
Stacked Deep Multi-Scale Hierarchical Network for Fast Bokeh Effect

Rendering from a Single Image

Saikat Dutta

IIT Madras

Chennai, India

saikat.dutta779@gmail.com

Sourya Dipta Das

Jadavpur University

Kolkata, India

dipta.juetce@gmail.com

Nisarg A. Shah

IIT Jodhpur

Jodhpur, India

shah.2@iitj.ac.in

Anil Kumar Tiwari

IIT Jodhpur

Jodhpur, India

akt@iitj.ac.in

Abstract

The Bokeh Effect is one of the most desirable effects

in photography for rendering artistic and aesthetic photos.

Usually, it requires a DSLR camera with different aperture

and shutter settings and certain photography skills to gener-

ate this effect. In smartphones, computational methods and

additional sensors are used to overcome the physical lens

and sensor limitations to achieve such effect. Most of the

existing methods utilized additional sensor’s data or pre-

trained network for fine depth estimation of the scene and

sometimes use portrait segmentation pretrained network

module to segment salient objects in the image. Because

of these reasons, networks have many parameters, become

runtime intensive and unable to run in mid-range devices.

In this paper, we used an end-to-end Deep Multi-Scale Hi-

erarchical Network (DMSHN) model for direct Bokeh effect

rendering of images captured from the monocular camera.

To further improve the perceptual quality of such effect, a

stacked model consisting of two DMSHN modules is also

proposed. Our model does not rely on any pretrained net-

work module for Monocular Depth Estimation or Saliency

Detection, thus significantly reducing the size of model and

run time. Stacked DMSHN achieves state-of-the-art results

on a large scale EBB! dataset with around 6x less runtime

compared to the current state-of-the-art model in process-

ing HD quality images.

1. Introduction

The word “Bokeh” originated from the Japanese word

“boke” which means blur. In photography, Bokeh effect

refers to the pleasing or aesthetic quality of the blur pro-

duced in the out-of-focus parts of an image produced by a

camera lens. These images are usually captured with DSLR

cameras using a large focal length and a large aperture size.

Unlike DSLR cameras, mobile phone cameras have limita-

tions on its size and weight. Thus, mobile phones cannot

generate the same quality of bokeh as DSLR can do as the

mobile cameras have a small and fixed-size aperture that

produces images with the scene mostly in its focus, depend-

ing on depth map of the scene. One approach to solve these

limitations is to computationally simulate the bokeh effect

on the mobile devices with small camera. There are some

works where additional depth information obtained from a

dual pixel camera [19] or stereo camera (one main cam-

era and one calibrated subcamera) [15, 3, 14] is incorpo-

rated in the model to simulate a more realistic bokeh image.

However, these systems suffer from a variety of disadvan-

tages like (a) addition of a stereo camera or depth sensor

increases the size and the cost of the device and power con-

sumption during usage (b) structured light depth sensors can

be affected by poor resolution or high sensitivity to inter-

ference with ambient light (c) it performs badly when the

target of interest is substantially distant from the camera, it

is difficult to estimate good depth map for further regions

leading because of the small stereo baseline of stereo cam-

era (d) these approaches can’t be used to enhance pictures

already taken with monocular cameras as post processing

since depth information is often not saved along with the

picture.

To address these problems, we propose Deep Multi-

Scale Hierarchical Network (DMSHN) for Bokeh effect

rendering from the monocular lens without using any spe-

cialized hardware. Here, the proposed model synthesizes

bokeh effect under the “coarse-to-fine” scheme by exploit-

1

ing multi-scale input images at different processing levels.

Each lower level acts in the residual manner by contributing

its residual image to the higher level thus with intermediate

feature aggregation. In this way, low level encoders can pro-

vide additional global intermediate features to higher level

for improving saliency, and higher level encoders can pro-

vide more local intermediate features to improve fidelity of

generated bokeh images. Our model does not depend on

any Monocular Depth Estimation or Saliency Detection pre-

trained network module, hence reducing the number of pa-

rameters and runtime considerably. We have also explored

a stacked version of DMSHN, namely Stacked DMSHN,

where two DMSHN modules were connected horizontally

to boost the performance. It achieves state-of-the-art results

in Bokeh Effect Rendering on monocular images. Though

this improvement in accuracy in stacked DMSHN comes

with increased runtime and model parameters, still DMSHN

and Stacked DMSHN can process HD quality images in 50

fps and 25 fps, respectively, which is significantly faster

than other methods in the literature. We have also shown

the runtime of our models deployed in mid-range smart-

phone devices to demonstrate its efficiency. In our exper-

iments, we have used a large-scale EBB! dataset [7] con-

taining more than 10,000 images collected in the wild with

the DSLR camera.

