
Pseudo-IoU: Improving Label Assignment in

Anchor-Free Object Detection

Jiachen Li1, Bowen Cheng1, Rogerio Feris2, Jinjun Xiong3,

Thomas S. Huang1, Wen-Mei Hwu1,4 and Humphrey Shi1,5,6

1UIUC, 2MIT-IBM Watson AI Lab, 3IBM T.J. Watson Research Center,
4NVIDIA, 5University of Oregon, 6Picsart AI Research (PAIR)

Abstract

Current anchor-free object detectors are quite simple

and effective yet lack accurate label assignment meth-

ods, which limits their potential in competing with clas-

sic anchor-based models that are supported by well-

designed assignment methods based on the Intersection-

over-Union (IoU) metric. In this paper, we present Pseudo-

Intersection-over-Union (Pseudo-IoU): a simple metric

that brings more standardized and accurate assignment

rule into anchor-free object detection frameworks with-

out any additional computational cost or extra parame-

ters for training and testing, making it possible to further

improve anchor-free object detection by utilizing training

samples of good quality under effective assignment rules

that have been previously applied in anchor-based meth-

ods. By incorporating Pseudo-IoU metric into an end-to-

end single-stage anchor-free object detection framework,

we observe consistent improvements in their performance

on general object detection benchmarks such as PASCAL

VOC and MSCOCO. Our method (single-model and single-

scale) also achieves comparable performance to other re-

cent state-of-the-art anchor-free methods without bells and

whistles. Our code is based on mmdetection toolbox and

will be made publicly available at https://github.com/SHI-

Labs/Pseudo-IoU-for-Anchor-Free-Object-Detection.

1. Introduction

Label assignment is very important in training accurate

object detection models. In recent years, anchor-based ob-

ject detection methods have been popular in the community,

which starts with Faster RCNN [27]. Typically, during the

training process, after feature extraction with deep convo-

lutional neural networks (DCNN), each point on the fea-

ture maps is assigned with multiple anchors and each an-

chor is assigned a positive or negative label based on its

overlap with ground truth provided from the dataset. Then,
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Figure 1: As shown in the image, the red box is the ground

truth box and the green box is a pseudo box with the same

size to the ground truth box. The green point P and red

point P
′

are the same point from feature map projection.

(l, r, t, b) represent distances from a point inside box to the

left, right, top and bottom side of the box, respectively.

Point P is at center of the pseudo box A and Point P
′

is

in the ground truth box B. The Pseudo-IoU between the

two boxes is 0.57.

proportional positive and negative samples are selected for

training the network and the whole process is defined as

label assignment in anchor-based object detection. Since

the assignment process selects training samples for regres-

sion and classification, improving assignment method could

significantly enhance detection results by assigning accu-

rate training samples. Recent work on Cascade RCNN [1]

employs cascaded classifiers and regressors with improved

Intersection-over-Union (IoU) thresholds to assign better

positive training samples. OHEM [29] adopts online hard

negative sampling to bring more hard negative samples with

larger losses into training. Libra RCNN [24] uses an IoU-

based sampling method to achieve a more balanced training.



All these prior works prove that better assignment for train-

ing samples is indispensable and effective in anchor-based

object detection.

Recently, another popular branch of object detection

methods are anchor-free models that do not assume pre-

defined anchors during the whole training process, which

reduces many hyper-parameters with anchors that require

heuristic tuning for good performance. Anchor-free mod-

els predict bounding boxes directly from points to the

left, right, top and bottom side of ground truth box like

FCOS [32] and FSAF [43]. However, due to lack of ac-

curate assignments, they both use other methods to com-

pensate for the performance gap. For FCOS, it views all

points inside shrinked ground truth as positive samples and

adds a centerness branch to reweigh detection outputs that

decreases some false positives. For FSAF, it employs on-

line feature selection and a combination of anchor-free and

anchor-based methods.

