
Fast and Accurate Quantized Camera Scene Detection on Smartphones,

Mobile AI 2021 Challenge: Report

Andrey Ignatov Grigory Malivenko Radu Timofte Sheng Chen Xin Xia

Zhaoyan Liu Yuwei Zhang Feng Zhu Jiashi Li Xuefeng Xiao Yuan Tian

Xinglong Wu Christos Kyrkou Yixin Chen Zexin Zhang Yunbo Peng Yue Lin

Saikat Dutta Sourya Dipta Das Nisarg A. Shah Himanshu Kumar Chao Ge

Pei-Lin Wu Jin-Hua Du Andrew Batutin Juan Pablo Federico Konrad Lyda

Levon Khojoyan Abhishek Thanki Sayak Paul Shahid Siddiqui

Abstract

Camera scene detection is among the most popular com-

puter vision problem on smartphones. While many custom

solutions were developed for this task by phone vendors,

none of the designed models were available publicly up un-

til now. To address this problem, we introduce the first Mo-

bile AI challenge, where the target is to develop quantized

deep learning-based camera scene classification solutions

that can demonstrate a real-time performance on smart-

phones and IoT platforms. For this, the participants were

provided with a large-scale CamSDD dataset consisting of

more than 11K images belonging to the 30 most important

scene categories. The runtime of all models was evalu-

ated on the popular Apple Bionic A11 platform that can

be found in many iOS devices. The proposed solutions are

fully compatible with all major mobile AI accelerators and

can demonstrate more than 100-200 FPS on the majority of

recent smartphone platforms while achieving a top-3 accu-

racy of more than 98%. A detailed description of all models

developed in the challenge is provided in this paper.

1. Introduction

The problem of automatic camera scene prediction on

smartphones appeared soon after the introduction of the first

mobile cameras. While the initial scene classification ap-

proaches were using only manually designed features and

some simple machine learning algorithms, the availability

of much more powerful AI hardware such as NPUs, GPUs

and DSPs made it possible to use considerably more accu-

rate and efficient deep learning-based solutions. Neverthe-

∗ Andrey Ignatov, Grigory Malivenko and Radu Timofte are the Mobile AI

2021 challenge organizers (andrey@vision.ee.ethz.ch, grigory.malivenko

@gmail.com, radu.timofte@vision.ee.ethz.ch). The other authors partici-

pated in the challenge. Appendix A contains the authors’ team names and

affiliations.

Mobile AI 2021 Workshop website:

https://ai-benchmark.com/workshops/mai/2021/

less, this task has not been properly addressed in the liter-

ature until the introduction of the Camera Scene Detection

Dataset (CamSDD) dataset in [36], where this problem was

carefully defined and training data for 30 different camera

scene categories was provided along with a fast baseline so-

lution. In this challenge, we take one step further in solv-

ing this task by imposing additional efficiency-related con-

straints on the developed models.

When it comes to the deployment of AI-based solutions

on portable devices, one needs to take care of the particu-

larities of mobile CPUs, NPUs and GPUs to design an effi-

cient model. An extensive overview of mobile AI acceler-

ation hardware and its performance is provided in [21, 18].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and a limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [6, 14, 30, 31, 35], 16-bit /

8-bit [6, 28, 27, 47] and low-bit [5, 42, 25, 32] quantization,

device- or NPU-specific adaptations, platform-aware neural

architecture search [9, 38, 44, 43], etc.

While many challenges and works targeted at efficient

deep learning models have been proposed recently, the eval-

uation of the obtained solutions is generally performed on

desktop CPUs and GPUs, making the developed solutions

not practical due to the above mentioned issues. To address

this problem, we introduce the first Mobile AI Workshop and

Challenges, where all deep learning solutions are developed

for and evaluated on real low-power devices. In this com-

petition, the participating teams were provided with a large-

scale CamSDD dataset containing more than 11K images

1

https://ai-benchmark.com/workshops/mai/2021/


Portrait Group Portrait Kids Dog Cat Macro

Gourmet Beach Mountains Waterfall Snow Landscape

Underwater Architecture Sunrise & Sunset Blue Sky Overcast Greenery

Autumn Plants Flowers Night Shot Stage Fireworks Candlelight

Neon Lights Indoor Backlight Document QR Code Monitor Screen

Figure 1. Visualization of the 30 Camera Scene Detection Dataset (CamSDD) categories.

belonging 30 camera scene categories. Since many mo-

bile and IoT platforms can efficiently accelerate INT8 mod-

els only, all developed solutions had to be fully-quantized.

Within the challenge, the participants were evaluating the

runtime and tuning their models on the Apple Bionic A11

SoC used as the target platform for this task. The final score

of each submitted solution was based on the runtime and

top-1 / top-3 accuracy results, thus balancing between the

precision and efficiency of the proposed model. Finally, all

developed solutions are fully compatible with the Tensor-

Flow Lite framework [40], thus can be deployed and ac-

celerated on any mobile platform providing AI acceleration

through the Android Neural Networks API (NNAPI) [3] or

custom TFLite delegates [8].