2. Related Work

Many works in Bokeh Effect Rendering leveraged depth

information from images captured by two cameras. Liu

et al. [14] presented a bokeh simulation method by using

depth estimation map through stereo matching. They have

also designed a convenient bokeh control interface that uses

a little user interaction for identifying the salient object and

control the bokeh effect by setting a specific kernel. Busam

et al. [3] also proposed a stereo vision-based fast and ef-

ficient algorithm to perform the refocusing by using high-

quality disparity map via efficient stereo depth estimation.

Recently, Luo et al. [15] proposed a novel deep neural ar-

chitecture named wavelet synthesis neural network (WSN),

to produce high-quality disparity maps on smartphones by

using a pair of calibrated stereo images. However, these

methods are ineffective in the case of monocular cameras

or in post-processing of previously captured images.

In one of the earliest works in Monocular Bokeh Effect

Rendering, Shen et al. [18] used a Fully Convolutional

Network to perform portrait image segmentation and using

this segmentation map, they generated depth-of-field im-

age with uniformly blurred background on portrait images.

Wadhwa et al. [19] proposed a system to generate synthetic

shallow depth-of-field images on mobile devices by incor-

porating a portrait segmentation network and depth map

from the camera’s dual-pixel auto-focus system. But their

system’s limitation is that their bokeh rendering method is

not photorealistic as actual bokeh photos taken from DSLR

cameras because of using an approximated disk blur ker-

nel to blur the background. Xu et al. [22] also proposed

a similar approach where they had used two different deep

neural networks to get depth map and portrait segmentation

map from a single image. Then, they improved those initial

estimates using another deep neural network and trained a

depth and segmentation guided Recursive Neural Network

to approximate and accelerate the bokeh rendering.

Lijun et al. [13] presented a memory efficient deep neu-

ral network architecture with a lens blur module, which

synthesized the lens blur and guided upsampling module

to generate bokeh images at high resolution with user con-

trollable camera parameters at interactive speed of render-

ing. Dutta [5] formulated bokeh image as a weighted sum

of the input image and its different blurred versions ob-

tained by using different sizes of Gaussian blur kernels. The

weights for this purpose were generated using a fine-tuned

depth estimation network. Purohit et al. [17] designed a

model consisting of a densely connected encoder and de-

coder taking benefits of joint Dynamic Filtering and inten-

sity estimation for the spatially-aware background blurring.

Their model utilized pretrained networks for depth estima-

tion and saliency map segmentation to guide the bokeh ren-

dering process. Zheng et al. [8] used a multi-scale pre-

dictive filter CNN consisting of Gate Fusion Block, Con-

strained Predictive Filter Block, and Image Reconstruction

Block. They trained their model using image patches with

concatenated pixel coordinate maps with respect to the full-

scale image. Xiong et al. [8] used an ensemble of modified

U-Net consisting of residual attention mechanism, multiple

Atrous Spatial Pyramid Pooling blocks, and Fusion Mod-

ules. Yang et al. [8] used two stacked bokehNet with addi-

tional memory blocks to capture global and local features.

The generated feature maps from each model are concate-

nated and fed to a Selective Kernel Network [11].

Ignatov et al. [7] presented a multi-scale end-to-end

deep learning architecture, PyNet, for natural bokeh image

rendering by utilizing both input image captured with nar-

row aperture and pre-computed depth map of the same im-

age. In this paper, we propose a fast, lightweight efficient

network, Stacked DMSHN for Single-image Bokeh effect

rendering. Our model doesn’t require additional depth maps

which makes it suitable for post-processing photos.

3. Proposed Method

We used Stacked Deep Multi-Scale Hierarchical Net-

work (DMSHN) for Bokeh Effect Rendering. The model

diagram of Stacked DMSHN is shown in Fig. 1. Stacked

DMSHN consists of two DMSHN base networks which are

cascaded one after another. The details of DMSHN archi-

tecture are described in the following.

Base Network: We used Deep Multi-Scale Hierarchi-

Figure 1. Stacked Deep Multi-Scale Hierarchical Network.