In this paper, we propose a Pseudo-Intersection-over-

Union (Pseudo-IoU) metric that brings an accurate label

assignment rule into current anchor-free object detectors,

which is illustrated in Figure 1. For each feature map point

inside ground truth boxes, after mapping to the original in-

put image, we assume a corresponding pseudo box that is

centered at the point and has the same size to ground truth

box. Then we can easily compute IoU between the cen-

tered pseudo box and ground truth box. Since the IoU is

based on a pseudo box assigned to each point, we name the

metric Pseudo-Intersection-over-Union (Pseudo-IoU). Af-

ter Pseudo-IoU computation, each point can be assigned a

Pseudo-IoU value v like each anchor with an IoU for as-

signment in anchor-based methods. Now each point on the

feature map pyramid has a Pseudo-IoU value v ∈ [0, 1],
they can be labeled as positive or negative training samples

based on a Pseudo-IoU threshold T ∈ [0, 1] with,

labels =

{

+1 if v ≥ T

−1 if v < T

From Figure 1, it shows some points near the sides of

bounding boxes are assigned as negative samples. It leads to

more false positives and inaccurate bounding boxes if tak-

ing these points with low Pseudo-IoUs as positive samples.

To demonstrate the effectiveness of our Pseudo-IoU met-

ric, we build an anchor-free baseline with ResNet-101 [14]

as backbone and FPN [19] as neck [3] to make dense

anchor-free predictions on enhanced feature map pyramids.

Furthermore, we add Pseudo-IoU metric for assignment

and conduct extensive experiments on Pascal VOC and

MSCOCO dataset. Specifically, the anchor-free methods

with Pseudo-IoU based assignment outperforms baseline by

2.1% mean Average Precision (mAP) on Pascal VOC 2007

test set, 3.0% mAP on MSCOCO minival set and 3.1%

mAP on MSCOCO test-dev set. It also reaches results com-

parable to recent state-of-the-art methods without bells and

whistles.

To summarize, our contributions are as follows:

• We investigate and analyze the problems and bottle-

necks of current anchor-free object detectors, which is

lack of accurate label assignment process that is well-

defined and designed in anchor-based methods.

• We propose Pseudo-Intersection-over-Union (Pseudo-

IoU) metric, which takes accurate label assignment

rule into anchor-free framework without any additional

cost during training or testing, making it possible to

improve anchor-free detection by improving assign-

ment process.

• Our single-scale model improves the performance of

baseline by a large margin and achieves performance

very comparable to other recent state-of-the-art detec-

tion methods.

2. Related Work

Anchor-based Object Detectors. In the past few years,

anchor-based object detectors have been the mainstream in

the object detection area. It starts with Faster R-CNN [27],

a supreme version of previous R-CNN [11] and Fast

R-CNN [10], which first proposes the idea of using anchors

as pre-defined bounding boxes for subsequent regression

to ground truth. Following Faster RCNN, most two-stage

object detectors inherit the anchor-based manner, like

R-FCN [5], DCN [6], FPN[19], Mask RCNN [13], Cascade

RCNN [1] and DCR [4]. Some methods adopt efficient

training like SNIP [30] and SNIPER [31], that take clips

of images for training. Some approaches improve quality

of anchors like GA-RPN [33], which learn the setting of

anchors for efficient training. Moreover, some popular

one-stage object detectors also employ anchors for better

regression, which are proposal free and directly make

predictions from anchors to final bounding boxes, like

SSD [22], YOLOv2 [25], RetinaNet [20], RefineDet [38]

and GHM [18], introduces gradient harmonized loss

function for a balanced training process.

Anchor-Free Object Detectors. Different from anchor-

based object detectors, another way to predict bounding

boxes is to regress directly from points, which starts from

Densebox [15] and YOLO [25]. They make prediction by

regressing the bounding boxes directly from central points

in ground truth area to final bounding boxes. Moreover,

with the power of feature pyramid networks, recent paper

like FCOS [32] and FSAF [43] build a whole anchor-free

detection pipeline, which reach results very comparable

to one-stage object detectors like RetinaNet. Another

branch is keypoint-based anchor-free object detection,



which makes bounding boxes prediction after keypoint

prediction, including Cornernet [17], Centernet [39] and

Extremenet [40]. Since the key point prediction is sparse

and accurate, post processing like NMS can be removed in

these methods.

Assignment Rules. Recently, researchers notice that

label assignment is essential for a balanced and stable

training process. For anchor-based object detectors,

anchors are assigned with positive or negative labels

according their IoU with ground truth. To improve quality

of positive samples, Cascade RCNN [1] employs increased

IoU threshold to select positive samples to train cascaded

classifiers. OHEM [29] uses a hard false positive mining

branch which select more samples with higher losses

as negative training samples. Libra RCNN [24] further

proposes an IoU based sampling methods and PISA [2]

focuses on prime samples for training. ATSS [37] focuses

on bridging gap between anchor-free and anchor-based

methods with adaptively selecting positive and negative

samples according to statistical characteristics of objects.

