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Abstract

As the quality of mobile cameras starts to play a cru-

cial role in modern smartphones, more and more attention

is now being paid to ISP algorithms used to improve var-

ious perceptual aspects of mobile photos. In this Mobile

AI challenge, the target was to develop an end-to-end deep

learning-based image signal processing (ISP) pipeline that

can replace classical hand-crafted ISPs and achieve nearly

real-time performance on smartphone NPUs. For this, the

participants were provided with a novel learned ISP dataset

consisting of RAW-RGB image pairs captured with the Sony

IMX586 Quad Bayer mobile sensor and a professional 102-

megapixel medium format camera. The runtime of all mod-

els was evaluated on the MediaTek Dimensity 1000+ plat-

form with a dedicated AI processing unit capable of accel-

erating both floating-point and quantized neural networks.

The proposed solutions are fully compatible with the above

NPU and are capable of processing Full HD photos under

60-100 milliseconds while achieving high fidelity results. A

detailed description of all models developed in this chal-

lenge is provided in this paper.

1. Introduction

While the quality of modern smartphone cameras in-

creases gradually, many major improvements are currently
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coming from advanced image processing algorithms used,

e.g., to perform noise suppression, accurate color recon-

struction or high dynamic range processing. Though the

image enhancement task can be efficiently solved with

deep learning-based approaches, the biggest challenge here

comes from getting the appropriate training data and, in

particular, the high-quality ground truth images. The prob-

lem of end-to-end mobile photo quality enhancement was

first addressed in [16, 17], where the authors proposed to

enhance all aspects of low-quality smartphone photos by

mapping them to superior-quality images obtained with a

high-end reflex camera. The collected DPED dataset was

later used in many subsequent competitions [29, 23] and

works [51, 41, 8, 14, 13, 38] that have significantly im-

proved the results on this problem. While the proposed

methods were quite efficient, they worked with the data

produced by smartphones’ built-in ISPs, thus a significant

part of information present in the original sensor data was

irrecoverably lost after applying many image processing

steps. To address this problem, in [31] the authors pro-

posed to work directly with the original RAW Bayer sen-

sor data and learn all ISP steps with a single deep neu-

ral network. The experiments conducted on the collected

Zurich RAW to RGB dataset containing RAW-RGB image

pairs captured by a mobile camera sensor and a high-end

DSLR camera demonstrated that the proposed solution was

able to get to the level of commercial ISP of the Huawei

P20 cameraphone, while these results were later improved

in [30, 7, 45, 35, 26]. In this challenge, we take one step fur-

ther in solving this problem by using more advanced data

and by putting additional efficiency-related constraints on

the developed solutions.

When it comes to the deployment of AI-based solutions

on mobile devices, one needs to take care of the particu-
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Sony IMX586 RAW – Visualized Sony IMX586 – MediaTek ISP Fujifilm Camera

Figure 1. A sample set of images from the collected dataset. From left to right: the original RAW image visualized with Photoshop’s

built-in raw image processing engine, RGB image obtained with MediaTek’s built-in ISP system, and the target Fujifilm photo.

larities of mobile NPUs and DSPs to design an efficient

model. An extensive overview of smartphone AI acceler-

ation hardware and its performance is provided in [27, 24].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high-

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [6, 20, 37, 39, 43], 16-bit /

8-bit [6, 34, 33, 55] and low-bit [5, 50, 32, 40] quantization,

device- or NPU-specific adaptations, platform-aware neural

architecture search [11, 46, 54, 52], etc.