This challenge is a part of the MAI 2021 Workshop and

Challenges consisting of the following competitions:

• Learned Smartphone ISP on Mobile NPUs [11]

• Real Image Denoising on Mobile GPUs [10]

• Quantized Image Super-Resolution on Edge SoC NPUs [19]

• Real-Time Video Super-Resolution on Mobile GPUs [16]

• Single-Image Depth Estimation on Mobile Devices [13]

• Quantized Camera Scene Detection on Smartphones

• High Dynamic Range Image Processing on Mobile NPUs

The results obtained in the other competitions and the de-

scription of the proposed solutions can be found in the cor-

responding challenge papers.

2. Challenge

To develop an efficient and practical solution for mobile-

related tasks, one needs the following major components:

1. A high-quality and large-scale dataset that can be used

to train and evaluate the solution;

2. An efficient way to check the runtime and debug the

model locally without any constraints;

3. An ability to regularly test the runtime of the designed

neural network on the target mobile platform or device.

This challenge addresses all the above issues. Real train-

ing data, tools, and runtime evaluation options provided to

the challenge participants are described in the next sections.

2.1. Dataset

In this challenge, we use the Camera Scene Detection

Dataset (CamSDD) [36] that provides high-quality diverse

data for the considered task. It consists of 30 different scene

2



Figure 2. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download

categories shown in Fig. 1 and contains more than 11K im-

ages that were crawled from Flickr1 using the same setup

as in [12]. All photos were inspected manually to remove

monochrome and heavily edited pictures, images with dis-

torted colors and watermarks, photos that are impossible for

smartphone cameras (e.g., professional underwater or night

shots), etc. The dataset was designed to contain diverse im-

ages, therefore each scene category contains photos taken

in different places, from different viewpoints and angles:

e.g., the “cat” category does not only contain cat faces but

also normal full-body pictures shot from different positions.

This diversity is essential for training a model that is gener-

alizable to different environments and shooting conditions.

Each image from the CamSDD dataset belongs to only one

scene category. The dataset was designed to be balanced,

thus each category contains on average around 350 pho-

tos. After the images were collected, they were resized to

576×384 px resolution as using larger photos will not bring

any information that is vital for the considered classification

problem while will increase the processing time.

2.2. Local Runtime Evaluation

When developing AI solutions for mobile devices, it is

vital to be able to test the designed models and debug all

emerging issues locally on available devices. For this, the

participants were provided with the AI Benchmark applica-

tion [18, 21] that allows to load any custom TensorFlow Lite

model and run it on any Android device with all supported

1https://www.flickr.com/

acceleration options. This tool contains the latest versions

of Android NNAPI, TFLite GPU, Hexagon NN, Samsung

Eden and MediaTek Neuron delegates, therefore supporting

all current mobile platforms and providing the users with

the ability to execute neural networks on smartphone NPUs,

APUs, DSPs, GPUs and CPUs.

To load and run a custom TensorFlow Lite model, one

needs to follow the next steps:

1. Download AI Benchmark from the official website2 or

from the Google Play3 and run its standard tests.

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 2.

2.3. Runtime Evaluation on the Target Platform

In this challenge, we use the Apple Bionic A11 chipset

with the 1-st generation Neural Engine that can be found in

the iPhone X and iPhone 8 / 8 Plus smartphones as our target

runtime evaluation platform. The runtime of all solutions

was tested using the TensorFlow Lite CoreML delegate [7]

2https://ai-benchmark.com/download
3https://play.google.com/store/apps/details?id=

org.benchmark.demo

3

https://ai-benchmark.com/download
https://www.flickr.com/
https://ai-benchmark.com/download
https://play.google.com/store/apps/details?id=org.benchmark.demo
https://play.google.com/store/apps/details?id=org.benchmark.demo


Team Author Framework Model Size, MB Top-1, % Top-3, % Final Runtime, ms Final Score

ByteScene halfmoonchen Keras / TensorFlow 8.2 95.00 99.50 4.44 163.08

EVAI EVAI Keras / TensorFlow 0.83 93.00 98.00 3.35 19.1

MobileNet-V2 [36] Baseline TensorFlow 18.6 94.17 98.67 16.38 13.99

ALONG YxChen03 TensorFlow 12.7 94.67 99.50 64.45 8.94

Team Horizon tensorcat Keras / TensorFlow 2.27 92.33 98.67 7.7 8.31

Airia-Det stvea TensorFlow 1.36 93.00 99.00 17.51 7.31

DataArt Perceptrons andrewBatutin Keras / TensorFlow 2.73 91.50 97.67 54.13 0.33

PyImageSearch thanki TensorFlow 2.02 89.67 97.83 45.88 0.12

neptuneai neptuneai Keras / TensorFlow 0.045 83.67 94.67 4.17 0

Sidiki Sidiki Keras / TensorFlow 0.072 78.00 93.83 1.74 0

Table 1. Mobile AI 2021 Quantized Camera Scene Detection challenge results and final rankings. The runtime values were obtained on

576×384 px images on the Apple Bionic A11 platform. Top-1 / Top-3 accuracy was computed using the provided fully-quantized TFLite

models. Team ByteScene is the challenge winner, Baseline corresponds to the MobileNet-V2 based solution presented in [36].

containing many important performance optimizations for

this SoC, the latest iOS 14 operating system was installed

on the smartphone. Within the challenge, the participants

were able to upload their TFLite models to the runtime val-

idation server connected to a real iPhone device and get in-

stantaneous feedback: the runtime of their solution or an

error log if the model contains some incompatible opera-

tions. The same setup was also used for the final runtime

evaluation.

