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Abstract

Segmentation-based scene text detection methods have

been widely adopted for arbitrary-shaped text detection re-

cently, since they make accurate pixel-level predictions on

curved text instances and can facilitate real-time inference

without time-consuming processing on anchors. However,

current segmentation-based models are unable to learn the

shapes of curved texts and often require complex label as-

signments or repeated feature aggregations for more accu-

rate detection. In this paper, we propose RSCA: a Real-time

Segmentation-based Context-Aware model for arbitrary-

shaped scene text detection, which sets a strong baseline

for scene text detection with two simple yet effective strate-

gies: Local Context-Aware Upsampling and Dynamic Text-

Spine Labeling, which model local spatial transformation

and simplify label assignments separately. Based on these

strategies, RSCA achieves state-of-the-art performance in

both speed and accuracy, without complex label assign-

ments or repeated feature aggregations. We conduct ex-

tensive experiments on multiple benchmarks to validate the

effectiveness of our method. RSCA-640 reaches 83.9% F-

measure at 48.3 FPS on CTW1500 dataset.

1. Introduction

In recent years, scene text detection methods based on

deep neural networks have been widely adopted in both

academia and industry. Following the development of ob-

ject detection and segmentation, representations for text in-

stances in scene images rely on instance-level and pixel-

level features that are extracted by deep convolutional neu-

ral networks. Pixel-level text representation learning, which

are also known as segmentation-based methods, starts from

EAST [42] that removes anchors and makes multi-oriented

text predictions directly from pixels to contours. Then,

Textsnake [23] views text instances as sequences of ordered,

overlapping disks and makes predictions on curved text.

PSENet [36] encodes text spines on multiple scales and uses
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Figure 1: Comparisons between RSCA and other state-

of-the-art arbitrary-shaped scene text detection methods on

CTW1500 benchmark.

progressive scale expansion algorithm to reconstruct text in-

stances. PAN [37] further enhances features with repeated

feature fusion modules and DBnet [16] proposes differen-

tiable binarization for boundaries of text instances. TextPer-

ception [26] also makes order-aware segmentation with la-

bels on heads, contours and tails for arbitrary-shaped text

detection. These segmentation-based methods set a general

encoder-decoder prototype for arbitrary-shaped scene text

detection and reach state-of-the-art performance on multi-

ple curved scene text detection benchmarks.

However, among these segmentation-based methods for

arbitrary-shaped scene text detection, there are two main

problems. Firstly, it lacks modeling of curved shapes of

text instances since common convolution and pooling lay-

ers only operate with fixed geometric structures, which

are designed for predictions of regular bounding boxes.

For curved scene text detection, since most instances are

irregular polygons, models need ability to learn spatial

transformation to reconstruct text polygons from segmen-

tation maps, which is ignored by current state-of-the-art

segmentation-based models. Secondly, label generation and

assignment rules are complex and exhausting for arbitrary-



shaped text instances. Different parts of text including

heads, tails and boundaries are required to be generated

manually and labeled as different classes. Text regions are

shrunk with a fixed ratio as foregrounds for training pro-

cess, which requires many hand-crafted parameters with

grid search on different benchmarks to get state-of-the-art

performances.

To tackle with these two problems, we propose two cor-

responding strategies: Local Context-Aware Upsampling

(LCAU) and Dynamic Text-Spine Labeling (DTSL). For

spatial transformation modeling, previous methods [12] [6]

show that self-attention mechanism helps to model global

pixel-to-pixel relation but is computationally expensive.

Deformable convolution [4] [43] predicts kernel offsets but

it shares weights on entire feature maps and is sensitive to

parameter initialization. We propose a local context-aware

upsampling module that generates an attention weight ma-

trix separately but computes locally on feature maps dur-

ing upsampling process, which is light-weight compared

to global self-attention layer while more effective and ef-

ficient according to our experiments. For simplifying label

generation and assignment, we propose a simple dynamic

text-spine labeling method, which simply shrinks text re-

gions with a gradually increasing ratio during training pro-

cess. This brings no additional computational burden but

learns representations for text regions from easy samples to

hard samples. These two strategies help us to build RSCA:

a Real-time Segmentation-based Context-aware model for

arbitrary-shaped scene text detection, which achieves state-

of-the-art performances on multiple benchmarks with real-

time inference speed.