While many challenges and works targeted at efficient

deep learning models have been proposed recently, the eval-

uation of the obtained solutions is generally performed on

desktop CPUs and GPUs, making the developed solutions

not practical due to the above-mentioned issues. To address

this problem, we introduce the first Mobile AI Workshop and

Challenges, where all deep learning solutions are developed

for and evaluated on real mobile devices. In this competi-

tion, the participating teams were provided with a new ISP

dataset consisting of RAW-RGB image pairs captured with

the Sony IMX586 mobile sensor and a professional 102-

megapixel Fujifilm camera, and were developing an end-to-

end deep learning solution for the learned ISP task. Within

the challenge, the participants were evaluating the runtime

and tuning their models on the MediaTek Dimensity 1000+

platform featuring a dedicated AI Processing Unit (APU)

that can accelerate floating-point and quantized neural net-

works. The final score of each submitted solution was based

on the runtime and fidelity results, thus balancing between

the image reconstruction quality and efficiency of the pro-

posed model. Finally, all developed solutions are fully com-

patible with the TensorFlow Lite framework [47], thus can

be deployed and accelerated on any mobile platform provid-

ing AI acceleration through the Android Neural Networks

API (NNAPI) [1] or custom TFLite delegates [9].

This challenge is a part of the MAI 2021 Workshop and

Challenges consisting of the following competitions:

• Learned Smartphone ISP on Mobile NPUs

• Real Image Denoising on Mobile GPUs [15]

• Quantized Image Super-Resolution on Mobile NPUs [25]

• Real-Time Video Super-Resolution on Mobile GPUs [22]

• Single-Image Depth Estimation on Mobile Devices [18]

• Quantized Camera Scene Detection on Smartphones [19]

• High Dynamic Range Image Processing on Mobile NPUs

The results obtained in the other competitions and the de-

scription of the proposed solutions can be found in the cor-

responding challenge report papers.

2. Challenge

To develop an efficient and practical solution for mobile-

related tasks, one needs the following major components:

1. A high-quality and large-scale dataset that can be used

to train and evaluate the solution on real (not syntheti-

cally generated) data;

2. An efficient way to check the runtime and debug the

model locally without any constraints;

3. An ability to regularly test the runtime of the designed

neural network on the target mobile platform or device.

This challenge addresses all the above issues. Real train-

ing data, tools, and runtime evaluation options provided to

the challenge participants are described in the next sections.
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Figure 2. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download.

2.1. Dataset

To handle the problem of image translation from the

original RAW photos captured with modern mobile cam-

era sensors to superior quality images achieved by profes-

sional full-frame or medium format cameras, a large-scale

real-world dataset containing RAW-RGB image pairs was

collected. The dataset consists of photos taken in the wild

synchronously by a 102-MP Fujifilm medium format cam-

era and the Sony IMX586 Quad Bayer mobile sensor shoot-

ing RAW images. The photos were taken during the day-

time in a wide variety of places and various illumination and

weather conditions. The photos were captured in automatic

mode, and the default settings were used for both cameras

throughout the whole collection procedure. An example set

of collected images can be seen in Fig. 1.

Since the captured RAW-RGB image pairs are not per-

fectly aligned, they were matched using an advanced dense

correspondence algorithm [49], and then smaller patches of

size 256×256 px were extracted. The participants were pro-

vided with around 24 thousand training RAW-RGB image

pairs (of size 256×256×1 and 256×256×3, respectively).

It should be mentioned that all alignment operations were

performed on RGB Fujifilm images only, therefore RAW

photos from the Sony sensor remained unmodified. A com-

prehensive tutorial demonstrating how to work with the data

and how to train a baseline PUNET model on the pro-

vided images was additionally released to the participants:

https://github.com/MediaTek-NeuroPilot/

mai21-learned-smartphone-isp.

2.2. Local Runtime Evaluation

When developing AI solutions for mobile devices, it is

vital to be able to test the designed models and debug all

emerging issues locally on available devices. For this, the

participants were provided with the AI Benchmark applica-

tion [24, 27] that allows to load any custom TensorFlow Lite

model and run it on any Android device with all supported

acceleration options. This tool contains the latest versions

of Android NNAPI, TFLite GPU, Hexagon NN, Samsung

Eden and MediaTek Neuron delegates, therefore supporting

all current mobile platforms and providing the users with

the ability to execute neural networks on smartphone NPUs,

APUs, DSPs, GPUs and CPUs.