Figure 2. Encoder and Decoder Architecture. Numbers below the curly braces denote number of output channels of the corresponding

layers.

cal Network (DMSHN) as the base network. The network

works on a 3-level Image pyramid. Let the input images at

ith level be denoted as I
org
i .

I
org
1

= Iinput (1)

I
org
2

= down(Iorg
1

) (2)

I
org
3

= down(Iorg
2

) (3)

where down(.) is bilinear downsampling by factor of two.

In each level of the network, we have an encoder and

a decoder. Let’s denote these modules as Encoderi and

Decoderi respectively for ith level.

At the bottom-most level encoder, Encoder3, takes

bokeh-free image I
org
3

as input. The features F3 generated

by Encoder3 is then fed into Decoder3. So, the generated

feature map F3 is then fed to Decoder3 to generate residual

features res3.

F3 = Encoder3(I
org
3

) (4)

res3 = Decoder3(F3) (5)

res3 is upsampled by a factor of 2 and then added to I
org
2

in the next level and fed to Encoder2. The encoded fea-

ture map G2 is then added to upscaled feature F3 to produce

F2. Reusing the encoded features from the lower level helps

the network leverage the global context information learned

by the encoder in the previous level. Residual connection

between encoders of different levels is useful in correct lo-

calization and reconstruction of the foreground. F2 is then

passed to Decoder2 which generates residual features res2.

G2 = Encoder2(I
org
2

+ up(res3)) (6)

F2 = G2 + up(F3) (7)

res2 = Decoder2(F2) (8)

where up(.) is bilinear upsampling by factor of 2. The

upscaled residual feature map res2 is added to I
org
1

in the

top-most level and passed to Encoder1 to generate encoded

feature map G1. G1 is added with upscaled F2 to gener-

ate F1. F1 is further fed to Decoder1 to generate the final

bokeh image Ipred.

G1 = Encoder1(I
org
1

+ up(res2)) (9)

F1 = G1 + up(F2) (10)

Ipred = Decoder1(F1) (11)

For the task of non-homogeneous Image Dehazing [2],

DMSHN [4] was coined for ablation studies. In [4], the

authors have shown the inferiority of DMSHN with respect

to a Patch-hierarchical network. However we have shown in

this paper that this type of multi-scale architecture is more

suitable for solving problems where capturing the global

context and saliency in the image is important, by incor-

porating it to Bokeh Effect Rendering.

Encoder and Decoder Architecture: The encoder and

the decoder consists of 3 level and each level consists of

two Residual blocks. Convolutional layers with stride 2 is

used to decrease spatial resolution of the feature maps in the

encoder and Transposed convolution is used for increasing

feature map resolution in the decoder. ReLU is used as ac-

tivation function and kernel size used in convolutional lay-

ers is 3 × 3 everywhere. Same architecture of encoder and

decoder is used at all the levels of our network. The archi-

tecture diagram of encoder and decoder is shown in Fig. 2.

Instead of increasing depth of DMSHN model vertically,

stacking two or more DMSHN module horizontally can sig-

nificantly improve the performance [23]. Cascading multi-

ple base networks can help refining the rendered bokeh im-

ages. We cascaded two pretrained DMSHN models in this

approach and finetune the whole network. Let the first net-

work be denoted as net1 and the second one as net2. The

final output Ipred is given by,

Ipred = net2(net1(I
org
1

)) (12)

Our Stacked DMSHN model has a few similarities with

Gridnet [6]. However the key differences are: (a) Feature

maps at the same level of Gridnet has same channel and spa-

tial dimension, which is not the case for Stacked DMSHN

(b) 2nd and 3rd levels of DMSHN blocks are not connected

in Stacked DMSHN.

4. Experiments

4.1. System description

We implemented the proposed models in Python and Py-

Torch [16]. Our models were trained on a machine with

Intel Xeon CPU with 16 GB RAM and NVIDIA 1080Ti

GPU card with approximately 12 GB GPU Memory.

4.2. Dataset Description

Everything is Better with Bokeh (EBB!) Dataset [7] is

used in this work. In this dataset, the images were taken

from a wide range of locations during the daytime, and in

varying lighting and weather conditions. This dataset con-

tains 5094 pairs of Bokeh-free and Bokeh images. The

training set consists of 4694 image pairs whereas the val-

idation and test set contains 200 image pairs each. The

Bokeh-free images were captured using a narrow aperture

(f/16) and the corresponding bokeh images were captured

using high aperture (f/1.8). The average image resolution

of this dataset is 1024× 1536. Since the Validation and test

set ground truth images are not available yet, we use Val294

set [5] was used for evaluation and the rest of the dataset is

used for training the models.