To validate effectiveness of our method, we conduct

extensive experiments on multiple benchmarks with our

RSCA model. In Figure 1, it shows that comparing with

other state-of-the-art methods on arbitrary-shaped scene

text detection, our RSCA achieves better performance with

real-time inference on CTW1500 benchmark. More com-

parisons and experiments are presented in the following sec-

tions.

To summarize, our contributions are as follows:

• We analyze the problems of current segmentation-

based models for arbitrary-shaped scene text detection:

lack of spatial transformation modeling and complex

label assignments.

• We propose RSCA: a real-time segmentation-based

context-aware model for arbitrary-shaped scene text

detection with local context-aware upsampling and dy-

namic text-spine labeling, which models local spatial

transformation and simplifies labels assignments with

dynamically increasing text-spine labels separately.

• We conduct extensive experiments on several bench-

marks to validate effectiveness of our RSCA model

which achieves state-of-the-art performances with

real-time inference speed.

2. Related Works

In this section, we briefly review current scene text

detection methods based on deep neural networks, in-

cluding two main categories: anchor-based methods and

segmentation-based methods.

Anchor-based Methods: Anchor-based methods mainly

develop based on object detectors, which starts from

Faster-RCNN [27] that firstly introduces anchors as pre-

defined boxes for accurate regression. Then, one-stage

methods SSD [20] employ anchors on feature pyramids and

make predictions directly from anchors. Following their

design, Textboxes [15] changes anchor scales and follows

SSD to detect text instances. Textboxes++ [14] further

employs quadrilateral regression for bounding boxes on

multi-oriented text detection. RRD [17] decouples classi-

fication and regression branches for better multi-oriented

text detection. To better handle arbitrary-shaped text

detection, Mask TextSpotter [24] adds a segmentation

branch for segmenting text instances from bounding boxes,

which inherits from Mask RCNN [8]. ContourNet [38]

proposes adopted RPN to generate more suitable anchors

and segments contours for curved text detection. These

anchor-based methods perform well on text detection with

regular shapes, but lack robustness to arbitrary-shaped

scene text detection, since both shape and aspect-ratio of

the pre-defined anchors limit their potential for curved text

detection.

Segmentation-based Methods: Segmentation-based

methods mainly focus on pixel-level feature represen-

tation, which is suitable for arbitrary-shaped scene text

detection since most text instances are curved. Following

development of semantic segmentation, FCN [22] and

U-Net [28] employ an encoder-decoder structure for pixel-

level prediction. The encoder part is usually a deep feature

extractor like ResNet [9] or VGG [30] and the decoder part

is usually feature upsampling by bilinear interpolation or

deconvolution layer. EAST [42] firstly removes anchors

and make multi-oriented text instances prediction on pixels.

Then, more methods [23] [36] [37] [16] [26] come out with

focus on improving labeling accuracy and model assign.

They push detection accuracy comparable to anchor-based

methods on multiple scene text detection benchmarks.

Among these segmentation-based methods, they set a

baseline with FCN-like structure for pixel-level prediction

and generate final detection results with grouping pixels

to text instances. To ensure more accurate detection, they

adopt repeated feature maps aggregation and complex label

assignments, which could slow down the inference speed
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Figure 2: RSCA model architecture with illustrations on Local Context-Aware Upsampling.

and limit their applications in broader scenarios due to

specific requirements for labels.

3. RSCA

In this section, we mainly introduce our RSCA pipeline

from model architecture to training and inference process,

including our two effective strategies: local context-aware

upsampling and dynamic text-spine labeling.