2.4. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the data

and AI Benchmark app, and are able to train the mod-

els and evaluate their runtime locally;

II. Validation: the participants can upload their models

and predictions to the remote server to check the ac-

curacy on the validation dataset, to get the runtime on

the target platform, and to compare their results on the

validation leaderboard;

III. Testing: the participants submit their final results,

codes, TensorFlow Lite models, and factsheets.

2.5. Scoring System

All solutions were evaluated using the following metrics:

• Top-1 accuracy checking how accurately was recog-

nized the main scene category,

• Top-3 accuracy assessing the quality of the top 3 pre-

dicted classes,

• The runtime on the target Apple Bionic A11 platform.

The score of each final submission was evaluated based

on the next formula (C is a constant normalization factor):

Final Score =
2 (Top-1+Top-3)

C · runtime
,

During the final challenge phase, the participants did not

have access to the test dataset. Instead, they had to submit

their final TensorFlow Lite models that were subsequently

used by the challenge organizers to check both the runtime

and the accuracy results of each submission under identical

conditions. This approach solved all the issues related to

model overfitting, reproducibility of the results, and consis-

tency of the obtained runtime/accuracy values.

3. Challenge Results

From above 120 registered participants, 10 teams entered

the final phase and submitted valid results, TFLite models,

codes, executables and factsheets. Table 1 summarizes the

final challenge results and reports Top-1 / Top-3 accuracy

and the runtime numbers for each submitted solution on the

final test dataset and on the target evaluation platform. The

proposed methods are described in section 4, and the team

members and affiliations are listed in Appendix A.

3.1. Results and Discussion

All submitted solutions demonstrated a very high effi-

ciency: the majority of models are able to detect the camera

scene category at more than 50 FPS on the target Bionic

A11 SoC while achieving a top-3 accuracy of over 97-98%.

All teams were using either MobileNet [37, 9] or Efficient-

Net [39] backbones pre-trained on the ImageNet dataset ex-

cept for team Sidiki that proposed a very tiny classification

model which size is only 73KB. Despite using only 60K

parameters, it is still able to achieve a top-3 accuracy of

more than 93% on the final test set, thus might be prac-

tically useful for constraint embedded systems with very

tough requirements regarding the model size and memory

consumption. Team ByteScene is the challenge winner —

the proposed MobileNet-V3 based model was able to out-

perform all other solutions in terms of top-1 accuracy while

showing more than 220 FPS on the Bionic SoC. To achieve

these results, the authors used the Hierarchical Neural Ar-

4



Mobile SoC Snapdragon 888 Snapdragon 855 Dimensity 1000+ Dimensity 800 Exynos 2100 Exynos 990 Kirin 990 5G Kirin 980

AI Accelerator Adreno 660 GPU, fps Hexagon 690, fps APU 3.0 (6 cores), fps APU 3.0 (4 cores), fps NPU, fps Mali-G77 GPU, fps Mali-G76 GPU, fps Mali-G76 GPU, fps

ByteScene 198 191 224 156 262 98 88 94

EVAI 290 347 408 275 292 144 138 166

ALONG 53 53 71 52 37 27 27 30

Team Horizon 244 224 171 122 174 101 111 110

Airia-Det 207 126 190 125 92 68 64 74

DataArt Perceptrons 91 68 61 41 30 28 92 42

PyImageSearch 94 68 73 51 39 32 51 43

neptuneai 578 274 252 144 204 181 195 245

Sidiki 427 400 198 161 373 228 164 154

Table 2. The speed of the proposed solutions on several popular mobile platforms. The runtime was measured with the AI Benchmark app

using the fastest acceleration option for each device. The best FPS rate for each solution is denoted in bold.

chitecture Search to adapt the baseline architecture to the

target accuracy / runtime constraints, and additional train-

ing data obtained by pseudo-labeling with a larger and more

accurate network pre-trained on the CamSDD dataset. The

same approach of data augmentation was also used by team

ALONG that generated additional 50K training images us-

ing a similar strategy.

To further benchmark the efficiency of the designed so-

lutions, we additionally tested their performance on several

popular smartphone chipsets. The runtime results demon-

strated in Table 2 were measured with the AI Benchmark

using the most efficient acceleration option. We should note

that though the Snapdragon 888 and the Kirin 990 5G SoCs

have NPUs / DSPs supporting quantized inference, they are

not compatible with TensorFlow-2.x models right now, thus

in these two cases their GPUs were used instead for acceler-

ating the networks. As one can see, all models were able to

achieve real-time performance with more than 27-30 clas-

sified images per second on all considered platforms. The

winning solution from team ByteScene was able reach more

than 150-200 FPS on the latest chipsets from Qualcomm,

MediaTek and Samsung, and should be able to perform real-

time classification on all recent high-end, mid-range and

even low-end platforms. The solution from team EVAI can

provide an additional 50-100% runtime boost at the expense

of a slightly lower accuracy. Overall, the obtained results

also demonstrate the efficiency of mobile AI accelerators

for image classification tasks as they can achieve enormous

processing rates while maintaining low power consumption.

