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Abstract

The Image Signal Processor (ISP) is a customized device

to restore RGB images from the pixel signals of CMOS im-

age sensor. In order to realize this function, a series of pro-

cessing units are leveraged to tackle different artifacts, such

as color shifts, signal noise, moire effects, and so on, that

are introduced from the photo-capturing devices. However,

tuning each processing unit is highly complicated and re-

quires a lot of experience and effort from image experts. In

this paper, a novel network architecture, CSANet, with em-

phases on inference speed and high PSNR is proposed for

end-to-end learned ISP task. The proposed CSANet applies

a double attention module employing both channel and spa-

tial attentions. Particularly, its spatial attention is simpli-

fied to a light-weighted dilated depth-wise convolution and

still performs as well as others. As proof of performance,

CSANet won 2
nd place in the Mobile AI 2021 Learned

Smartphone ISP Challenge with 1
st place PSNR score.

1. Introduction

In conventional camera pipelines, no matter smartphones

or DSLR cameras, complex and confidential hardware pro-

cesses are employed to perform image signal processing, a

specialized digital signal processor for reconstructing RGB

images from raw Bayer images. The ISP pipeline consists

of highly complicated DSP steps, e.g., denoising, white bal-

ancing, exposure correction, demosaicing, color transform,

gamma encoding, and so on. Each step of the ISP pipeline

is performed with individual task-specific loss function and

hence, the residual error will be accumulated. In order

to enhance the quality of RGB images from raw Bayer

images, tedious parameter tuning process, usually hand-

crafted heuristics-based approaches, should be applied. A

small change in parameter configuration might lead to dif-

ferent reconstructed RGB images.

Nowadays, smartphones have become a part of a per-

son’s daily life. How to make the photo quality of the mo-

bile phone camera, e.g. Huawei P20 mobile camera, as

close as possible to the professional one, Canon 5D DSLR,

will be the customer’s concern. It is known that a well-

designed and adjusted ISP can bring competitive quality to

the images taken by smartphones. However, applying the

conventional ISP pipeline, there might always a big gap be-

tween the mobile phone and the professional cameras be-

cause each module in the ISP pipeline can neither control

the output of the other modules nor recover the signal loss

of previous ones.

With the advent of deep learning and the continuous im-

provements in memory and computational hardware, sev-

eral research fields including computer vision, graphics,

and computational photography have been making much

progress. The idea that using a convolutional neural net-

work (CNN) to replace the hardware-based ISP, namely

PyNET [12], is supported by the fact that CNN can com-

pensate for the information loss of input images, which is

more reliable than the traditional ISP and can effectively

break through the hardware limitation [4, 12, 2, 31].

We consider not only the PSNR quality of the RAW-

to-RGB image but also the computation time and the total

number of model parameters. A novel network architec-

ture, namely CSANet, was proposed. The CSANet empha-

sized both inference speed and high PSNR. Our proposed

method inferred at most 90.8 ms per image and achieved

image quality over 23.7dB in the MAI 2021 Learned Smart-

phone ISP Challenge [8] in the final testing phase.

2. Related Works

2.1. PyNet

With PyNET network [12], it is possible that the low-

quality images recorded by compact camera sensors, avail-

able in portable mobile devices, can be enhanced and re-



stored. One of the biggest challenges in the RAW-to-RGB

mapping task is to get high-quality real data that can be used

for training deep CNN models. The AIM challenge on the

learned ISP pipeline promoted a novel direction of research

aiming at replacing the current tedious and expensive hand-

crafted ISP solutions with data-driven learned ones capable

to surpass them in terms of image quality. For this purpose,

the participants were asked to map the smartphone camera

RAW images to the higher quality images captured with a

high-end DSLR camera. The AIM 2020 challenge[11], for

example, employed the ZRR dataset containing paired and

aligned photos produced by the Huawei P20 smartphone

and Canon 5D Mark IV DSLR camera.

2.2. AWNet

Many of the proposed solutions significantly improve

the original RAW images in perceptual quality. For exam-

ple, the MW-ISPNet, a U-Net based multi-level wavelet ISP

network, takes advantage of the MWCNN [16] and RCAN

[29] architectures. In each U-Net level of MW-ISPNet, a

residual group (RG) composed of 20 residual channel at-

tention blocks (RCAB) is embedded. The standard down-

sampling and up-sampling operations are replaced with a

discrete wavelet transform based (DWT) decomposition to

minimize the information loss in these layers. Meanwhile,

the AWNet proposed by the team MacAI [2], utilized the

attention mechanism and wavelet transform.