To load and run a custom TensorFlow Lite model, one

needs to follow the next steps:

1. Download AI Benchmark from the official website1 or

from the Google Play2 and run its standard tests.

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 2.

1https://ai-benchmark.com/download
2https://play.google.com/store/apps/details?id=

org.benchmark.demo
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Team Author Framework Model Size, KB PSNR↑ SSIM↑ Runtime, ms ↓ Final Score

dh isp xushusong001 PyTorch / TensorFlow 21 23.2 0.8467 61 25.98

AIISP AIISP TensorFlow 123 23.73 0.8487 90.8 25.91

Tuned U-Net Baseline PyTorch / TensorFlow 13313 23.30 0.8395 78 25.74

ENERZAi Research Minsu.Kwon TensorFlow 9 22.97 0.8392 65 25.67

isp forever LearnedSmartphoneISP PyTorch 175 22.78 0.8472 77 25.24

NOAHTCV noahtcv TensorFlow 244 23.08 0.8237 94.5 25.19

ACVLab jesse1029 TensorFlow 7 22.03 0.8217 76.3 24.5

CVML vishalchudasama TensorFlow 76 22.84 0.8379 167 23.5

ENERZAi Research ∗ jaeyon PyTorch / TensorFlow 11 23.41 0.8534 231 23.39

EdS Etienne TensorFlow 1017 23.23 0.8481 1861 22.4

Table 1. Mobile AI 2021 smartphone ISP challenge results and final rankings. The runtime values were obtained on Full HD (1920×1088)

images. Teams dh isp and AIISP are the challenge winners. Tuned U-Net corresponds to a baseline U-Net model [44] tuned specifically for

the target Dimensity 1000+ platform. Team EdS was ranked second in the PIRM 2018 Image Enhancement Challenge [29], its results on

this task are provided for the reference. ∗ The second solution from ENERZAi Research team did not participate in the official test phase,

its scores are shown for general information only.

2.3. Runtime Evaluation on the Target Platform

In this challenge, we use the MediaTek Dimensity 1000+

SoC as our target runtime evaluation platform. This chipset

contains a powerful APU [36] capable of accelerating float-

ing point, INT16 and INT8 models, being ranked first by AI

Benchmark at the time of its release [2]. It should be men-

tioned that FP16/INT16 inference support is essential for

this task as raw Bayer data has a high dynamic range (10-

to 14-bit images depending on the camera sensor model).

Within the challenge, the participants were able to up-

load their TFLite models to the runtime validation server

connected to a real device and get instantaneous feedback:

the runtime of their solution on the Dimensity 1000+ APU

or a detailed error log if the model contains some incompat-

ible operations (ops). The models were parsed and accel-

erated using MediaTek Neuron delegate3. The same setup

was also used for the final runtime evaluation. The partici-

pants were additionally provided with a detailed model op-

timization guideline demonstrating the restrictions and the

most efficient setups for each supported TFLite op.

2.4. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the data

and AI Benchmark app, and are able to train the mod-

els and evaluate their runtime locally;

II. Validation: the participants can upload their models to

the remote server to check the fidelity scores on the

validation dataset, to get the runtime on the target plat-

form, and to compare their results on the validation

leaderboard;

III. Testing: the participants submit their final results,

codes, TensorFlow Lite models, and factsheets.

3https://github.com/MediaTek-NeuroPilot/tflite-

neuron-delegate

2.5. Scoring System

All solutions were evaluated using the following metrics:

• Peak Signal-to-Noise Ratio (PSNR) measuring fidelity

score,

• Structural Similarity Index Measure (SSIM), a proxy

for perceptual score,

• The runtime on the target Dimensity 1000+ platform.

The score of each final submission was evaluated based

on the next formula:

Final Score = PSNR + α · (0.2− clip(runtime)),

where:

α =

{

20, if runtime ≤ 0.2

0.5, otherwise
,

clip = min(max(runtime, 0.03), 5).