4.3. Training and Testing Details

We rescaled the images to 1024×1024 for training. Data

augmentation techniques e.g., horizontal and vertical flip-

ping were used to increase the training set size. We use

Adam optimizer [10] with β1 = 0.9 and β2 = 0.999 for

training the network with a batch size of 2. The initial learn-

ing rate is set to 10−4 and gradually decreased to 10−6.

During inference time, the input images are resized to

1024 × 1536 and fed into the network. The output from

the network is rescaled back to its original dimension using

bilinear interpolation.

4.4. Loss functions

The proposed network was trained in two stages. We

used a linear combination of L1 loss and SSIM loss [25]

in the first stage. L1 loss helps in pixelwise reconstruction

of the synthesized bokeh image. SSIM loss is used to im-

prove perceptual quality of the generated image, because

it focuses on the similarity of local structure. So, the loss

function used in the first stage is given by,

Lst1 = L1 + α.LSSIM (13)

where L1 = ||Ipred − Igt||1, LSSIM = 1 −
SSIM(Ipred, Igt) and Igt is the ground truth bokeh im-

age. In the second stage, we use Multi-scale SSIM (MS-

SSIM) loss [25] with default scale value of 5, to further fine

tune the model. MS-SSIM loss is based on MS-SSIM [21]

which considers structural similarity at multiple levels of

image pyramid. So, the loss in second stage is given by,

Lst2 = LMS-SSIM

= 1−MS-SSIM(Ipred, Igt)
(14)

In our experiments, α is chosen to be 0.1.

For the training of Stacked DMSHN network, we loaded

the weights of pretrained DMSHN model and finetuned the

whole network using LMS-SSIM .

4.5. Results

4.5.1 Evaluation metrics:

We used Peak signal-to-noise ratio (PSNR), Structural Sim-

ilarity (SSIM) [20] and Learned Perceptual Image Patch

Figure 3. Comparison with other methods. From left: (a) Input Image (b) SKN [8] (c) DBSI [5] (d) PyNet [7] (e) DMSHN (ours) (f)

Stacked DMSHN (ours) (g) Ground Truth.

Similarity metrics (LPIPS) [24] for comparative evaluation.

For higher similarity with respect to ground truth, higher

values of PSNR and SSIM, and lower values of LPIPS

scores are desired. Although LPIPS is often used as Per-

ceptual Metric in Image Restoration problems, this is not

a reliable metric in case of Bokeh Effect Rendering as dis-

cussed in [7]. Thus, we also evaluated our models on Mean

Opinion Score (MOS) based on a user study.

User Study: 25 users having good experience in photog-

raphy were asked to rate images with bokeh effect generated

from different methods. The users were presented with 20

sets of images from Val294 where each set contained bokeh

ground truth image and rendered bokeh images. Scoring

was done on a scale of 0 to 4 where 0 stands for “almost

similar” and 4 is “mostly different” (following [7]). The

users were suggested to give a low rating (high quality) if

(a) All edges, text present in the salient object region are in-

tact in the generated bokeh image (b) There is no particular

artifacts (bright spot, blur circle) present in the generated

bokeh image. (c) There are no changes in chromatic fea-

ture or brightness of the image. (d) The salient region from

the generated bokeh image is the same as the ground truth

image.

4.5.2 Comparison with other methods

We compared the performance of our method with state-

of-the-art methods, e.g. PyNet [7], Depth-aware Blend-

ing of Smoothed Images (DBSI) [5] and Selective Kernel

networks (SKN) [11]. As the source code is not avail-

able for Depth-guided Dense Dynamic Filtering network

(DDDF) [17], we only show comparison with other meth-

ods1. Table 1 shows that our Stacked DMSHN model per-

forms better than DMSHN. Both DMSHN and Stacked

DMSHN performs better than SKN [8] and DBSI [5],

whereas Stacked DMSHN achieves similar perceptual qual-

ity to that of PyNet [7]. Qualitative comparison (shown

in Fig. 3) reveals that the Stacked DMSHN is at par with

PyNet and better than other methods in sharp reconstruc-

tion of the foreground.