The AWNet is consisting of three blocks: lateral block,

up-sampling, and down-sampling blocks, as shown in Fig.

1. The lateral block consists of several residual dense blocks

(RDB) and a global context block (GCB). Same as the pre-

vious team, the authors used the discrete wavelet transform

(DWT) instead of the pooling layers to preserve the low-

frequency information, though they additionally used the

standard downscaling convolutional and pixel shuffle lay-

ers in parallel with the DWT layers to get a richer set of

learned features.

As shown in Fig. 1, the architecture of such a network

generally consists of three parts. The first part, including

the input, is to reduce the size of the image and simulta-

neously extract the feature information. The second part

of the network is usually made up of a sequence of simi-

lar processing units which means to knead the information

from feature maps of previous blocks or layers via different

attention mechanisms or channel aggregations. The third

part of the network is to transform the features maps into

the desired output image resolution. This network design

concept can also be found in these papers [23, 14, 15, 29].

2.3. Attention Modules

Although applying the multi-level encoder-decoder

structure can capture different scales of objects and fuse

semantic features, it cannot leverage the relationship be-

Figure 1. The main network architecture of the AWNet.

tween objects or stuff in a global view, which is also es-

sential to construct the image. To address this problem,

some attention blocks or modules were introduced in the

proposed network [27, 3, 25, 21]. Attention modules can

model long-range dependencies and have been widely ap-

plied in many tasks. The work in [20] is the first to propose

the self-attention mechanism to draw global dependencies

of inputs and apply it in machine translation. For the image

vision field, Zhang et al. [28] introduced a self-attention

mechanism to learn a better image generator. Meanwhile,

the work in [22] applied a self-attention module to explore

the effectiveness of the non-local operation in space-time

dimensions for videos and images. Moreover, a dual atten-

tion network (DANet) [3] was proposed for natural scene

image segmentation.

The DANet [3] applied a self-attention mechanism to

capture feature dependencies in both the spatial and chan-

nel dimensions, respectively. Two parallel attention mod-

ules, one is the position attention module and the other is

the channel attention module, were proposed. The position

attention module would capture the spatial dependencies

between any two positions of the feature maps, while the

channel attention module would capture the channel depen-

dencies between any two-channel maps. Finally, the out-

puts of these two attention modules were fused to further

enhance the feature representations.

2.4. AI Model Acceleration on Mobile Devices

Neural networks of high accuracy usually require mas-

sive memory bandwidth and computational resource when

running, which makes them difficult to be deployed on

embedded systems because of limited hardware resources.

Therefore, in order to run such applications on mobile de-

vices, the designed network model needs to optimize infer-

ence cost in advance before deploying it to mobile devices.

The optimization techniques include pruning [30], a process

of removing weight connections to increase inference speed

and decrease the model size; quantization [13], performing

computation and storing tensors in lower bit-widths rather

than in floating points; and binarization [17], using binary



Figure 2. Our proposed Channel Spatial Attention Network (CSANet).

weights to replace floating ones to largely save the storage

space and computation power. In the process of optimiza-

tion, the network needs to be iteratively fine-tuned to min-

imize the accuracy loss as much as possible. Thus, when

designing a network running on a mobile device for an im-

age challenge, there is always a trade-off consideration be-

tween the model accuracy and running speed. One practical

strategy is to take the advantage of using a floating-point

model for inference rather than a quantized one. The reason

is that no additional conversion or retraining of the model

is needed [9, 10]. Moreover, the accuracy we get in the

server environment will be the same as in the mobile de-

vice. However, for the consideration of a mobile device’s

running speed, we take measures to carefully control the

network architecture and computing operators so that the

runtime of the model will not exceed our predefined limit.

3. Network Architecture

To restore RGB images from camera sensor outputs,

a novel network architecture with emphases on inference

speed and high PSNR, which we call CSANet, is illustrated

in Fig. 2.

3.1. Channel Spatial Attention Network (CSANet)

In order to reduce the computation time and the total

training parameters, gradual down-sampling of the input is

first under consideration in the design strategy. A simplified

but still well-performed attention module should be applied

to boost up the reconstructed image quality. Thus, our de-

sign follows the aforementioned three-part architecture de-

sign in the previous section. In the beginning part, a strided

convolution block and a conventional convolution one each

with the activation function relu are used to perform feature

extraction and downsize the input RAW data IRAW . After

that, a series of processing blocks are cascaded. The middle

double attention modules (DAM) with skip connections are

mainly designed to enhance the spatial dependencies and to

highlight the prominent objects in the feature maps [27, 25].