3.1. Model Architecture

We show our RSCA model architecture in Figure 2.

Specifically, we first adopt ResNet-50 [27] as our backbone

for feature extraction with multiple levels of feature maps.

It generates 5 stages of feature maps C1, C2, C3, C4, C5

and the downsampling rate is 2l for Cl feature map. Then,

following the feature pyramid design from FPN [18], we

select C2, C3, C4, C5 for upsampling and feature aggrega-

tion. C1 is not selected for reducing computational burden.

During the feature aggregation stage, we use local context-

aware upsamling to model pixel-to-pixel relation in a local

range on each feature maps and concatenate augmented C2,

C3, C4, C5 feature maps to C2 scale with channel aggre-

gation. Finally, we upsample aggregated C2 to the original

scale of the input image to predict text areas and reconstruct

text instances.

3.2. Local Context­Aware Upsampling

Upsampling is a common operation in modern deep

neural networks for computer vision tasks like object

detection and semantic segmentation, since it promotes

feature maps from low resolution to high resolution and

from semantic level to pixel level. For arbitrary-shaped

scene text detection, we propose local context-aware

upsampling to model spatial transformation in a local range

during upsampling, which improves detection accuracy

especially on curved text regions.

Upsampling Operators For previous works in scene

text detection, the most common upsampling operators

are nearest neighbor and bilinear interpolations, which

do not require any additional parameters. In Learning

Deconvolution Network [25], it proposes deconvolution

layer which is an inverse operator of convolution layer. It

is learnable but applies the same kernel across the entire

feature maps. In ESPCN [29], it uses pixel shuffle as

upsampling module which reshapes feature maps from

the depth channel into width and height dimension. Our

motivation is to model pixel-to-pixel relation in local range

since arbitrary-shaped text are irregular and curved. Global

self-attention [6] is a decent solution but it introduces too

much additional computational burden on the global spatial

attention and channel attention matrices. Motivated by

DCN [4] [43], CARAFE [34] and dynamic filter [12], we

propose local context-aware upsampling, which models



Figure 3: Illustrations with local context-aware upsampling

on original images. Shallow red point refers to non-text-

region prediction and bright red point refers to text-region

prediction.

spatial transformation relation in a local range that does not

bring too much computational burden.

Local Context-Aware Upsampling For a feature map

C × H × W , after an upsampling operation, it becomes

C × rH × rW where r is the upsampling rate. In Figure 2,

we display the entire feature processing flow of our local

context-aware upsampling operation. On the weight matrix

generation branch, we first apply a convolution layer with

dimension 3 × 3 × C × C
′

where C
′

= l2, where l is the

receptive field of pixels on feature map C × H × W and

now the dimension is C
′

×H ×W . Then, we apply near-

est neighbor upsampling operation with scaling rate r and it

becomes l2 × rH × rW . On the depth channel, l2 can be

viewed as a weight matrix of coordinate (x, y) on feature

map C × rH × rW . Motivated by dynamic filter, we also

add a softmax operation to normalize the weight matrix and

apply a local context-aware matrix multiplication with orig-

inal feature map C×H×W . Finally, the dimension of fea-

ture maps becomes C×rH×rW . Local context-aware up-

sampling can replace any upsampling operation by adding

only a small computational burden. In Figure 3, we make

illustrations on original images, for classic nearest neighbor

upsampling, predictions on text-region would activate fixed

adjunct space on high-resolution feature maps, while local

context-aware upsampling generates a local weight matrix

that weakens activation of non-text context. More exper-

iments with local context-aware upsampling are shown in

ablation studies.

3.3. Dynamic Text­Spine Labeling

Label generation and assignment are important to scene

text detection, especially on segmentation-based methods,

since they dictate text regions for the model to learn from

loss function. For arbitrary-shaped scene text detection,

we propose a dynamic text-spine labeling method for label

generation and assignment, which dynamically enlarges

text-spine as labels during the training process. It provides

more positive samples as training process goes from easy

ones to hard ones and outperforms previous fixed text-spine

labeling methods with cross-entropy loss.