SAPD [42] uses soft anchor point for label assignment

and AutoAssign [41] employs automatic label assignment

strategy in anchor-free detectors.

3. Our Approach

In this section, we firstly review assignment process

at anchor-based detectors, then propose how we employ

Pseudo-IoU metric in anchor-free detectors to make accu-

rate assignment available during training process. Next, we

show the whole pipeline of our anchor-free detector with

Pseudo-IoU based assignment and introduce each compo-

nent in the pipeline.

3.1. PseudoIntersectionoverUnion

Intersection-over-Union (IoU) has been well-defined and

applied in anchor-based methods. It is used for comparing

similarity between two arbitrary shapes A and B, and the

IoU between them is,

IoU(A,B) =
|A ∩B|

|A ∪B|
=

|A ∩B|

|A|+ |B| − |A ∩B|

In anchor-based object detectors like Faster RCNN [27],

anchors are pre-defined bounding boxes surrounding with

the center of sliding windows, namely points on feature

maps. For an anchor A with an area SA and a ground truth

B with an area SB , their IoU will be

IoU(A,B) =
|SA ∩ SB |

|SA ∪ SB |
=

|SA ∩ SB |

|SA|+ |SB | − |SA ∩ SB |

Typically, an anchor has an IoU overlap more than 0.5
would be assign as a positive sample and has an IoU over-

lap less than 0.4 would be assign as a negative sample. This

Algorithm 1: Pseudo-Intersection-over-Union

1. Get lB , rB , tB , bB , lA, rA, tA, bA, SA and SB :

lA = rA = (lB + rB)/2
tA = bA = (tB + bB)/2

SB = (lB + rB) ∗ (tB + bB)
SA = (lA + rA) ∗ (tA + tA)

2. Intersection box parameters:

l∗ = min(lA, lB) r∗ = min(rA, rB)
t∗ = min(tA, tB) b∗ = min(bA, bB)

3. Intersection box area:

|A ∩B| = S∗ = (l∗ + r∗) ∗ (t∗ + b∗)

4. Union box area:

|A ∪B| = SA + SB − S∗

5. Compute Pseudo-IoU:

Pseudo− IoU = |A∩B|
|A∪B| =

S∗

SA+SB−S∗

IoU-based process is adopted by most of two-stage detec-

tors and some one-stage detectors like SSD [22] and Reti-

naNet [20]. However, for recent anchor-free object detec-

tors, there is no such counterpart during training process.

The main reason is that without anchors, the regressor could

not regress offsets from anchors to ground truth boxes. On

the contrary, it regresses from a point inside ground truth

to the four sides to make direct predictions. For example,

given a ground truth box B and a point P from feature map

that is inside the box, lB , rB , tB and bB represent distance

from point P to the left, right, top and bottom side of box

B. we can view the point P as a center point and assign a

pseudo box A around it, lA, rA, tA and bA represent dis-

tance from point P to the left, bottom, right and top side

of pseudo box A. Then the process to compute IoU be-

tween ground truth box B and pseudo box A is described in

Algorithm 1.

We name the IoU between the assigned pseudo box and

ground truth box Pseudo-Intersection-over-Union, namely

Pseudo-IoU, and the valve of Pseudo-IoU is v ∈ [0, 1], mak-

ing it possible for selecting training examples with a specific

Pseudo-IoU threshold in anchor-free pipelines.

3.2. AnchorFree Architecture

Most state-of-the-art anchor-free detectors follow the

architecture of RetinaNet, which uses a ResNet-101 [14] as

backbone and FPN [19] as neck [3], followed by detection

heads with two branches: one for image classification with

focal loss function, and the other one for bounding boxes



𝐻×𝑊×256

𝐻×𝑊×256

𝐻×𝑊×256 𝐻×𝑊×𝐶

𝐻×𝑊×256 𝐻×𝑊×4(a) ResNet-101 + FPN

(b) Classifier

(c) Regressor

Figure 2: Anchor-free object detector pipeline with Pseudo-IoU based assignment.

regression with smooth L1 loss function. Our anchor-free

detection architecture with Pseudo-IoU based assigner is

illustrated in Figure 2.