These skip connections [18, 5] are used not only to avoid

the vanishing gradient problem but also to keep the similari-

ties between the learned feature maps from different blocks.

Next, the last part of the network uses ”convolution trans-

pose” and ”depth to space” to upscale the size of the feature

maps. Finally, a conventional convolution and a following

sigmoid function restore the output RGB image ÎRGB .

3.2. Double Attention Module (DAM)

The sub-network structure of DAM is shown in Fig. 3.

The structure is inspired by the works of Woo et al. [25].

Given input feature maps that are obtained by applying two

convolutions, DAM performs this feature recalibration by

using two attention mechanisms: (1) spatial attention (SA),

and (2) channel attention (CA). The result of these concate-

nated attentions is then followed by convolutional layer with

filter size 1× 1 to yield adaptive feature refinement.

Spatial Attention. This module is designed to learn the

spatial dependencies in the feature maps. Specifically, in

order to have distant vision over the feature maps, a depth-

wise dilated convolution [6, 26] is used to extract informa-

tion. The kernel size is set to 5×5 and the dilated rate is set

to 2. After this layer follows a sigmoid activation function

to produce pixel-wise attention z′ ∈ R
H

4
×

W

4
×C . Finally,

the output Fsa ∈ R
H

4
×

W

4
×C of the spatial attention mod-

ule will be the elemental-wise multiplication of the input

feature maps Fin and the pixel-wise attention z′.

Channel Attention. This module originated from the

SENet [27, 25, 7]. It utilizes squeeze and excite opera-

tions to learn the inter-channel relationship of feature maps

given an input image. The squeeze operation is realized

by computing the mean values over the individual feature

maps, thus yielding a descriptor in z ∈ R1×1×C . The

excite operation is composed of two 1 × 1 convolution

layers but each with different channel sizes and activa-

tion functions, relu and sigmoid, respectively. This excite

operation re-calibrates the squeeze output and produces a



Figure 3. The structure of double attention module (DAM), spatial

attention and channel attention.

calibrated descriptor z′ ∈ R1×1×C . Finally, the output

Fca ∈ R
H

4
×

W

4
×C of the channel attention module will be

the elemental-wise multiplication of the input Fin of the

squeeze operation and the calibrated descriptor z′.

3.3. Loss Function

In this section, we introduce our loss function that sums

up pixel loss, perception loss and, structure similarity loss.

We denote Î as the predicted image and I as the ground

truth RGB image.

Pixel Loss. The Charbonnier [29, 1] loss is adopted as

an approximate loss function. This loss has been believed

to outperform the traditional penalty [29] in image recon-

struction tasks. The Charbonnier loss function is defined

as:

Lchar =

√

(I − Î)2 + ε (1)

where ε is set to 10−6.

Perceptual Loss. To deal with the pixel misalignment

problem, the perceptual loss from the output of the pre-

trained VGG-19 network [19] is employed. The loss func-

tion is defined as:

Lp = LMSE(FV GG(I)− FV GG(Î)) (2)

where FV GG denotes the output of the last convolution in

the pretrained VGG-19 network. This LMSE loss on such

feature maps is used to minimize the perceptual difference

between the reconstructed image and the ground truth.

SSIM Loss. The structural similarity loss LSSIM [24]

is used to enhance the reconstructed RGB images by the

structural similarity index. The loss function can be defined

as:

LSSIM = 1− FSSIM (I, Î) (3)

where FSSIM calculates the structural similarity index.

Finally, the total loss is expressed as:

Ltotal = Lchar + αLp + βLSSIM (4)

where α and β are set to 0.001 and 0.1, respectively.

4. Experiment

4.1. Experimental environment

We used Tensorflow 1.15.0 and python 3.6 to implement

the proposed neural network and then trained the model

with the server environment (Ubuntu 16.4, Intel Xeon CPU

E5-2650 v4, 512G Ram, and Tesla P100 16G GPU x1).

4.2. Datasets

The data set we used was provided by Mobile AI 2021

workshop for the online contest. According to the organi-

zation, to get real data for the RAW-to-RGB mapping prob-

lem, a large-scale dataset consisting of photos collected us-

ing the Sony IMX586 Quad Bayer RGB mobile sensor for

capturing RAW photos and a professional high-end Fuji-

film GFX100 camera for RGB ground truths was obtained.

