59, 39, 55]. For ex-

ample, RDN [60] proposed residual dense block to make

full use of all the hierarchical features via dense connected

convolution layers. RCAN [58] integrated channel attention

mechanism into RB and adopted residual-in-residual struc-

ture to form a very deep network.

2.2. Lightweight image super­resolution

Due to the growing realistic demand, many works have

devoted to making models lighter and faster. They can

be divided into explicit [32, 51, 37, 1, 20] and implicit

schemes [34, 1, 52, 19, 55]. The former adopts simple op-

erations to explicitly reduce the model complexity, such as

directly cutting down the width and depth [37], recurrent

structure [32, 51] and group convolution [1, 20]. These

naive strategies bring about either accuracy loss or more

extra overheads (e.g., FLOPs). The latter implicit scheme

concentrates on sufficiently utilizing intermediate features

as well as enhancing the discriminative capability of the

network, thus leading to less computational cost and bet-

ter results on the whole. For instance, LapSRN [34] ex-

ploited features at each pyramid level to restore the sub-

band residuals of different high-resolution images. Mem-

Net [52] introduced gating mechanism to bridge the long-

term with short-term information. CARN [1] implemented

cascading mechanism to incorporate features at both local

and global level. IMDN [19] retained partial information as

refined features and fused the distilled features by contrast-

aware channel attention (CCA) mechanism. LatticeNet [55]

created a butterfly structure and also applied CCA to dy-

namically combine two RBs. The capacity of lightweight

models is limited, so recent architecture designs pay atten-

tion to making full use of information of different levels as

has been stated above. However, situation on mobile hard-

ware is totally different from desktop CPUs and GPUs. For

example, hierarchical feature fusion [1, 20, 19, 55] would

cause slow access to RAM due to limited cache mem-

ory on mobile device. Another popular strategy, attention

mechanism [58, 28, 19, 55], would also lead to unbearable

time overhead because of calculating global statistics and

element-wise multiplication.

2.3. Network Quantization

Quantization is a process of distributing continuous real-

valued infinite numbers to a smaller set of discrete finite

values, for minimizing the number of bits required and also

maximizing the accuracy of the attendant computations.

The widely used full-integer quantization technology can

be three times faster than original float-point network, and

holds the potential to reduce memory footprint by a factor

of 4x. Post-training quantization and quantization-aware

training are two famous techniques supported by Tensor-

Flow [26]. The former estimates value ranges of network

parameter and activation by traversing provided representa-

tive data after training, while the latter finish this process

during training by inserting fake quantization nodes. Both

of them have demonstrated promising results on image per-

ception tasks [18, 25, 50], but applying them to SR task is

much harder and will incur significant accuracy drop. The

reason is that current architectures remove batch normaliza-

tion (BN) layers because they result in blurred reconstructed

HR images with artifacts [38], but the removal also leads to

high dynamic quantization range at the same time. There

are limited works [40, 36] targeting on solving this prob-

lem. [40] binarizes the convolution filters only in residual

blocks, and adopts a learnable weight for each binary filter,

which can not be applied to full-integer device. [36] pro-

poses PArameterized Max Scale to explore the upper bound

of the quantization range adaptively, which increase train-

ing complexity due to manually selecting hyper-parameter

and structured knowledge transfer. Simple and useful tech-

nology still remains to be explored.
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3. Proposed Method

In this section, we start from investigating meta-node la-

tency. Then, we introduce the insight behind our anchor-

based residual learning. Finally, we build our final ABPN

and describe the design principle of each component.

3.1. Meta­node Latency

We bear in mind that our goal is to create a real-time

model qualified for realistic use-cases (e.g. super-resolve

video frames). The first thing is figuring out the set of

portable meta-node and time-consuming meta-node. We

create our initial meta-node set by decomposing recent

lightweight SR architectures [38, 1, 20, 19, 55] and then

test these meta-nodes on Synaptics Dolphin Platform with

a dedicated NPU. They can be divided into four categories:

tensor operator nodes, convolution nodes, activation nodes

and resize nodes. From Table. 1, we have four observations.