Detection Backbone and Neck Following RetinaNet,

we adopt ResNet-101 as our backbone to extract features

and use FPN to augment feature maps through top-down

pathway and lateral connections, which bulids a rich

multi-scale feature pyramids with a single resolution input

image and has been proved a strong detection component,

as we illustrated in Figure 2 Part(a). Similar to RetinaNet,

in the downsampling period, we use 5 stages in ResNet

that generates feature maps C1, C2, C3, C4, C5 and the

downsampling rate is 2l for Cl feature map. In the upsam-

pling stage, we remove P2 for less computational burden

and use feature maps P3, P4, P5, P6 and P7. P3, P4 and

P5 are generated from C3, C4 and C5 through upsampling

and lateral connections. P6 and P7 are computed by

stride-2 convolution over P5 for detection on large targets.

All feature maps from P3 to P7 have an output channel

C = 256, which are sent to detection heads for subsequent

training process.

Pseudo-IoU based Assignment After feature extraction

by ResNet-101 and FPN, we can assign points in feature

maps from P3 to P7 with positive or negative labels. For a

point at feature map Pl, its location can be projected back to

original input image with an upsampling rate 2l. Suppose

that its location is (x, y) on the input image and if it falls

into a ground truth box with label (xc, yc, w, h), (xc, yc) is

the center of the box and w, h represent its width and height

respectively. Then, we can compute l, r, t, b, which are

distance from (x, y) to the left, right, top and bottom side of

box (xc, yc, w, h) by

l = x− xc +
w
2 , r = xc +

w
2 − x

t = y − yc +
h
2 , b = yc +

h
2 − y

according to the Pseudo-IoU computation algorithm in sec-

tion 3.1, we can easily have

lB = l, rB = r, tB = t, bB = b

then compute Pseudo-IoU following the flow diagram

presented in Algorithm 1. In anchor-based methods,

it usually takes anchors with IoU more than a specific

threshold as positive samples, we follow the design and

set our Pseudo-IoU threshold T , too. Therefore, all points

with Pseudo-IoU larger than T are assigned as positive

samples and others are assigned as negative samples. Since

focal loss performs good and stable on balanced training

and FCOS[32] further proves that one main advantage of

anchor-free detectors is all-in samples for training, we use

all labeled samples for subsequent training. In Figure 2, for

example, on all H×W ×256 feature maps, there is a black

rectangle ground truth area and the red area inside contains

all positive samples contribute to the training procedure.

Detection Heads After all feature maps are extracted

from FPN and all points on the feature maps are labeled

with positiveness or negativeness, the training process

moves forward to detection heads part. The detection head

is a FCN [23] that attached to each output feature maps

from FPN and it contains two subsets: a classifier and a

regressor. For the classifier subnet illustrated in Figure 2

part(b), it follows four stacked 3 × 3 convolution layers

with 256 filters and finally attached a 3 × 3 convolution

layer with C filters. C is the number of classes for final

classification on each point. For the regressor subnet,

in Figure 2 part(c), it also follows four stacked 3 × 3
convolution layers with 256 filters and finally attached a

3 × 3 convolution layer with 4 filters per spatial location.

At each location, these 4 outputs represent a predicting



bounding box vector (l, r, t, b). Moreover, the two subsets

do not share weights on the four consecutive stacked 3 × 3
convolution layers.

Loss Function The loss function in our anchor-free archi-

tecture is

L(A(x,y), B(x,y)) =
1

Npos

∑

(x,y)

Lfl(CAx,y
, CBx,y

)

+
λ

Npos

∑

(x,y)

Liou(RAx,y
, RBx,y

)

where Lfl is focal loss for classification and Liou is IoU

loss [36] for regression. A(x,y) is the set of all selected

training samples and B(x,y) is the set of all ground truth

boxes. CAx,y
and RAx,y

represent the output of classifier

and regressor. CBx,y
and RBx,y

represent structured

labels of ground truth. Npos is the number of selected pos-

itive samples and λ denotes the balance weight for IoU loss.

Inference Process The inference process is straightfor-

ward and clear for anchor-free detectors. The input im-

age goes through backbone ResNet-101 and FPN to gen-

erate feature maps from P3 to P7, then the regressor and

classifier make predictions on all points and assemble them

together for post processing. Generally, the post process-

ing includes a confidence thresholding and a non maximum

suppression (NMS) for final predictions.