Label Assignment for Segmentation-based Methods For

segmentation-based methods like PSENet [36] and DB-

net [16], they employ shrunk text instance masks as labels.

For example, given a text instance S with a group of ver-

tices
∑n

i Pi, we can compute its perimeter L and area A of

the original polygon. Then, the shrunk offset [33] is

D =
A

L
(1− r2)

where r is the shrink ratio and set to be 0.4 in DBnet but

different discrete values in PSENet. For text instance S,

it is dilated with the shrunk offset D to be Sd and regions

of Sd are considered as text-spine labels for text. In loss

function, a binary cross-entropy loss function with a ratio

of positive to negative samples as 1 : 3 is employed:

L =

n∑

i

yi log xi + (1− yi) log(1− xi)

which is similar to salient object detection that views

foregrounds of text as labels and predicts text regions

during inference process.

Dynamic Text-Spine Labeling Following the label gen-

eration from previous methods, there are two main draw-

backs. Firstly, parameters of fixed shrink ratios vary with

different datasets, which requires hand-crafted fine-tuning

empirically. Secondly, splitting original text regions and

label shrinking-boundary parts as negatives gives confus-

ing signals to the scene text detector. To tackle with these

two problems, we propose a dynamic text-spine labeling

approach that enlarges text-spine labels during the training

process. For the shrink ratio r, we set an initial value ra and

a final value rb. As training process goes on, we have

r = ra + (rb − ra)×
epoch

maxepoch

The expansion coefficient β = epoch

maxepoch
, which is moti-

vated by the poly learning rate decay policy, decays expo-
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Figure 4: Illustrations between dynamic and fixed text-

spine labeling during training process.

nentially as training continues. In Figure 4, we make illus-

trations of both fixed and dynamic text-spine labeling meth-

ods during training process. Under this dynamic text-spine

labelling approach, our scene text detection model could

learn text regions from easy samples to hard samples, which

introduces improvements compared with the setting of best

fixed shrink ratio. For loss functions, after experiments with

different ones with hard examples mining [19], we choose

the basic binary cross-entropy loss with ratio of positive to

negative samples as 1 : 3. More experiments with dynamic

text-spine labeling and loss functions are shown in ablation

studies.

3.4. Inference

During inference process, images are first resized to

fixed size (l, l), which is similar to the cropped samples

during the training process. l is set as 640 and 800 for

our RSCA-640 and RSCA-800 model respectively. As

shown in Figure 2, the resized image is input to the RSCA

model and it outputs a segmentation probability map with

text-spine regions after feature extraction and local context-

aware upsampling. To reconstruct text instances, we follow

same steps used in DBnet [16], which employs polygonal

approximation algorithm to get independent text polygons,

then dilates each individual text-spine according to its area

Ats, perimeter Lts and offset

Dts =
Ats

Lts

∗ dts

Method Precision Recall F-measure FPS

TextSnake [23] 85.3 67.9 75.6 -

NASK [2] 82.8 78.3 80.5 12

SAST [35] 85.3 77.1 81.0 27.6

CRAFT [1] 86.0 81.1 83.5 -

DBnet-1024 [16] 86.9 80.2 83.4 22

ABCNet [21] 83.8 79.1 81.4 9.5

PSENet [36] 84.8 79.7 82.2 3.9

ContourNet [38] 84.1 83.7 83.9 4.5

PAN-640 [37] 86.4 81.2 83.7 39.8

RSCA-640 87.2 80.8 83.9 48.3

RSCA-800 87.2 82.9 85.0 28.4

Table 1: Detection results on CTW1500 dataset. All re-

sults are collected from CTW1500 leaderboard. The num-

ber with dash is the height of input images and bold indi-

cates best results.