Since the captured RAW-RGB image pairs are not per-

fectly aligned, they were matched using an advanced deep

learning-based algorithm, and then smaller patches of size

256 × 256 pixels were extracted. We were provided with

24K training RAW-RGB image pairs (of size 256×256×1
and 256 × 256 × 3, respectively). It should be mentioned

that all alignment operations were performed only on RGB

DSLR images, therefore RAW photos from the Sony sensor

remained unmodified. We divided the dataset into:

• Train data: A random selection 90% of the 24K

aligned RAW-RGB image pairs.

• Self-validation data: The other 10% of the 24K

aligned RAW-RGB image pairs.

• Validation data: The participants received the RAW

images when the validation phase started; the cor-

responding ground truth RGB images were released

when the final phase of the challenge started.

• Test data: The participants could not receive the RAW

testing images.



Figure 4. Qualitative comparisons of different networks. From top to down, the first row is the ground truth images captured by Fujifilm

GFX100 camera; and the following rows are the reconstructed RGB images of our CSANet, AWNet, and PUNet.

4.3. Training Details

Our model was trained from scratch with 1× 16G Tesla

P100 GPU, taking about 3 days. During the training, all

the training images were augmented by random horizontal

flipping, and the batch size was set to 100. The weights of

the model were trained for 100K iterations using Adam op-

timizer with an initial learning rate of 5× e−4 which would

later be set to 1 × 10−4, 5 × 10−5, and 1 × 10−5 at the

20kth, 50kth, and 80kth iteration, respectively. In this work,

we only use floating point computation to generate the RGB

images. In the final result, our model inferred at 82.8 ms per

image and achieved PSNR 24.31 dB on Codalab during the

development phase(using the validation set).

4.4. Performance Comparison

To evaluate the performance of our model, we conducted

an experiment and compared results with other popular

models’ (AWNet and PUNet). PUNet was the baseline

Network PSNR SSIM
Runtime

(ms)

CSANet 24.31 0.84 82.8

AWNet 24.78 0.87 N/A

PUNet 22.74 0.82 200.0

Table 1. Validation scores by different models (using the validation

set). All models were trained with the same dataset ad run on Me-

diaTek Dimensity 1000+ (APU). The runtime of AWNet was not

available, but run approximately 2 seconds on GPU (Tesla P100).

model provided by Mobile AI 2021 workshop, which is

mainly based on PyNet. Our proposed method was tested

on the online validation data that was provided during the

development stage. The quantitative comparison was shown

in Table 1. As can be seen from it, our model not only is ca-

pable of generating images with quality as good as others

but also infers with a significantly shorter runtime. Fig. 4



NN Architecture PSNR/SSIM
Runtime

(ms)

DAM *2 (this work) 24.31 / 0.843 82.8

DAM *1 24.13 / 0.835 74.5

DAM *1 (Only CA) 23.70 / 0.818 71.8

ResBlocks * 4 23.80 / 0.834 73.5

Table 2. The result of the ablation test. These variants are trained

under the same condition. We can see that one channel attention

module performs as well as four residual blocks. Furthermore,

using both channel and spatial attention modules gives an even

better PSNR score at a reasonable cost of runtime.

Model SoC
CPU
(ms)

GPU
(ms)

NNAPI
(ms)

Realme x7 pro Dim. 1000+ 138 228 150

HTC U12+ Snap. 845 280 513 1624

Nokia 9 Snap. 845 238 439 820

Google Pixel5 Snap. 765G 282 827 328

Samsung S10 Exynos 9820 244 299 933

Table 3. The runtime of our proposed model measured by AI

benchmark 4.0. The abbreviation Dim. stands for the Dimensity

series, and the Snap. stands for Snapdragon series. We can see

that CSANet runs mush faster on newer generation SoCs. How-

ever, for NNAPI and GPU parts, it didn’t perform as well as we

expected.

ID PSNR/SSIM
Runtime

(s)
Score

838363 23.20 / 0.8467 0.0610 25.98

838650 23.73 / 0.8487 0.0908 25.91

838466 23.30 / 0.8395 0.0780 25.74

838312 22.97 / 0.8392 0.0650 25.67

838424 22.78 / 0.8472 0.0770 25.24

837988 23.08 / 0.8237 0.0945 25.19

838514 22.03 / 0.8217 0.0763 24.50

838604 22.84 / 0.8379 0.1672 23.50

838328 23.41 / 0.8534 0.2310 23.39

838698 23.23 / 0.8481 1.8610 22.40

836753 19.11 / 0.7987 ERROR ERROR

836795 8.45 / 0.2274 ERROR ERROR

Table 4. The results of Mobile AI 2021 Learned Smartphone ISP

Challenge. Our result is shown in Boldface (All teams used the

same test data from Mobile AI 2021 workshop). Our method

achieved the best image quality while remaining competitive on

runtime.