Method PSNR SSIM LPIPS MOS

SKN [8] 24.66 0.8521 0.3323 3.71

DBSI [5] 23.45 0.8675 0.2463 1.89

PyNet [7] 24.93 0.8788 0.2219 1.11

DMSHN (ours) 24.65 0.8765 0.2289 1.52

Stacked DMSHN

(ours)
24.72 0.8793 0.2271 1.17

Table 1. Quantitative Comparison with other methods on Val294

set. The scores in Red and Blue represent best and second best

scores respectively.

4.6. Ablation study

Importance of residual connections between encoded

features: To show the significance of skip connections be-

tween encoded features at different levels, we train one vari-

ant of DMSHN where such residual connections are re-

moved. It can be observed from Fig. 4 that residual connec-

tions between the encoded features is crucial in correctly de-

tecting the foreground and increasing the overall quality of

the rendered bokeh image. Qualitative comparison between

the two variants in Table 2 shows significant improvement

in performance when the residual connections are used.

Method PSNR SSIM LPIPS MOS

DMSHN (w/o res.) 22.73 0.8150 0.2953 3.34

DMSHN (with res.) 24.65 0.8765 0.2289 1.52

Table 2. Importance of Residual Connections between encoded

features.

Effect of the second stage of training: The network is

first trained with a combination of L1 and LSSIM and then

finetuned with LMS-SSIM . We compare the results of our

network with Stage-2 training and without Stage-2 training.

We have also experimented with a combination of L1 and

LMS-SSIM in second stage training. Table 3 shows that

stage-2 training with L1 and LMS-SSIM improves SSIM,

LPIPS and MOS metrics over no stage-2 training, whereas

using LMS-SSIM alone in stage-2 training improves all the

four metrics. From the first and second row of Fig. 5, it

can be inferred that stage-2 training removes artifacts in

the background, and the third and fourth row shows that

LMS-SSIM helps in the better reconstruction of the fore-

ground.

1For qualitative comparison on EBB! Test data, please refer to Supple-

mentary material.

Method with Specification PSNR SSIM LPIPS MOS

DMSHN (without stage-2) 24.41 0.8765 0.2322 1.71

DMSHN (with stage-2)

Lst2 = L1 + 0.1 ∗ LMS-SSIM

24.34 0.8748 0.2299 1.67

DMSHN (with stage-2)

Lst2 = LMS-SSIM

24.65 0.8765 0.2289 1.52

Table 3. Effect of different Loss functions in Stage-2 training.

DMSHN vs Stacked DMSHN: By stacking two

DMSHN networks helps recovering important details in the

foreground image in the rendered bokeh image as shown

in Fig. 6. Table 1 shows the quantitative improvement of

Stacked DMSHN over DMSHN.

Inclusion of depth maps: In order to see if depth maps

are useful in our networks, normalized depth maps were

computed from the input images using a state-of-the-art

Monocular Depth estimation network MegaDepth [12]. The

estimated depth map was resized and concatenated to en-

coder input at each scale.

Table 4 shows that inclusion of depth maps improves the

performance of DMSHN. Although LPIPS improves by a

small margin in case of Stacked DMSHN after incorporat-

ing depth maps, PSNR, SSIM and MOS scores do not im-

prove. It indicates that inaccuracies in depth map estimation

doesn’t help Stacked DMSHN further in Bokeh rendering.

Qualitative comparison in Fig. 7 shows Stacked DMSHN

without depth map produces best perceptual results.

Method PSNR SSIM LPIPS MOS

DMSHN 24.65 0.8765 0.2289 1.52

DMSHN (with depth) 24.68 0.8780 0.2264 1.39

Stacked DMSHN 24.72 0.8793 0.2271 1.17

Stacked DMSHN

(with depth)
24.67 0.8780 0.2263 1.21

Table 4. Effect of Inclusion of Depth maps in our network.

4.7. Efficiency and Deployment in Mobile Devices:

The proposed models, DMSHN and Stacked DMSHN

are lightweight as DMSHN has 5.42 million, whereas

Stacked DMSHN has 10.84 million trainable parameters.

DMSHN and Stacked DMSHN models take 0.02 and 0.04

seconds to process an HD image, respectively on our sys-

tem. Table 5 shows parameter and runtime comparison

with other existing models. DMSHN is faster than all other

models. Our final model, Stacked DMSHN is 0.23 seconds

faster than the current state-of-the-art PyNet [7]. It is also

important to note that PyNet takes precomputed depth maps

as input, generating which takes additional time if it is not

readily available, whereas Stacked DMSHN can process the

input image directly.