4. Challenge Methods

This section describes solutions submitted by all teams par-

ticipating in the final stage of the MAI 2021 Real-Time

Camera Scene Detection challenge.

4.1. ByteScene

Team ByteScene used a transfer learning method (Fig. 3)

inspired by the Big Transfer (BiT) [29] to train mobile

and big classification models. The first one is using a

MobileNet-V3 like architecture demonstrated in Table 3

that was searched using the Hierarchical Neural Architec-

ture Search [45] with additional runtime constraints, and

Figure 3. The training scheme used by ByteScene team.

achieves a top-1 accuracy of 67.82% on the ImageNet2012

validation set. Two fully-connected layers were appended

on top of the model to the 86M FLOPs backbone. To re-

duce the amount of computations, the input image was re-

sized from 576×384px to 128×128px, normalized to range

[−1,+1], and then passed to the network.

Big model training. The authors based their large model

on the ResNet101x3 architecture. With 1003 held-out la-

beled images as a validation set, it was first fine-tuned on

the CamSDD data. During fine-tuning, its backbone was

frozen and only classifier parameters were optimized for 10

epochs using AdamW [33] with a batch size of 256, an ini-

tial learning rate of 1.5e−3 and a piece-wise constant decay

by a factor of 10 at steps of 200 and 300. Sparse categori-

cal cross-entropy was used as an objective function. During

the training process, the images were resized to 256×256px

and then randomly cropped to 224×224px resolution. After

performing pseudo-labeling of extra data to get a new val-

idation set, the model was trained again using all available

training images. The resulting big model achieved a top-1

accuracy of 97.83% on the official validation set.

Mobile model training. The pre-trained on the Ima-

geNet2012 mobile model (Table 3) was first fine-tuned on

the CamSDD data with a frozen backbone using AdamW

optimizer with an initial learning rate of 1.5e− 3, a weight

decay of 4e − 5, a batch size 256, and a schedule length

of 400. The objective function was the same as for train-

ing of the big model. The input images were resized to

160×160px and then randomly cropped to 128×128px.

Next, the backbone was unfreezed, and the model was fine-

tuned for additional 800 steps with the same optimization

parameters. Finally, the backbone was frozen again, and

the model was fine-tuned for additional 400 steps with the

SGDW optimizer. During the third fine-tuning, the train-

5



Input shape Block Exp Size SE Stride

1282 × 3 conv2d, 3× 3 16 No 2

642 × 16 bneck, 3× 3 16 No 1

642 × 16 bneck, 3× 3 48 Yes 2

322 × 24 bneck, 3× 3 72 Yes 2

162 × 32 bneck, 3× 3 64 Yes 1

162 × 32 bneck, 3× 3 96 Yes 1

162 × 32 bneck, 3× 3 96 No 2

82 × 64 bneck, 3× 3 128 No 1

82 × 64 bneck, 3× 3 256 No 1

82 × 64 bneck, 3× 3 320 Yes 1

82 × 96 bneck, 3× 3 192 Yes 1

82 × 96 bneck, 3× 3 288 Yes 1

82 × 96 bneck, 3× 3 576 Yes 2

42 × 192 bneck, 3× 3 768 Yes 1

42 × 192 bneck, 3× 3 960 Yes 1

42 × 192 bneck, 3× 3 768 Yes 1

42 × 192 bneck, 3× 3 960 Yes 1

42 × 192 bneck, 3× 3 960 Yes 1

42 × 192 bneck, 3× 3 768 Yes 1

42 × 192 bneck, 3× 3 1152 Yes 1

42 × 192 conv2d, 1× 1 1024 No 1

42 × 1024 global avgpool 1024 No 1

12 × 1024 fc, Relu6 1280 No -

1280 fc 30 No -

Table 3. The model architecture proposed by ByteScene. The

MobilenetV3 Bottleneck blocks (bneck) [9] are used to build the

model. For a bneck block, Exp Size denotes the number of chan-

nels in the expansion layer. For the other blocks, Exp Size denotes

the output channel number of a block. SE denotes whether there is

a Squeeze-And-Excite op in the block.

ing images were directly resized to 128×128 pixels. In ad-

dition to the official 9897 CamSDD training images, 2577

extra training images were used (pseudo-labeled by the pre-

trained big model) when training the mobile model.

The resulting quantized INT8 TFLite model was ob-

tained using the standard TensorFlow’s post-training quan-

tization tools. To preserve the model accuracy after quanti-

zation, the authors used only ReLU6 and HardSigmoid [9]

nonlinearities.

4.2. EVAI (Edge Vision and Visual AI)

Team EVAI developed a MobileNetV2-like [37] model

with alpha = 0.75 and an input shape of 96×144px. This

solution demonstrated the best accuracy-latency tradeoff ac-

cording the experiments conducted by the authors (Table 4).

The architecture of the final model is shown in Fig. 4.