Method Precision Recall F-measure FPS

CRAFT [1] 87.6 79.9 83.6 -

DBnet-800 [16] 87.1 82.5 84.7 32

ABCNet [21] 85.4 80.1 82.7 9.5

PSENet [36] 84.8 79.7 82.2 3.9

PAN-640 [37] 89.3 81.0 85.0 39.6

ContourNet [38] 86.9 83.9 85.4 3.8

RSCA-640 86.9 78.5 82.5 40.3

RSCA-800 86.6 83.3 85.0 30.4

Table 2: Detection results on Total-Text dataset. All re-

sults are collected from Total-Text leaderboard. Hyper-

parameters of RSCA are adopted directly from CTW1500.

Here dts is the dilation ratio. After dilating text instances,

we reshape both the image and detection results into the

original shape and get the final results.

4. Experiments

In this section, we firstly introduce datasets and bench-

marks that we use to validate the effectiveness of our

method. Then, we show our experimental details including

most hyper-parameters and hardware configurations. Fur-

thermore, we compare our methods with other state-of-the-

arts and present ablation study mainly on local context-

aware upsampling and dynamic text-spine labeling.

4.1. Datasets

CTW1500: CTW1500 [41] is also known as SCUT-

CTW1500, which is a text-line based arbitrary-shaped text

dataset with both English and Chinese instances. It contains

1000 training images and 500 testing images. Text instances



Method Precision Recall F-measure FPS

EAST [42] 87.3 67.4 76.1 13.2

TextSnake [23] 83.2 73.9 78.3 1.1

RRD [17] 87.0 73.0 79.0 10.0

CRAFT [1] 88.2 78.2 82.9 8.6

DBnet-736 [16] 91.5 79.2 84.9 32

PAN-640 [37] 84.4 83.8 84.1 30.2

ContourNet [38] 86.9 83.9 85.4 3.8

RSCA-640 92.8 80.1 86.0 52.5

RSCA-800 91.5 85.6 88.4 28.9

Table 3: Detection results on MSRA-TD500 dataset. All re-

sults are collected from original papers. Hyper-parameters

of RSCA are adopted directly from CTW1500.

Method Precision Recall F-measure FPS

EAST [42] 83.6 73.5 78.2 13.2

TextSnake [23] 84.9 80.4 82.6 1.1

DBnet-1152 [16] 91.8 83.2 87.3 12

RRD [17] 85.6 79.0 82.2 6.5

PSENet [36] 86.9 84.5 85.7 1.6

PAN-640 [37] 84.0 81.9 82.9 26.1

ContourNet [38] 87.6 86.1 86.9 3.5

RSCA-640 85.3 81.3 83.2 32.9

RSCA-800 87.2 82.7 84.9 23.3

Table 4: Detection results on ICDAR-2015 dataset. All re-

sults are collected both from ICDAR-2015 leaderboard and

original papers. Hyper-parameters of RSCA are adopted di-

rectly from CTW1500.

are labeled with 14 points as polygons that can be described

as arbitrary-shaped curve text.

Total-Text: Similar to CTW1500, Total-Text [3] is an

arbitrary-shaped text dataset but with word-level label. It

contains 1255 training images and 300 testing images.

Word instances are labeled with 10 vertices as polygons for

curved text detection.

ICDAR 2015: ICDAR 2015 [13] is commonly used for

multi-oriented text detection. It contains 1000 training im-

ages and 500 testing images. All text regions are annotated

by 4 vertices of quadrangle.

MSRA-TD500: MSRA-TD500 [40] is a multi-language

dataset that includes 300 images for training and 200 im-

ages for testing with text-line level labels. Following pre-

vious methods, we also include HUST-TR400 [39] in the

training set with 400 images.

SynthText: SynthText [7] is a synthetic dataset with

800000 images, which are synthesized on scene text with

8000 background images. SynthText is mainly used for pre-

training our model.