First of all, recent technologies used in SOTA lightweight

architectures seem to be impracticable to be deployed on

mobile device. EDSR [38] adopts a mass of RBs, and each

RB will introduce an element-wise addition which is even

slower than highly-optimized convolution layer. CARN in-

corporates global and local features, and each incorporation

includes one concatenation of large amount of channels and

one 1×1 convolution, bringing about only 0.09dB improve-

ment according to their article. IDN [20] and IMDN [19]

are also in dire straits on mobile device, for rapid feature

split and concat. It’s more serious for LatticeNet [55] which

adopts sixteen CA blocks, and each CA block contains one

element-wise addition and multiplication, two pooling lay-

ers, and four 1 × 1 convolution layers. Total sixteen CA

blocks can only contribute to 0.15dB improvement while

leading to heavy computational burden. Another common

problem is that they all need to retain features of previous

layers, and utilize 1 × 1 convolution layer to control how

much of the previous states should be reserved, and deter-

mine how much of the current state should be stored. This

long-term dependency causes frequent slow contaction with

RAM since there is only limited cache memory in mobile

device. Thus, we would not take feature fusion, feature dis-

tillation, group convolution and attention mechanism into

consideration. Second, although the number of parameters

and floating point operations of 3 × 3 convolution layer is

nine times as large as that of 1 × 1 convolution layer, the

time consumption does not differ much due to parallel cal-

culation. So we prefer to utilize 3 × 3 convolution layer to

produce larger receptive fields, which is critically important

for micro-architecture. Third, as for activation function, we

choose ReLU because it is much faster than Leaky ReLU

and we find that the performance gain of Leaky ReLU is

quite small (within 0.03dB). Last, resize nodes are too slow

because of coordinate mapping between interpolated HR

image and input LR image.

Table 1. Meta-nodes inference time (ms) on Synaptics Dolphin

Platform. Resize nodes are applied to network input, while other

nodes are applied to 1080P network output.

Main type Meta-node Time

Tensor operator nodes

Channel split 9.8

Channel concat 10.4

Add two tensors 5.2

Multiply two tensors 9.6

Global max pooling 20.0

Global average plooling 13.1

Convolution nodes
3× 3 Convolution 4.3

1× 1 Convolution 2.9

Activation nodes
ReLU 1.3

Leaky ReLU 3.6

Resize nodes
Nearest neighbor 57.6

Bilinear 75.4

3.2. Anchor­based Residual Learning

As has been discussed in Sec. 3.1, the available meta-

nodes are really limited. To get a good solution, we need

to dig deeper into the relationship between architecture de-

sign and INT8 quantization. As we know, the difficulty lies

in high dynamic range of image-to-image mapping, so the

direct idea is to produce lower standard deviation weights

and activations. There are two simple ways to achieve this

goal. One is adding BN layer, and the other is residual

learning. On the one hand, BN is always integrated into

RB, so the introduction will not only induce extra time and

memory overhead, but also significantly decrease the per-

formance by about 0.2dB. On the other hand, neighbor-

ing pixels always have nearly the same values so it seems

nature to learn residual, which is close to zero. Residual

learning can be divided into image-space residual learning

(ISRL) and feature-space residual learning (FSRL). ISRL

is adopted in early works [31, 51] to map a LR image to

a blurred HR image, while FSRL is widely adopted in re-

cent SOTA models [35, 20, 19] which sightly outperforms

ISRL in floating-point space. However, we argue that ISRL

is better for INT8 quantization because it forces the whole

network to learn small residual, and this intuition will be

experimentally verified in Sec. 4. From Table 1, we can

see that both image space interpolations suffer from un-

bearable time cost and even just one single node can not

satisfy realistic demand. We recognize it is the floating cal-

culation in coordinate mapping that restricts the deployment

of ISRL. To tackle this problem, we propose anchor-based

residual learning (ABRL). Different from nearest neighbor

interpolation which needs floating calculation in coordinate

mapping, ABRL directly repeats every pixel nine times in

LR space to generate anchors for every pixel in HR space.