A resize layer is introduced to reduce the resolution if the

input images by 4 times. The last three blocks (block15,

block16 and the last convolutional block) of the original

MobileNet-V2 model were removed to reduce the compu-

tations. The classification head contains a convolutional

block with separable convolution layer, batch normalization

layer and ReLU activations. The output of this block has 30

Figure 4. The model architecture proposed by team EVAI.

feature maps, its spacial resolution is then reduced with one

global average pooling layer, and the final predictions are

obtained after applying the Softmax activation. The pro-

posed network does not have any dense layers.

The model was trained for 200 epochs to minimize cat-

egorical cross-entropy loss function with label smoothing

ǫ = 0.1. The model parameters were optimized using

stochastic gradient descent with momentum 0.9 and expo-

nential learning rate scheduler with the initial learning rate

of 5e − 2. The authors used a batch size is 128 and ap-

plied additional data augmentation during the training such

as flips, grid distortions, shift-scale-rotations, perspective

transforms, random resized crops, color jitter and blurring.

The final INT8 model was obtained using TensorFlow’s

post-training quantization tools.

Model Details Val. Accuracy Val. Accuracy Latency Latency

FP32, % INT8, % FP32, ms INT8, ms

MobileNetV2 a=0.35

96× 144 90.3 90 8 3

MobileNetV2 a=0.35

192× 288 95 94.5 14 8

MobileNetV2 a=0.75

96× 144 93.6 92.6 9 4

Table 4. The performance of different MobileNet-V2 backbones

obtained by team EVAI.

4.3. ALONG

Figure 5. The EfficientNet-based model proposed by ALONG.

Team ALONG based its solution on the EfficientNet-

Lite4 [39] model, the architecture of the model is pre-

6



sented in Fig. 5. The authors used web crawlers to col-

lect a large number of additional training images. Self-

distillation method with 4-fold cross-validation was used to

retain images with only high classification probability —

50K images were retained and integrated with the original

dataset. This extra data improved the classification accuracy

by around 2%. An additional 1% accuracy increase was

achieved by re-weighting misclassified samples. Since us-

ing the original images for model training can result in over-

fitting, the authors used various data augmentation methods

including random cropping, rotation, flipping, brightness

and contrast adjustments, blur and mix-cut. In addition,

dropout and weight decay were applied. The classification

accuracy of the model was improved by around 1% through

the above methods (Table 4.3).

The model parameters were optimized using SGD with

an initial learning rate of 0.01 and momentum 0.9 for 200

epochs with a batch size of 320. The learning rate scheduler

was as follows: 0.01 for the first 2 epochs, 0.001 for the

next 118 epochs, and 0.0001 for the rest of the training. The

objective function is the categorical cross-entropy with label

smoothing (ǫ = 0.2). The final INT8 model was obtained

using TensorFlow’s post-training quantization tools.

Method QPT QAT Improvement Acc Latency

NasNetMobile + + - 92.1% 40ms

MobileNetV3Large + - - 93.3% 77ms

EfficientNet-B1 + - - 93.6% 89ms

NasNetLarge - - - 96.6% 1500ms

Bit-m R50x1 - - +ImageNet21K Pretrained 97.8% 1200ms

EfficientNet-Lite0 + + - 92.0% 33ms

EfficientNet-Lite4 + + - 93.0% 74ms

EfficientNet-Lite4 + + + Data Augmentation 94.0% 74ms

EfficientNet-Lite4 + + + Image Collection 95.0% 74ms

EfficientNet-Lite4 + + + Samples Reweighting 94.0% 74ms

EfficientNet-Lite4 + + + All 97.0% 74ms

Table 5. The performance of different architectures and train-

ing strategies obtained by team ALONG on the validation set.

QPT stands for quantization post training, and QAT means

quantization-aware training.

4.4. Team Horizon

The authors used a MobileNetV2-based model, where

the input image was resizes to 1/3 of its original resolu-

tion to improve the runtime results at the expense of minor

reduction in accuracy. The model was trained in 4 steps.

First, the parameters of the classification head were opti-

mized with Adam for 10 epochs with the default learning

rate, then the classification head was trained for another 10

epochs with a reduced learning rate of 1e − 4. Next, the

whole model was trained for 10 epochs with a learning rate

of 1e − 5, and at the last step it was optimized again with

a learning rate of 1e − 6. The network was trained with a

batch size of 256 to minimize the cross-entropy loss func-

tion in all steps.

4.5. Airia­Det

Team Airia-Det also based its solution on the Mo-

bileNetV2 [37] architecture with several modifications. In

the classification head, a 5×5 depth separable convolution

is used instead of two 3×3 convolutional layers to obtain a

larger receptive field and to reduce the number of parame-

ters. The input of the model is resized from 576×384px to

384×384px. The network was trained to minimize the cate-

gorical cross-entropy with label smoothing (ǫ = 0.1) using

Adam optimizer and a batch size of 32.

4.6. DataArt Perceptrons

TFLite Model Type Size Top-1 iPhone 12 Pro Score

(MB) (%) CPU, ms

MobileNet-V2 FP 8.6 92.5 83 0.0941

MobileNet-V2 INT8 2.7 91.3 58 0.0255

EfficientNet FP 29.5 96 270 3.7037

EfficientNet INT8 9.1 95.3 280 1.3533

Table 6. The performance on the validation dataset and the runtime

of different models developed by DataArt Perceptrons team.