Method Precision Recall F-measure

Nearest 82.7 78.9 80.8

Bilinear 82.9 79.0 80.9

Deconvolution 82.9 79.5 81.2

Pixel Shuffle 83.2 78.8 80.9

Spatial Attention [6] 84.2 77.5 80.7

Channel Attention [6] 84.9 78.2 81.3

LCAU-FPN 85.8 77.9 81.8

LCAU-All 86.7 78.8 82.6

Table 5: Detection results on CTW1500 dataset with differ-

ent upsampling operators.

4.2. Experimental Settings

Training and inference setting We build the whole RSCA

model illustrated in Figure 2. At first, we pre-train all

models on SynthText dataset for 2 epochs. Then, we

fine-tune our models on each dataset for 1200 epochs with

stochastic gradient descent (SGD). For each dataset, we set

batch-size to 16 with synchronized batch normalization.

For learning rate policy, we employ a poly learning rate

decay in which the initial learning rate is multiplied by

(1 −
epoch

maxepoch
)power, where the initial learning rate is

set to be 0.007 and power is set to be 0.9. We also use

a weight decay of 0.0001 and a momentum of 0.9. Data

augmentation are mainly listed as follows: (1) Images

are randomly horizontally flipped and rotated in the range

[−10◦, 10◦]; (2) Images are randomly reshaped with ratio

[0.5, 3.0] and then cropped by 640 × 640 samples for

training efficiency. These training setups mostly follow

previous methods in DBnet [16] and PSENet [36] for fair

comparisons and quick setting up based on MegReader

toolbox.

Hardware and software setting All models are trained

based on 4 NVIDIA V100 GPUs and tested on a single

V100 GPU in Ubuntu operating system. Our code is based

on Pytorch 1.4.0 and CUDA 10.1. The RSCA framework

is implemented based on MegReader toolbox. For those

solutions with open-sourced codes [36][16][37] [21], we

use their open-sourced models for comparisons and test

them on a single V100 GPU. For those that are not open-

sourced [38][2][35], we simply adopt the numbers of both

performance and FPS from their papers.

4.3. Comparisons with State­of­the­arts

We conduct extensive experiments on two curved text

detection benchmarks CTW1500 and Total-Text, two

multi-oriented text detection benchmarks MSRA-TD500

and ICDAR-2015. All hyper-parameters are tuned based

on CTW1500 and directly employed on other datasets.



Backbone Precision Recall H-mean Size(M)

ResNet-50 86.7 78.8 82.6 28.18

ResNet-101 86.0 79.9 82.8 47.18

Mobilenetv3 81.7 73.8 77.5 6.89

EfficientNet-b0 84.1 75.7 79.7 6.54

EfficientNet-b1 83.8 75.5 79.4 9.04

EfficientNet-b2 84.9 75.5 79.9 10.37

Table 6: Detection results on CTW1500 dataset with differ-

ent backbones of RSCA. Size refers to model size including

backbone and feature pyramids.

Loss function Precision Recall H-mean

BCE loss 82.0 75.7 78.7

BCE loss++ 83.2 78.7 80.9

Focal loss[19] 83.9 72.3 77.6

Table 7: Detection results on CTW1500 dataset with differ-

ent loss functions for RSCA.

Feature Aggregations F-measure Model Size(M)

FPN-64c [18] 81.9 26.24

BiFPN-D1-64c [32] 81.8 26.40

BiFPN-D2-88c [32] 81.1 26.60

BiFPN-D3-112c [32] 80.4 26.88

Table 8: Detection results on CTW1500 dataset with differ-

ent feature aggregations for RSCA.

Component Time Cost (ms)

Mobilenetv3 18.66

Post-processing 10.65

Total 29.31

Table 9: Inference time of Mobilenetv3-based RSCA.

Curved Text Detection To tackle with curved text detec-

tion, we mainly perform experiments on CTW1500 and

Total-Text datasets. All experiments with CTW1500 and

Total-Text are shown in Table 1 and Table 2.