During the final challenge phase, the participants did not

have access to the test dataset. Instead, they had to submit

their final TensorFlow Lite models that were subsequently

used by the challenge organizers to check both the runtime

and the fidelity results of each submission under identical

conditions. This approach solved all the issues related to

model overfitting, reproducibility of the results, and consis-

tency of the obtained runtime/accuracy values.

3. Challenge Results

From the above 190 registered participants, 9 teams en-

tered the final phase and submitted valid results, TFLite

models, codes, executables, and factsheets. Table 1 sum-

marizes the final challenge results and reports PSNR, SSIM,

and runtime numbers for each submitted solution on the fi-

nal test dataset on the target evaluation platform. The pro-

posed methods are described in Section 4, and the team

members and affiliations are listed in Appendix A.
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3.1. Results and Discussion

All submitted solutions demonstrated a very high effi-

ciency: the majority of models are able to process one Full

HD (1920×1088 px) image under 100 ms on the target Me-

diaTek APU. Teams dh isp and AIISP are the winners of this

challenge, achieving the best runtime and fidelity results

on this task, respectively. These solutions are following

two absolutely different approaches. dh isp is using an ex-

tremely shallow 3-layer FSRCNN [10]-inspired model with

one pixel-shuffle block, and is processing the input image at

the original scale. The size of this model is only 21 KB, and

it is able to achieve an impressive 16 FPS on the Dimensity

1000+ SoC. In contrast, the solution proposed by AIISP is

downsampling the input data and applying a number of con-

volutional layers and several sophisticated attention blocks

to get high fidelity results, while also demonstrating more

than 10 FPS on the target platform.

Tuned U-Net is a solid U-Net baseline with several

hardware-driven adaptations designed to demonstrate the

performance that can be achieved with a common APU-

aware tuned deep learning architecture. It is also showing

that the weight and the number of layers do not necessarily

play key roles in model efficiency if the majority of process-

ing is happening at lower scales. While its size is more than

1000 times larger compared to the model proposed by EN-

ERZAi Research, it demonstrates comparable runtime re-

sults on the same hardware. The tremendous model size re-

duction in the latter case was achieved by using an efficient

knowledge transfer approach consisting of the joint training

of two (tiny and large) models sharing the same feature ex-

traction block. Another interesting approach was proposed

by NOAHTCV which model is processing chroma and tex-

ture information separately.

In the final ranking table, one can also find the results of

team EdS that was ranked second in the PIRM 2018 Image

Enhancement Challenge [29]. This model was deliberately

not optimized for the target platform to demonstrate the im-

portance of such fine-tuning. While its fidelity scores are

still high, showing the second-best PSNR result, it requires

almost 2 seconds to process one image on the Dimensity

1000+ platform. The reason for this is quite straightfor-

ward: it is using several ops not yet adequately supported

by NNAPI (despite claimed as officially supported). By re-

moving or replacing these ops, the runtime of this model

improves by more than 10 times, while the correspond-

ing difference on desktop CPUs / GPUs is less than 10%.

This example explicitly shows that the runtime values ob-

tained on common deep learning hardware are not repre-

sentative when it comes to model deployment on mobile

AI silicon: even solutions that might seem to be very ef-

ficient can struggle significantly due to the specific con-

straints of smartphone AI acceleration hardware and frame-

works. This makes deep learning development for mobile

devices so challenging, though the results obtained in this

competition demonstrate that one can get a very efficient

model when taking the above aspects into account.

4. Challenge Methods

This section describes solutions submitted by all teams par-

ticipating in the final stage of the MAI 2021 Learned Smart-

phone ISP challenge.

4.1. dh isp

Figure 3. Smallnet architecture proposed by team dh isp.

Team dh isp proposed a very compact Smallnet architec-

ture illustrated in Fig. 3 that consists of three convolutional

and one pixel-shuffle layer. Each convolutional layer is us-

ing 3×3 kernels and has 16, 16, and 12 channels, respec-

tively. Tanh activation function is used after the first layer,

while the other ones are followed by the ReLU function.