Our models are also deployable in mobile devices. We

converted our PyTorch models to Tensorflow Lite (TFLite)

Figure 4. Effect of residual connection between encoders of different levels. From left: (a) Input Image (b) DMSHN (w/o res.) (c) DMSHN

(with res.) (d) Ground Truth.

Figure 5. Effect of stage-2 training. From left: (a) Input Image (b) DMSHN (w/o stage-2) (c) DMSHN (L1+0.1.LMS-SSIM) (d) DMSHN

(LMS-SSIM) (e) Ground Truth.

Method Parameters (M) Runtime (s)

SKN [8] 5.37 0.055

DDDF [17] N/A 2.5

DBSI [5] 5.36 0.048

PyNet [7] 47.5 0.27

DMSHN (ours) 5.42 0.020

Stacked DMSHN (ours) 10.84 0.040

Table 5. Parameter and Runtime comparison with state-of-the-art

models. Runtime for DDDF is reported from [17] and rest of the

runtimes were measured on our system. Red and Blue represent

best and second best values respectively.

[1] models and ran them on AI Benchmark Android appli-

cation [9]. Here, we have selected three mainstream mid-

range mobile chipsets from three different smartphone man-

ufacturers. The configurations of these chipsets are as fol-

lows.

Config-1: Qualcomm Snapdragon 660 AIE processor,

Adreno 512 GPU and 4GB RAM.

Config-2: Exynos 9611 processor, Mali-G72 MP3 GPU

and 4GB RAM.

Config-3: Qualcomm Snapdragon 855+ processor,

Adreno 640 GPU and 8GB RAM.

The corresponding runtimes for processing images of

half resolution of HD images on the devices can be found

in Table 6. In comparison with other approaches, PyNet

have the closest perceptual quality of our stacked DMSHN

model, but it failed with an Out of Memory (OOM) error

in these mid-range smartphones because of high memory

consumption and instance normalization layers present in

PyNet which are still not supported adequately by the Ten-

sorFlow Lite. However, our model is devoid of these prob-

lems.

Figure 6. Effect of Stacking. From left: (a) Input Image (b) DMSHN (d) Stacked DMSHN (e) Ground Truth.

Figure 7. Effect of inclusion of depth maps. From left: (a) Input Image (b) Estimated Depth Map (c) DMSHN (d) DMSHN (with depth)

(e) Stacked DMSHN (f) Stacked DMSHN (with depth) (g) Ground Truth

Method Config-1 Config-2 Config-3

DMSHN 4.80 2.37 0.75

Stacked DMSHN 15.31 12.50 5.27

Table 6. Runtimes (in seconds) of our models on different smart-

phone configurations.

5. Conclusion

In this paper, we devised two end-to-end deep multi-

scale networks, namely DMSHN and Stacked DMSHN for

realistic bokeh effect rendering. Our models do not de-

pend on any precomputed depth estimation maps or saliency

maps and also do not require any other additional hardware

(e.g. depth sensor or stereo camera) other than a monocu-

lar camera to aid the bokeh effect rendering. We see that

Stacked DMSHN performs better than DMSHN both qual-

itatively and quantitatively. The Stacked DMSHN yields

results of similar perceptual quality as PyNet [7] and per-

forms better than other approaches in the literature. Along

with that, our proposed methods are lightweight, efficient,

runnable in real time and also much faster than other com-

peting approaches with good perceptual quality. We also

showed that our models are deployable in mid-range smart-

phones too and take significantly less time where our closest

competitor, PyNet [7] is only able to run in high-end smart-

phones. In future, incorporation of dense connections in

encoder and decoders and spatial attention can be explored

to further improve the perceptual quality of rendered bokeh

images.