The authors used a standard MobileNet-V2 model and

trained it on the provided images with various data augmen-

tation methods such as rescaling, random rotations, flips,

contrast adjustment and translation. The size of the input

layer shape was set to (384, 576, 3) to fit the challenge re-

quirements, the layers of the backbone model were freezed

during the training. The final model was trained using

Adam optimizer with a learning rate of 5e− 3, a batch size

32 and the categorical cross-entropy loss function. Though

the authors obtained better results with the EfficientNet

model (Table 4.6), they faced the problems related to its

quantization and decided to use the MobileNetV2-based so-

lution instead.

4.7. PyImageSearch

Figure 6. The solution proposed by PyImageSearch team.

Team PyImageSearch used the Noisy Student Train-

ing [46] approach (Fig. 6) to solve the considered classi-

fication problem. EfficientNet-B0 model [39] was initially

7



fine-tuned on the training dataset using sparse categorical

cross-entropy five times with different random initialization

seeds. To train the target MobileNetV2-based model, an en-

semble of five obtained EfficientNet-B0 networks was used

as a source for pseudo labels. The target model was trained

using the KL-divergence as the distillation loss function, the

distillation process is illustrated in Fig. 7. Adam optimizer

was used for training both teacher and student models. To

mitigate the problem of class imbalance, the authors used

class weights (calculated from the proportion of samples per

class) when calculating the cross-entropy loss for training

teacher models. Stochastic weight averaging (SWA) was

additionally applied to utilize the previously updated pa-

rameters from earlier epochs, which induces an ensembling

effect [26]. The student model was trained for 110 epochs

with early stopping.

Figure 7. Knowledge distillation approach used by PyImage-

Search.

4.8. Sidiki

This is the only solution that is not using any backbone

networks. The proposed model can achieve an accuracy of

over 80% on the validation set with only 60K parameters

and the total model size of 73 KB. The model uses only 8

convolutional layers, 4 pooling layers and a fully connected

layer. To speed up the inference, downsampling is applied

in the first two convolutional layers by using strides 4 and 2

together with a small (6 and 12) number of channels.

The model was trained using Adam optimizer with a

batch size of 32 as follows: for 10 epochs with a learn-

ing rate of 1e − 3, for 40 epochs with a learning rate of

1e − 4, then for 100 epochs with a learning rate of 7e − 5
and another 100 epochs with a learning rate of 9e−5. After

that, all layers of the model were prepared for Quantiza-

tion Aware Training and then the model was trained for an-

other 100 epochs with a learning rate of 1e− 4, and for 100

epochs — with 1e− 5. Once the final accuracy of 80% was

established on the validation set, the validation set was used

for training of the quantized aware model for 50 epochs with

a learning rate of 1e−4. Then, the model was trained again

on the original training set for 10 epochs with a learning

rate of 1e− 4, and for 10 — with 1e− 6. Finally, the model

was repeatedly trained around 6-8 times on the training and

validation sets for 10 and 1 epoch, respectively.

5. Additional Literature

An overview of the past challenges on mobile-related

tasks together with the proposed solutions can be found in

the following papers:

• Learned End-to-End ISP: [20, 24]

• Perceptual Image Enhancement: [23, 17]

• Image Super-Resolution: [23, 34, 4, 41]

• Bokeh Effect Rendering: [15, 22]

• Image Denoising: [1, 2]

Acknowledgements

We thank AI Witchlabs and ETH Zurich (Computer Vi-

sion Lab), the organizers and sponsors of this Mobile AI

2021 challenge.

A. Teams and Affiliations

Mobile AI 2021 Team

Title:

Mobile AI 2021 Challenge on Fast and Accurate Quantized

Camera Scene Detection on Smartphones

Members:

Andrey Ignatov1,2 (andrey@vision.ee.ethz.ch), Grig-

ory Malivenko (grigory.malivenko@gmail.com), Radu

Timofte1,2 (radu.timofte@vision.ee.ethz.ch)

Affiliations:
1 Computer Vision Lab, ETH Zurich, Switzerland
2 AI Witchlabs, Switzerland

ByteScene

Title:

Transfer Knowledge from Both Big Pre-trained Models

and Small Pre-trained Models

Members:

Sheng Chen (chensheng.lab@bytedance.com), Xin Xia,

Zhaoyan Liu, Yuwei Zhang, Feng Zhu, Jiashi Li, Xuefeng

Xiao, Yuan Tian, Xinglong Wu

8



Affiliations:

ByteDance Inc., China

EVAI (Edge Vision and Visual AI)

Title:

Scene Detection with truncated MobileNetV2 Backbone

Members:

Christos Kyrkou (ckyrko01@ucy.ac.cy)

Affiliations:

KIOS Research and Innovation Center of Excellence,

University of Cyprus, Cyprus

ALONG

Title:

EfficientNet-Lite4 for Real-Time Scene Detection

Members:

Yixin Chen (chenyixin03@corp.netease.com), Zexin Zhang,

Yunbo Peng, Yue Lin

Affiliations:

Netease Games AI Lab, China

Team Horizon

Title:

MobileNetV2 with Resized Input for Fast Scene Detection

Members:

Saikat Dutta1 (saikat.dutta779@gmail.com), Sourya Dipta

Das2, Nisarg A. Shah3, Himanshu Kumar3

Affiliations:
1 Indian Institute of Technology Madras, India
2 Jadavpur University, India
3 Indian Institute of Technology Jodhpur, India

Airia­Det

Title:

Bag of Tricks for Real-Time Scene Detection Based on

MobileNets

Members:

Chao Ge (stvea@qq.com), Pei-Lin Wu Jin-Hua Du

Affiliations:

Nanjing Artificial Intelligence Chip Research, Institute of

Automation, Chinese Academy of Sciences, China

DataArt Perceptrons

Title:

Using MobileNetv2 for scene detection

Members:

Andrew Batutin (andrey.batutin@dataart.com), Juan Pablo

Federico, Konrad Lyda, Levon Khojoyan

Affiliations:

DataArt Inc, United States

PyImageSearch

Title:

A Bag of Tricks for Mobile-Friendly Image Classification

Members:

Sayak Paul (s.paul@pyimagesearch.com), Abhishek

Thanki

Affiliations:

PyImageSearch, India

Sidiki

Title:

Tiny Mobile AI Model

Members:

Shahid Siddiqui (msiddi01@ucy.ac.cy)

Affiliations:

KIOS Center of Excellence, University of Cyprus, Cyprus

References

[1] Abdelrahman Abdelhamed, Mahmoud Afifi, Radu Timofte,

and Michael S Brown. Ntire 2020 challenge on real image

denoising: Dataset, methods and results. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 496–497, 2020. 8

[2] Abdelrahman Abdelhamed, Radu Timofte, and Michael S

Brown. Ntire 2019 challenge on real image denoising: Meth-

ods and results. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2019. 8

[3] Android Neural Networks API. https://developer.

android.com/ndk/guides/neuralnetworks. 2

[4] Jianrui Cai, Shuhang Gu, Radu Timofte, and Lei Zhang.

Ntire 2019 challenge on real image super-resolution: Meth-

ods and results. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2019. 8

[5] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,

Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel

zero shot quantization framework. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13169–13178, 2020. 1

[6] Cheng-Ming Chiang, Yu Tseng, Yu-Syuan Xu, Hsien-Kai

Kuo, Yi-Min Tsai, Guan-Yu Chen, Koan-Sin Tan, Wei-Ting

Wang, Yu-Chieh Lin, Shou-Yao Roy Tseng, et al. Deploying

image deblurring across mobile devices: A perspective of

quality and latency. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 502–503, 2020. 1

9

https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks


[7] TensorFlow Lite Core ML delegate. https://www.

tensorflow.org/lite/performance/coreml_

delegate. 3

[8] TensorFlow Lite delegates. https : / / www .

tensorflow . org / lite / performance /

delegates. 2

[9] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1314–1324, 2019. 1,

4, 6

[10] Andrey Ignatov, Kim Byeoung-su, and Radu Timofte. Fast

camera image denoising on mobile gpus with deep learn-

ing, mobile ai 2021 challenge: Report. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2021. 2

[11] Andrey Ignatov, Jimmy Chiang, Hsien-Kai Kuo, Anastasia

Sycheva, and Radu Timofte. Learned smartphone isp on mo-

bile npus with deep learning, mobile ai 2021 challenge: Re-

port. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 0–0,

2021. 2

[12] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth

Vanhoey, and Luc Van Gool. Wespe: weakly supervised

photo enhancer for digital cameras. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 691–700, 2018. 3

[13] Andrey Ignatov, Grigory Malivenko, David Plowman,

Samarth Shukla, and Radu Timofte. Fast and accurate single-

image depth estimation on mobile devices, mobile ai 2021

challenge: Report. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2021. 2

[14] Andrey Ignatov, Jagruti Patel, and Radu Timofte. Rendering

natural camera bokeh effect with deep learning. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 418–419, 2020. 1

[15] Andrey Ignatov, Jagruti Patel, Radu Timofte, Bolun Zheng,

Xin Ye, Li Huang, Xiang Tian, Saikat Dutta, Kuldeep Puro-

hit, Praveen Kandula, et al. Aim 2019 challenge on bokeh

effect synthesis: Methods and results. In 2019 IEEE/CVF

International Conference on Computer Vision Workshop (IC-

CVW), pages 3591–3598. IEEE, 2019. 8

[16] Andrey Ignatov, Andres Romero, Heewon Kim, and Radu

Timofte. Real-time video super-resolution on smartphones

with deep learning, mobile ai 2021 challenge: Report. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition Workshops, pages 0–0, 2021.