The authors especially emphasize the role of the Tanh and

pixel-shuffle ops in getting high fidelity results on this task.

The model was first trained with L1 loss only, and then

fine-tuned with a combination of L1 and perceptual-based

VGG-19 loss functions. The network parameters were op-

timized with the Adam algorithm using a batch size of 4

and a learning rate of 1e − 4 that was decreased within the

training.

4.2. AIISP

The authors proposed a Channel Spacial Attention Net-

work (Fig. 4) that achieved the best fidelity results in this

challenge. The architecture of this model consists of the

following three main parts. In the first part, two convo-

lutional blocks with ReLU activations are used to perform

feature extraction and downsize the input RAW data. After

that, a series of processing blocks are cascaded. The middle

double attention modules (DAM) with skip connections are

mainly designed to enhance the spatial dependencies and to

highlight the prominent objects in the feature maps. These

skip connections are used not only to avoid the vanishing

gradient problem but also to keep the similarities between

the learned feature maps from different blocks. The last

part of the network uses transposed convolution and depth-

to-space modules to upscale the feature maps to their target

size. Finally, a conventional convolution followed by the

sigmoid activation function restores the output RGB image.
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Figure 4. CSANet model from team AIISP with several attention blocks.

Figure 5. The structure of double attention module (DAM), spatial

attention and channel attention blocks.

The sub-network structure of DAM is shown in Fig. 5.

Given the feature maps obtained after applying two convo-

lutions, DAM performs feature recalibration by using two

attention mechanisms: spatial attention (SA) and channel

attention (CA). The results of these concatenated attentions

are then followed by a 1×1 convolutional layer to yield

an adaptive feature refinement. The spatial attention mod-

ule is designed to learn spatial dependencies in the feature

maps. In order to have a distant vision over these maps, a

depth-wise dilated convolution with a 5×5 kernel is used

to extract the information. The output of this module is

multiplied with the corresponding input feature map to get

the final result. Channel attention block uses squeeze-and-

excite operations to learn the inter-channel relationship be-

tween the feature maps. The squeeze operation is imple-

mented by computing the mean values over individual fea-

ture maps. The excite operation is composed of two 1×1

convolution layers with different channel sizes and activa-

tions (ReLU and sigmoid, respectively) and re-calibrates the

squeeze output. The output of the module is also obtained

by elemental-wise multiplication of the input feature maps

and the calibrated descriptor. A more detailed description

of the CSANet architecture is provided in [12].

The model is trained with a combination of the Charbon-

nier loss function (used to approximate L1 loss), perceptual

VGG-19 and SSIM losses. The weights of the model are

optimized using Adam for 100K iterations with a learning

rate of 5e−4 decreased to 1e−5 throughout the training. A

batch size of 100 was used, the training data was augmented

by random horizontal flipping.

4.3. Tuned U­Net Baseline

A U-Net [44] based model was developed to get an ef-

fective baseline for this challenge. This model follows the

standard U-Net architecture with skip connections, and in-

troduces several hardware-specific adaptations for the target

platform such as a reduced number of feature maps, modi-

fied convolutional filter sizes, and activation functions, and

additional skip connections used to maintain a reasonable

accuracy. The model was trained with a combination of

MSE and SSIM loss functions using Adam optimizer with a

learning rate of 1e− 4.

4.4. ENERZAi Research

The solution proposed by ENERZAi Research is in-

spired by the Once-for-All approach [3] and consists of two

models: one super-network and one sub-network. They

both share the same Dense-Net-like module, and the differ-

ence comes from their top layers: the sub-network has one

deconvolution, convolution, and sigmoid layers, while the

super-network additionally contains several residual dense

blocks as shown in Fig. 6. Both models are first trained

jointly using a combination of the Charbonnier and MS-

SSIM loss functions. The super-network is then detached

after the PSNR score goes above a predefined threshold,

and the sub-net is further fine-tuned alone. The model was

trained using Adam optimizer with a batch size of 4 and a
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Figure 6. The model architecture proposed by ENERZAi Research

team. Semitransparent residual dense block belongs to the super-

network and is detached after training.