4. Experiments

We present all of our experiments mainly on Pascal

VOC [8] and MSCOCO [21] benchmark. For Pascal VOC

benchmark, we follow common 07 + 12 practice that uses

Pascal VOC 2007 trainval split and 2012 trainval split for

training and 2007 test split for testing. For MSCOCO

benchmark, we use trainval35k for training, common mini-

val 5k images for validating and test on test-dev set. We

first show the training and testing setting of the two bench-

marks. Then, we present the effectiveness of Pseudo-IoU

in ablation study and compare our model with other state-

of-the-art detectors on MSCOCO dataset. All the codes are

based on mmdetection [3] toolbox.

4.1. Training and Testing

Pascal VOC We use an ImageNet [7] pretrained ResNet-

101[14] as backbone with fixed Batch Normalization [16]

layers and build the whole network illustrated in Figure 2

with number of classes C = 21 and Group Normaliza-

tion [34] for stable training. Our network is trained with

stochastic gradient descent (SGD) for 12 epochs with a

warmup[12] training for 500 iterations. The initial learning

rate is 0.01 and reduced by a factor of 10 at epoch 8 and

10, respectively. Weight decay and momentum are set to be

0.0001 and 0.9. The input images size are resized to have

their shorter side being 600 and their longer side less or

equal to 1000. We only use image flipping as the only data

augmentation method since most experiments on Pascal

VOC are ablation studies. The model is trained on 4 ×
1080 Ti GPU with a total batch size at 16. The loss function

is an addition of focal loss and IoU loss, the weight balance

parameter of IoU loss is λ = 1. In the testing process,

we only use same single resolution to the training process

for inference. For post-processing, the scoring threshold

and NMS’s threshold are set to be 0.05 and 0.5, respectively.

MSCOCO We build the whole network with a illustrated

in Figure 2 with the number of classes C = 81 and Group

Normalization [34] for stable training. Our network em-

ploys ResNet-101 as backbone with feature pyramid net-

works and is trained with stochastic gradient descent (SGD)

for 24 epochs with a warmup training for 1500 iterations.

The initial learning rate is 0.01 and reduced by a factor of

10 at epoch 16 and 22, respectively. Weight decay and mo-

mentum are set to be 0.0001 and 0.9. The input images

are resized to have their shorter side being 800 and their

longer side less or equal to 1333 for single-scale training.

The model is trained on 4 × V100 GPU with a total batch

size at 16. The loss function setting remains unchanged.

During the testing process, we only use same single reso-

lution to the training settings for inference with the same

post-processing used at Pascal VOC’s models.

4.2. Ablation Study

Pseudo-IoU is Essential In Table 1, we carefully present

all ablation studies experiments with the effectiveness of

Pseudo-IoU on Pascal VOC 2007 test set. The baseline

model is in Figure 3 without Pseudo-IoU based assignment,

which takes all points inside ground truth as positive

samples. Table 1.(a) shows that the baseline model with a

0.4 Pseudo-IoU threshold could get a 2.1% improvement

on mAP, which proves the importance of accurate assign-

ment during training process. It also shows that a higher

Pseudo-IoU threshold would lead to a performance drop

due to insufficient selected positive training samples. In

Table 1.(b) and (c), it indicates that anchor-free model with

Pseudo-IoU based assignment could bring a consistent

around 2% mAP improvement under different training

epochs and batchsizes, which shows that the performance

gap due to imbalanced assignment of training samples

could not be compensated with extended training and larger

batchsize.

Assignment with Other Metrics In current state-of-the-

art anchor-free object detectors, FCOS [32] and FSAF [43]

also achieve detection results comparable to anchor-based



Model Thrs mAP

Baseline 0.0 76.9

Pseudo-IoU 0.1 76.8

- 0.2 77.5

- 0.3 78.2

- 0.4 79.0

- 0.5 78.9

- 0.6 45.6

- 0.7 22.1

(a) Diff Pseudo-IoU Thrs

Model Epochs mAP

Baseline 8 76.9

Pseudo-IoU 8 79.0

Baseline 12 78.4

Pseudo-IoU 12 80.4

Baseline 16 78.3

Pseudo-IoU 16 80.2

Baseline 24 77.8

Pseudo-IoU 24 80.1

(b) Diff Training Epos

Model Batchsize mAP

Baseline 4 73.6

Pseudo-IoU 4 75.2

Baseline 6 76.6

Pseudo-IoU 6 77.9

Baseline 8 77.0

Pseudo-IoU 8 78.8

Baseline 16 76.9

Pseudo-IoU 16 79.0

(c) Diff Batchsizes

Table 1: Ablation studies results evaluated on Pascal VOC 2007 test set. Bold indicates best single-model results and

corresponding parameters.