Thanks to unique pixel shuffle layer, our ABRL can be eas-

ily realized by one channel-concat and one addition meta-
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Figure 1. Illustration of residual learning in image space and feature space.
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Figure 2. The whole network architecture.

node. Fig. 1 shows the four different kinds of residual learn-

ing strategy. As for time overhead, residual learning in fea-

ture space contains only one element-wise addition, which

costs 5.2ms. Our proposed ABRL contains one channel-

concat and one element-wise addition, which total costs

15.6ms, nearly a quarter of the time cost of nearest neighbor

meta-node. It should be noted that the cost of nine channel-

concats in LR image space is almost equal to that of one

channel-concat in HR image space. Our ABRL has two

main advantages: the first is that it can largely improve the

performance of INT8 quantized model compared with that

of residual learning in feature space (up to 0.6dB); the sec-

ond is that multi-branch architecture can be inferred paral-

lelly so the actual cost of ABRL is the same as feature-space

residual learning, and the main cost of our ABRL and FSRL

is brought by slow access to RAM. It is also worth men-

tioning that our ABRL is a special case of nearest neighbor

interpolation when the scale factor is integer.

3.3. Network Architecture

The whole architecture is depicted in Fig. 2. Our archi-

tecture mainly consists of four parts: shallow feature extrac-

tion part which transfers the image to feature space, deep

feature extraction which extracts high-level information and

restore details (edges, textures) step by step, reconstruction

part which maps features to HR image space, and post pro-

cessing part which re-arrange pixels and restricts the values

within normal image range. Let’s denote ILR and ISR as

the input and output of our ABPN. We obtain shallow fea-

ture F0 by:

F0 = HSFE(ILR) (1)

where HSFE (·) denotes the mapping function in shallow

feature extraction. We use one 3 × 3 convolution layer fol-

lowed by ReLU to form this part. After that, we use Conv-

ReLU pairs, which is the fastest combination in Table. 1,

to gradually refine details. The i-th deep features Fi is ob-

tained through:

Fi = HDFEi
(Fi−1), i = 1, . . . , 5, (2)

where HDFEi
(·) represents i-th Conv-ReLU pair in deep

feature extraction part.To fully take advantage of parallel

inferring, we set the number of Conv-ReLU pairs to 5 to

match the overhead in the upper branch, which means when

Conv-ReLU pairs is less 5, the mobile inference time re-

mains the same. Then, one convolution layer is adopted to

transfer features to HR image space:

Ft = HT (F5) (3)

where HT (·) is the mapping function in transition layer and

Ft is the obtained residual image features.Our ABRL is ap-

plied subsequently to get the super-resolved image of which

the spatial pixels are put in the channel axis:

FSR = Ft + ILR (4)

Finally, pixel shuffle layer is used to re-arrange FSR and a

clip node is used to restrict values to get ISR:

ISR = HPP (FSR) (5)

where HPP (·) is the mapping function in post process-

ing part. Clip node, at the tail of the network,clips values

less than zero or larger than 255. The absence of this node

will cause the shift of output distribution, and when apply-

ing full-integer quantization the converter would think that

there are negative values of real images.

3.4. Loss Function

There are a lot of loss functions which have been adopted

in previous works [38, 20, 19]. To make sure the improve-

ment is mainly from our design, we simply use L1 loss func-

tion to optimize our network which can be formulated as:

L(Θ) =
1

N

N
∑

i=1

∥

∥fABPN (IiLR)− IiHR

∥

∥

1
(6)

where Θ denotes the parameters of our network and N is the

total number of training samples. Ii
LR

and Ii
HR

denote the i-

th LR patch and the corresponding ground truth. fABPN (·)
represents the operations of the proposed ABPN.
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4. Experiments

4.1. Settings

Implementation details. In each training batch, 16

cropped 64 × 64 LR RGB patches augmented by random

flipping and rotation are sent to the network. The learn-

ing rate is initialized as 1×10−3 and decreases half per 200

epochs for 1000 epochs. The number of kernels in the resid-

ual learning branch is set to 28. Parameters of our model

is initialized using the method proposed by He et al. [16]

and optimized by ADAM optimizer [33] with β1 = 0.9,

β2 = 0.999, and ǫ = 10−8. We follow the Mobile AI im-

age super-resolution challenge [21] to measure SR results

in the RGB space, and adopt DIV2K [53] as training and

validation sets.