2

[17] Andrey Ignatov and Radu Timofte. Ntire 2019 challenge on

image enhancement: Methods and results. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2019. 8

[18] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,

Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:

Running deep neural networks on android smartphones. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV) Workshops, pages 0–0, 2018. 1, 3

[19] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Abdel

Younes. Real-time quantized image super-resolution on mo-

bile npus, mobile ai 2021 challenge: Report. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops, pages 0–0, 2021. 2

[20] Andrey Ignatov, Radu Timofte, Sung-Jea Ko, Seung-Wook

Kim, Kwang-Hyun Uhm, Seo-Won Ji, Sung-Jin Cho, Jun-

Pyo Hong, Kangfu Mei, Juncheng Li, et al. Aim 2019

challenge on raw to rgb mapping: Methods and results. In

2019 IEEE/CVF International Conference on Computer Vi-

sion Workshop (ICCVW), pages 3584–3590. IEEE, 2019. 8

[21] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. In 2019 IEEE/CVF International Confer-

ence on Computer Vision Workshop (ICCVW), pages 3617–

3635. IEEE, 2019. 1, 3

[22] Andrey Ignatov, Radu Timofte, Ming Qian, Congyu Qiao,

Jiamin Lin, Zhenyu Guo, Chenghua Li, Cong Leng, Jian

Cheng, Juewen Peng, et al. Aim 2020 challenge on render-

ing realistic bokeh. In European Conference on Computer

Vision, pages 213–228. Springer, 2020. 8

[23] Andrey Ignatov, Radu Timofte, Thang Van Vu, Tung

Minh Luu, Trung X Pham, Cao Van Nguyen, Yongwoo Kim,

Jae-Seok Choi, Munchurl Kim, Jie Huang, et al. Pirm chal-

lenge on perceptual image enhancement on smartphones:

Report. In Proceedings of the European Conference on Com-

puter Vision (ECCV) Workshops, pages 0–0, 2018. 8

[24] Andrey Ignatov, Radu Timofte, Zhilu Zhang, Ming Liu,

Haolin Wang, Wangmeng Zuo, Jiawei Zhang, Ruimao

Zhang, Zhanglin Peng, Sijie Ren, et al. Aim 2020 challenge

on learned image signal processing pipeline. arXiv preprint

arXiv:2011.04994, 2020. 8

[25] Dmitry Ignatov and Andrey Ignatov. Controlling informa-

tion capacity of binary neural network. Pattern Recognition

Letters, 138:276–281, 2020. 1

[26] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry

Vetrov, and Andrew Gordon Wilson. Averaging weights

leads to wider optima and better generalization. arXiv

preprint arXiv:1803.05407, 2018. 8

[27] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018. 1

[28] Sambhav R Jain, Albert Gural, Michael Wu, and Chris H

Dick. Trained quantization thresholds for accurate and effi-

cient fixed-point inference of deep neural networks. arXiv

preprint arXiv:1903.08066, 2019. 1

[29] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan

Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.

Big transfer (bit): General visual representation learning.

arXiv preprint arXiv:1912.11370, 6(2):8, 2019. 5

[30] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.

Learning filter basis for convolutional neural network com-

10

https://www.tensorflow.org/lite/performance/coreml_delegate
https://www.tensorflow.org/lite/performance/coreml_delegate
https://www.tensorflow.org/lite/performance/coreml_delegate
https://www.tensorflow.org/lite/performance/delegates
https://www.tensorflow.org/lite/performance/delegates
https://www.tensorflow.org/lite/performance/delegates


pression. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 5623–5632, 2019. 1

[31] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 3296–3305, 2019. 1

[32] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of

the European conference on computer vision (ECCV), pages

722–737, 2018. 1

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[34] Andreas Lugmayr, Martin Danelljan, and Radu Timofte.

Ntire 2020 challenge on real-world image super-resolution:

Methods and results. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 494–495, 2020. 8

[35] Anton Obukhov, Maxim Rakhuba, Stamatios Georgoulis,

Menelaos Kanakis, Dengxin Dai, and Luc Van Gool. T-basis:

a compact representation for neural networks. In Interna-

tional Conference on Machine Learning, pages 7392–7404.

PMLR, 2020. 1

[36] Angeline Pouget, Sidharth Ramesh, Maximilian Giang,

Ramithan Chandrapalan, Toni Tanner, Moritz Prussing,

Radu Timofte, and Andrey Ignatov. Fast and accurate cam-

era scene detection on smartphones. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2021. 1, 2, 4

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 4, 6, 7

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2820–2828, 2019. 1

[39] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, pages 6105–6114. PMLR,

2019. 4, 6, 7

[40] TensorFlow-Lite. https://www.tensorflow.org/

lite. 2

[41] Radu Timofte, Shuhang Gu, Jiqing Wu, and Luc Van Gool.

Ntire 2018 challenge on single image super-resolution:

Methods and results. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 852–863, 2018. 8

[42] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki

Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,

Thomas Kemp, and Akira Nakamura. Mixed precision dnns:

All you need is a good parametrization. arXiv preprint

arXiv:1905.11452, 2019. 1

[43] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-

dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,

Kan Chen, et al. Fbnetv2: Differentiable neural architecture

search for spatial and channel dimensions. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12965–12974, 2020. 1

[44] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 10734–10742, 2019. 1

[45] Xin Xia and Wenrui Ding. Hnas: Hierarchical neu-

ral architecture search on mobile devices. arXiv preprint

arXiv:2005.07564, 2020. 5

[46] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V

Le. Self-training with noisy student improves imagenet clas-

sification. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10687–

10698, 2020. 7

[47] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,

Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-

tization networks. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

7308–7316, 2019. 1

11

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