Centerness mAP S-box mAP P-IoU mAP

0.2 72.9 0.3 24.5 0.3 78.2

0.25 77.4 0.4 63.8 0.4 79.0

0.3 78.5 0.5 77.1 0.5 78.9

0.35 78.7 0.6 78.3 0.6 45.6

0.4 77.6 0.7 77.3 0.7 22.1

0.45 77.6 0.8 76.8 0.8 13.5

Table 2: Ablation studies with different assignment rules

and all results evaluated on Pascal VOC 2007 test set. Bold

indicates best single-model results and corresponding pa-

rameters.

methods. In FCOS, it adds a centerness branch to reweigh

output results. In FSAF, it adopts a central part in ground

truth box as positive samples. These two recent work mo-

tivate us to bring a Pseudo-IoU based assignment method

into anchor-free pipeline. Moreover, there are some other

assignment options may be as effective as Pseudo-IoU. We

propose other two options adapted from FSAF and FCOS

that may be alternatives to our Pseudo-IoU metric. The first

one is called scaled-box, which uses all points inside scaled

ground truth boxes as positive samples. Given a point (x, y)
that falls into a ground box (xc, yc, w, h) and a scaled pa-

rameter s, the point is positive if it fits that

|x− xc| <
sw

2
|y − yc| <

sh

2

The other one is called centerness, under the same setting to

scaled-box, we can compute l, r, t, b according to algorithm

presented in section 3.2, then centerness threshold is

c =

√

min(l, r)

max(l, r)
×

min(t, b)

max(t, b)

which follows the expression of centerness in FCOS. How-

ever, here we use centerness for selecting positive samples

rather than reweigh output detection. We compare the de-

tection results on Pascal VOC 2007 test set under these

two new metrics and Pseudo-IoU in Table 2. It shows

that anchor-free models can achieve different results under

different assignment methods. Overall, using Pseudo-IoU

could achieve a little better results (79.0% mAP) than cen-

terness (78.7% mAP) and scaled-box (78.3% mAP) metric.

More importantly, use Pseudo-IoU based metric may em-

ploy previous research on IoU like Cascade RCNN [1] or

Libra RCNN [24] into anchor-free manners, which bring

more possibilities to anchor-free object detection.

4.3. Comparison with Stateoftheart Detectors

MSCOCO minival set Firstly, we validate our model

on MSCOCO minival set. The baseline model employs

ResNet-50-FPN backbone with fixed batch normalization

layers and an anchor-free detection head that takes all

points from feature pyramids inside ground truth as positive

samples. The input image is resized to their shorter side

being 800 and their longer side less or equal to 1333 for

single-scale training. Image flipping is the only strategy

for data augmentation. During testing, we only use the

same scale setting to the training process and all results

are listed in Table 3. Without accurate assignment, there

is a performance gap between our anchor-free baseline

and RetinaNet. After using Pseudo-IoU based assigment,

it outperforms RetinaNet about 1.1% mAP performance

and brings 2.9% mAP improvement on baseline model.

Moreover, employing GIoU and centerness branch could

further improve the performance, which implies that our

Pseudo-IoU is compatible with other object detection

approaches.

MSCOCO test-dev set We also report our results on



Method Pseudo-IoU GIoU Centerness AP AP 50 AP 75 APS APM APL

RetinaNet[20] - - - 35.7 55.0 38.5 18.9 38.9 46.3

AF-Baseline - - - 33.9 54.5 35.3 19.1 38.7 44.1

Pseudo-IoU X - - 36.8 56.4 39.2 20.4 41.0 48.7

Pseudo-IoU X X - 37.1 55.9 39.7 20.4 41.1 49.1

Pseudo-IoU X X X 37.4 56.5 40.1 20.5 41.2 49.4

Table 3: Anchor-free model with Pseudo-IoU based assignment on MSCOCO minival 5k set with ResNet-50-FPN backbone.