shows the reconstructed images of each model. For a more

detailed comparison, our method has a better capability of

recovering color into RGB space in a pixel-to-pixel matter,

as the expected functionality of the double attention mod-

ules. However, our proposed method tends to obscure im-

age details a little. Although lacking direct experimental ev-

idence, we think this might result from the steep shrinkage

in the size of feature maps in the first extracting part of the

network. It is also interesting to point out that, on some oc-

casions, all ISP models tend to “fix” the input RAW image.

For example, this phenomenon happened in the images of

column 4 and column 5 (from left to right direction). With

a close look, we can see that, in the 4th ground truth image,

there is a curvy wire stick on the wall. However, all models

“fixed” this curve to a straight one. For another example,

all models made more changes to the 5th input image. We

can see that, the “Adam Touring” sign in the original image

is partially blocked by the armrest, and the “arrow” sign

has a rounded corner. However, all models “sharpened” the

corner, “deleted” the armrest from the picture, and “fixed”

the missing part of the alphabets. This behavior is likely

caused by the fact that the models learned these similar pat-

terns from the training dataset and considered the original

patterns polluted by noise. Therefore, they tend to modify

image contents to lower their loss functions when encoun-

tering such rare image patterns. For the purpose of devel-

oping ISP substitution, this unwanted outcome might be a

downside that needs further improvement. However, this

also shines a new light on other possible applications (etc.

image fidelity) on mobile devices.

4.5. Ablation and AI Benchmark

This section reports the ablation study of the proposed

model and the AI Benchmarks for our model in several mo-

bile devices. The results of the ablation study are presented

in Table 2. In this study, we compared CSANet with its

4 variants which were trained in the same way as before

and were tested on the validation dataset from AIM 2021

Learned Smartphone ISP Challenge. As our baseline, the

variant ResBlock * 4 used four 3 × 3 residual blocks in-

stead of two DAMs. As we can see, one channel atten-

tion module has the equivalent performance of four residual

block. Moreover, adding an extra spatial attention module

boosted performance further around 0.43 db in the PSNR

metric comparing to Only CA, while the runtime increases

around 1 ms comcaring to ResBlock * 4. Our proposed

model thus came from the final decision of balancing the

performance and runtime. Additionally, the final part of the

proposed model that upscales image sizes is believed to be

the bottleneck of the model speed, since changes in our ex-

periment didn’t increase the model runtime greatly.

AI Benchmark 4.0 [10] is a mobile software package to

measure the neural network performance of a smartphone

such as accuracy, speed, initialization time, and so on. Our

proposed model was offered to this software package to

measure the AI performances on several mobile devices.

After providing the path of our tflite model, tests would be

conducted to measure the runtimes using CPU, GPU, and



NNAPI separately. The CPU test was set to FP16 and 4

CPU threads. The GPU test was set to FP32. The NNAPI

test was set to FP16. Table 3 summarizes the detailed re-

sults. We can see that the smart phone with Soc Dimen-

sty 1000+ overwhelmingly beat the rest in all the tests due

to its enhancement in AI aspect (with a Device AI-Score

of 130.9). However, it seems that for running CSANet,

NNAPI and GPU have no lesser runtime than CPU across

all mobile devices.

4.6. Contest Performance

Table 4 shows the result of the Mobile AI 2021 Learned

Smartphone ISP Challenge. We were ranked 2nd place with

the highest image quality (PSNR/SSIM) and a formidable

runtime.

5. Conclusion

In this paper, we proposed CSANet, a DNN architecture
that utilizes spatial and channel attention modules to model
a mobile device’s ISP pipeline. Our proposed method gen-
erates images with quality as good as AWNet does but
with a significantly lower runtime. Moreover, our proposed
method won 2nd place in the Mobile AI 2021 Learned
Smartphone ISP Challenge.
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Lucas/kanade meets horn/schunck: Combining local and

global optic flow methods. International journal of computer

vision, 61(3):211–231, 2005.

[2] Linhui Dai, Xiaohong Liu, Chengqi Li, and Jun Chen.

Awnet: Attentive wavelet network for image isp. arXiv

preprint arXiv:2008.09228, 2020.

[3] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3146–

3154, 2019.
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