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th USENIX

symposium on operating systems design and implementation

(OSDI 16), pages 265–283, 2016. 7

[2] Codruta O Ancuti, Cosmin Ancuti, Florin-Alexandru

Vasluianu, and Radu Timofte. Ntire 2020 challenge on non-

homogeneous dehazing. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops, pages 490–491, 2020. 4

[3] Benjamin Busam, Matthieu Hog, Steven McDonagh, and

Gregory Slabaugh. Sterefo: Efficient image refocusing with

stereo vision. In Proceedings of the IEEE International Con-

ference on Computer Vision Workshops, pages 0–0, 2019. 1,

2

[4] Sourya Dipta Das and Saikat Dutta. Fast deep multi-patch

hierarchical network for nonhomogeneous image dehazing.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, pages 482–483,

2020. 4

[5] Saikat Dutta. Depth-aware blending of smoothed images for

bokeh effect generation. Journal of Visual Communication

and Image Representation, page 103089, 2021. 2, 4, 5, 6, 7

[6] Damien Fourure, Rémi Emonet, Elisa Fromont, Damien

Muselet, Alain Tremeau, and Christian Wolf. Residual conv-

deconv grid network for semantic segmentation. In BMVC

2017, 2017. 4

[7] Andrey Ignatov, Jagruti Patel, and Radu Timofte. Rendering

natural camera bokeh effect with deep learning. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 418–419, 2020. 2, 4,

5, 6, 7, 8

[8] Andrey Ignatov, Jagruti Patel, Radu Timofte, Bolun Zheng,

Xin Ye, Li Huang, Xiang Tian, Saikat Dutta, Kuldeep Puro-

hit, Praveen Kandula, et al. Aim 2019 challenge on bokeh

effect synthesis: Methods and results. In 2019 IEEE/CVF

International Conference on Computer Vision Workshop (IC-

CVW), pages 3591–3598. IEEE, 2019. 2, 5, 6, 7

[9] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,

Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:

Running deep neural networks on android smartphones. In

Proceedings of the European conference on computer vision

(ECCV), pages 0–0, 2018. 7

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015. 4

[11] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-

tive kernel networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 510–519,

2019. 2, 5

[12] Zhengqi Li and Noah Snavely. Megadepth: Learning single-

view depth prediction from internet photos. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2041–2050, 2018. 6

[13] W Lijun, S Xiaohui, Z Jianming, W Oliver, H Chih-Yao, K

Sarah, and L Huchuan. Deeplens: Shallow depth of field

from a single image. In ACM Trans. Graph.(Proc. SIG-

GRAPH Asia), volume 37, pages 6–1, 2018. 2

[14] Dongwei Liu, Radu Nicolescu, and Reinhard Klette. Bokeh

effects based on stereo vision. In International Conference

on Computer Analysis of Images and Patterns, pages 198–

210. Springer, 2015. 1, 2

[15] Chenchi Luo, Yingmao Li, Kaimo Lin, George Chen, Seok-

Jun Lee, Jihwan Choi, Youngjun Francis Yoo, and Michael O

Polley. Wavelet synthesis net for disparity estimation to syn-

thesize dslr calibre bokeh effect on smartphones. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 2407–2415, 2020. 1, 2

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E.

Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019. 4

[17] Kuldeep Purohit, Maitreya Suin, Praveen Kandula, and Ra-

jagopalan Ambasamudram. Depth-guided dense dynamic

filtering network for bokeh effect rendering. In 2019

IEEE/CVF International Conference on Computer Vision

Workshop (ICCVW), pages 3417–3426. IEEE, 2019. 2, 5,

7

[18] Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris,

Brian Price, Eli Shechtman, and Ian Sachs. Automatic por-

trait segmentation for image stylization. In Computer Graph-

ics Forum, volume 35, pages 93–102. Wiley Online Library,

2016. 2

[19] Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feld-

man, Nori Kanazawa, Robert Carroll, Yair Movshovitz-

Attias, Jonathan T Barron, Yael Pritch, and Marc Levoy.

Synthetic depth-of-field with a single-camera mobile phone.

ACM Transactions on Graphics (TOG), 37(4):1–13, 2018. 1,

2

[20] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004. 4

[21] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003, volume 2, pages 1398–1402. Ieee,

2003. 4

[22] Xiangyu Xu, Deqing Sun, Sifei Liu, Wenqi Ren, Yu-Jin

Zhang, Ming-Hsuan Yang, and Jian Sun. Rendering portrai-

tures from monocular camera and beyond. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 35–50, 2018. 2

[23] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-

niusz. Deep stacked hierarchical multi-patch network for

image deblurring. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5978–

5986, 2019. 4

[24] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 5

[25] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss

functions for image restoration with neural networks. IEEE

Transactions on computational imaging, 3(1):47–57, 2016.

4