Figure 7. ESRGAN-based architecture with additional attention

block proposed by ENERZAi Research.

learning rate of 1e− 3.

The second model proposed by this team (which did

not officially participate in the final test phase) is demon-

strated in Fig. 7. It follows the ESRGAN architecture [53]

and has a shallow feature extractor and several DenseNet-

based residual blocks with separable convolutions followed

by a transpose convolution layer. The authors also used an

additional channel attention block to boost the fidelity re-

sults at the expense of a very slight speed degradation. To

choose the most appropriate activation function, the authors

applied NAS technique that resulted in selecting the PReLU

activations. The model was trained with a combination of

the MS-SSIM and L1 losses. It should be also mentioned

that the original model was implemented and trained us-

ing PyTorch. To avoid the problems related to inefficient

PyTorch-to-TensorFlow conversion, the authors developed

their own scripts translating the original model architecture

and weights to TensorFlow, and then converted the obtained

network to TFLite.

Figure 8. U-Net based network with a channel attention module

from isp forever.

4.5. isp forever

Team isp forever proposed another truncated U-Net

based model for this task that is demonstrated in Fig. 8.

The authors augmented their network with a channel atten-

tion module and trained the entire model with a combination

of L1, SSIM, and VGG-based losses using Adam optimizer

with a learning rate of 1e− 4 and a batch size of 16.

4.6. NOAHTCV

In
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Figure 9. Network architecture proposed by team NOAHTCV and

processing chroma and texture parts separately.

This team proposed to decompose the input image into

two parts (Fig. 9): chroma part that contains color infor-

mation, and texture part that includes high-frequency de-

tails. The network processes these two parts in separate

paths: the first one has a U-Net like architecture and per-

forms patch-level information extraction and tone-mapping,

while the second one applies residual blocks for texture en-

hancement. The outputs from both paths are fused at the

end and then upsampled to get the final result. L1 and SSIM

losses were used to train the network, its parameters were

initialized with Xavier and optimized using Adam with a

learning rate of 1e− 4.

4.7. ACVLab

ACVLab proposed a very compact CNN model with a

local fusion block. This block consists of two parts: multi-

ple stacked adaptive weight residual units, termed as RRDB
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(residual in residual dense block), and a local residual fu-

sion unit (LRFU). The RRDB module can improve the in-

formation flow and gradients, while the LRFU module can

effectively fuse multi-level residual information in the lo-

cal fusion block. The model was trained using VGG-based,

SSIM, and Smooth L1 losses.

4.8. CVML

Figure 10. CNN architecture proposed by CVML team.

Figure 10 demonstrates the model proposed by team

CVML. This architecture is using residual blocks to extracts

a rich set of features from the input data. Transposed convo-

lution layer is used to upsample the final feature maps to the

target resolution. To stabilize the training process, a global

residual learning strategy was employed that also helped to

reduce the color shift effect. The model was trained to min-

imize the combination of L1 and SSIM losses and was op-

timized using Adam with a learning rate of 1e − 4 for 1M

iterations.

4.9. EdS
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Figure 11. Residual network proposed by team EdS.

EdS proposed a ResNet-based architecture shown in

Fig. 11 that was derived from [16]. The main difference

consists in using two 4×4 convolutional layers with stride 2

for going into lower-dimensional space, and additional skip

connections for faster training. The network was trained for

33K iterations using the same losses and setup as in [8].

5. Additional Literature

An overview of the past challenges on mobile-related

tasks together with the proposed solutions can be found in

the following papers:

• Learned End-to-End ISP: [26, 30]

• Perceptual Image Enhancement: [29, 23]

• Bokeh Effect Rendering: [21, 28]

• Image Super-Resolution: [29, 42, 4, 48]
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