AF-baseline stands for anchor-free baseline. Pseudo-IoU could bring 2.9% mAP improvement on baseline model. Using

GIoU[28] for regression loss and adding a centerness branch like FCOS[32] could both bring further improvements.

Method Backbone AP AP 50 AP 75 APS APM APL

Multi-Stage methods

Faster RCNN [27] R-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

R-FCN [5] Aligned-Inception-R 35.5 55.6 - 17.8 38.4 49.3

Deformable R-FCN [6] Aligned-Inception-R 37.5 58.0 - 19.4 40.1 52.5

Mask RCNN [13] R-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

Libra RCNN [24] R-101-FPN 41.1 62.1 44.7 23.4 43.7 52.5

Cascade RCNN [1] R-101-FPN 42.8 62.1 46.3 23.7 45.5 55.2

One-Stage methods

YOLOv3 [26] Darknet-53 33.0 57.9 34.4 18.3 25.4 41.9

SSD513 [22] R-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [9] R-101 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet [38] R-101 36.4 57.5 39.5 16.6 39.9 51.4

RetinaNet [20] R-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

GHM [18] R-101-FPN 39.9 60.8 42.5 20.3 43.6 54.1

Anchors-Free methods

FSAF [43] R-101-FPN 40.9 61.5 44.0 24.0 44.2 51.3

FCOS [32] R-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6

CornetNet [17] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

CenterNet [39] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8

Our methods

AF-Baseline R-101-FPN 38.3 59.2 40.1 22.6 42.1 46.9

Pseudo-IoU R-101-FPN 41.5 61.0 44.5 24.1 44.6 51.9

Pseudo-IoU R-101-FPN-DCN 43.4 63.2 46.8 25.8 47.8 56.7

Pseudo-IoU R-32x8d-FPN-DCN 44.0 63.8 47.3 28.0 47.5 58.1

Pseudo-IoU R-64x4d-FPN-DCN 44.5 64.4 48.1 26.5 48.8 58.4

Table 4: Detection results of our best single model with Pseudo-IoU based label assignment vs. state-of-the-art one-stage,

multi-stage and anchor-free detectors on the MSCOCO test-dev set. R stands for ResNet here.

test-dev set. We train all model with a ResNet-101-FPN

backbone and an anchor-free detection head illutrated in

Figure 2. The input image is resized to keep the longer

side to 1333 and short side randomly selected from 640

to 800 without image flipping or other data augmentation

approach. All detection results are listed in Table 4.

To make fair comparisons, we only select results with

single-model and single-scale inference from their original

publications, some results based on multi-scale testing or

better backbone like ResNeXt [35] are not included.

4.4. Visualization

We visualize some detection results of both anchor-free

baseline and the baseline trained with sampling in Figure 3.

It is noticeable that the baseline model has many false posi-

tives and inaccurate bounding box predictions. On the con-

trary, the model adopts sampling based on PIoU produces

much less false positives and more accurate localization,



Figure 3: Visualization of some detection results that are best viewed when zoomed in. The first and third rows of images are

detection results of anchor-free baseline; the second and fourth rows of images are detection results of anchor-free baseline

with sampling based on PIoU metric at 0.5 threshold. As shown from the detection results, our method produces much less

false positives and more accurate localization.

which improves performance by a large margin.

5. Conclusion

In this paper, we first point out that current anchor-free

object detectors lack accurate and standardized assignment

process that limits its potential to compete with many state-

of-the-art anchor-based methods. To solve this problem, we

propose a simple Pseudo-Intersection-over-Union (Pseudo-

IoU) metric that brings more accurate and standardized as-

signment rule into anchor-free framework by computing

IoU between the pseudo box centered on points from fea-

ture pyramids and ground truth box. Then, we adopt it as

Pseudo-IoU value of each point inside ground truth area.

Furthermore, we conduct extensive experiments on PAS-

CAL VOC and MSCOCO dataset, it shows that anchor-free

models with Pseudo-IoU based assignment could bring a

consistent improvement without bells and whistles. It de-

creases many false positive detections and leads to more

accurate localization of bounding boxes. Moreover, in the

future, it is possible that some recent research on improv-

ing assignment in anchor-based methods can be transferred

to anchor-free models based on the proposed Pseudo-IoU

assignment metric.
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