4.2. Residual Learning

In this section, we verify the efficiency of residual learn-

ing and the superiority of our ABRL. We first remove the

upper branch in Fig. 2 to build our baseline model. Then,

we separately add four residual learning strategies to the

baseline model. The results are reported in Table. 2, from

which we have the following observations. For FP32 model,

FSRL model can achieve the best performance (+0.03dB),

while other methods achieves nearly the same performance.

For INT8 quantization model, architecture without residual

learning suffer from severly accuracy drop (-1.93dB), while

the architectures with feature-space residual learning drops

0.78dB and architectures with image-space residual learn-

ing drop only 0.13dB. Thus, we can conclude that residual

learning can largely allevate high dynamic range problem

in INT8 quantization, and image-space residual learning is

much better than feature-space residual learning.

Table 2. Investigation of image space and feature space residual

learning. The inference time is measured by Synaptics smart TV

platform. FSRL denotes feature-space residual learning in Fig. 1,

ABRL denotes our proposed anchor-based residual learning.

Model Params FP32 INT8 Inference time

Baseline 42.54K 30.21 28.28 26ms

Baseline+nearest 42.54K 30.22 30.09 57.6ms

Baseline+bilinear 42.54K 30.24 30.11 74.9ms

Baseline+FSRL 42.54K 30.27 29.49 35.9ms

Baseline+ABRL 42.54K 30.22 30.09 36.8ms

4.3. Quantize­Aware Training

Quantization-aware training (QAT) is a popular technol-

ogy to boost the performance without any inference stage

cost. We set initial learning rate to 1× 10−4 and decreases

half per 50 epochs for 200 epochs. We can further improve

the performance by 0.06dB. By now, the INT8 quantized

network only lose 0.07dB on mobile image super-resolution

compared with its floating point version.

4.4. Test on Snapdragon 820

We report the inference time of our model on a real mo-

bile device with Snapdragon 820. We use AI Benchmark1

to get the CPU, GPU, NNAPI running time. The results are

shown in Table. 3.

Table 3. Inference time (ms) of ABPN on Snapdragon 820.

Model CPU GPU NNAPI PSNR

FSRCNN 149.2 44.3 21.7 28.1

ABPN 235.0 69.8 39.2 30.15

4.5. MAI2021 SISR Challenge

This work is initially proposed for the purpose of par-

ticipating in the MAI2021 Single Image Super-Resolution

Challenge [21]. We report the preliminary results and our

result in Table. 4. Our first submission is the same model

without the clip node at the tail of the network, and the re-

sults is really bad (less than 20dB). We solve this issue after

the deadline and send the corrected model to the organiz-

ers. Beneficial from our anchor-based residual learning, our

models can outperform other models by a large margin es-

pecially for PSNR metric. Also, we can achieve the fastest

inference speed.

Table 4. Comparison of our results and official preliminary results

on MAI2021 Single Image Super-Resolution track.

PSNR SSIM NPU Runtime Score

ABPN (Ours) 29.87 0.8686 36.89 92.72

deepernewbie 29.58 0.86 44.85 51.02

JeremieG 29.41 0.8537 38.32 47.18

richlaji 29.52 0.8607 62.25 33.82

xindongzhang 28.82 0.8428 76.61 10.41

4.6. Visual Comparision

We show visual comparison of our int8 quantized model

and int8 quantized FSRCNN in Fig. 3. Our methods can re-

construct more textures and faithfully edges, which demon-

strates the superiority of our proposed ABPN.

5. Conclusion

We propose an efficient network called anchor-based

plain net (ABPN) for INT8 quantization. The key compo-

nent is anchor-based residual learning (ABRL), which real-

ize the same functionality of image-space residual learning

while being as fast as feature-space residual learning. Our

INT8 quantization network can achieve nearly the same per-

formance as original floating-point network.

1https://ai-benchmark.com/download
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Figure 3. Visual results on Urban100 of int8 model.
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