Multi-Oriented Text Detection To tackle with multi-

oriented text detection, we mainly perform experiments on

MSRA-TD500 and ICDAR-2015 datasets. All experimen-

tal results with MSRA-TD500 and ICDAR-2015 are shown

in Table 3 and Table 4.
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spine labeling with RSCA on CTW1500 dataset.

4.4. Ablation Study

Local Context-aware Upsampling We study the effec-

tiveness of our local context-aware upsampling module

by comparing it with different upsampling operators. We

use an Imagenet [5] pre-trained ResNet-50 as backbone

and build the whole model in Figure 2. In Table 5, we

implement different upsampling methods and it shows

that our local context-aware upsampling brings consistent

improvements on precision and outperforms previous

upsampling methods.

Dynamic Text-Spine Labeling To validate the effective-

ness of dynamic text-spine labeling, we make comparisons

with same models under different constant text-spine shrink

ratios in Figure 5. FTSL is fixed text-spine labeling that

uses a constant shrink ratio with RSCA model, which

achieves best performances around 80.5% F-measure when

shrink ratio is 0.4 or 0.5 on CTW1500 dataset. For dynamic

text-spine labeling that shrinks from ra to rb, it shows that

the best setting with ra = 0.4 and rb = 0.6 could achieve

82.1% F-measure with the same model.

Different Backbones We evaluate our RSCA with different

backbones in Table 6. It includes ResNet with different

depth of layers, EfficientNet [31] with different scales

and MobileNetv3 [10]. All backbones are pre-trained on

ImageNet [5] and it shows that our RSCA is compatible

with these state-of-the-art light-weight backbones, which

can be deployed on mobile devices.

Different Loss Functions We evaluate our RSCA with

different loss functions in Table 7. It includes basic

binary cross entropy loss (BCE loss), binary cross entropy

loss with hard negative mining (BCE loss++) and focal

loss [19]. It shows that binary cross entropy loss with hard



Figure 6: Visualization of detection results. Images are selected from test set of CTW1500 dataset.

negative mining outperforms others. Setting different loss

functions usually require many hand-crafted fine-tuning

parameters like binary thresholds and shrink ratios. The

way to find the most suitable loss function for scene text

detection remains an open problem for the community.

Different Feature Aggregations We evaluate our RSCA

with different feature aggregations in Table 8. We mainly

implement basic FPN [18] and BiFPN [32] with different

repeated times. FPN-64c means the channels of all feature

maps are 64 during the feature aggregation stage and the

same to BiPFN. It shows that repeated feature aggregations

with more scalings are not helpful for improving perfor-

mance of scene text detection because the bottleneck now is

the lack of modeling spatial transformation on local ranges.

Mobile Device Inference To analyze the performance of

our model on mobile devices, we use the RSCA model

based on Mobilenetv3 [10] backbone, which can achieve

34.11 FPS on a single V100 GPU and shown in Table 9.

Since the inference time of Mobilenetv3 is 192ms on a

Snapdragon 660 CPU, according to the AI-Benchmark [11].

An corresponding estimation of inference time of RSCA

model on a Snapdragon 660 CPU based mobile phone like

Redmi Note 7, would be around 302 ms, which is around

3 FPS. For a more powerful mobile CPU like Snapdragon

855, which takes 47ms for Mobilenetv3 inference accord-

ing to the AI-Benchmark [11], our RSCA can reach an es-

timation inference time at 74ms, which is around 13.5 FPS.

More accelerations and optimizations like model pruning

and quantization can be further employed for mobile device

deployment.

4.5. Visualization

We visualize some detection results of our RSCA model

on test set of CTW1500 dataset in Figure 6. It shows

that our model can accurately detect most of curved text

instances in different scenes, including text on billboards,

traffic signs and slogans.

5. Conclusion

In this paper, we first analyze the problems and bottle-

necks of current segmentation-based models for arbitrary-

shaped scene text detection, mainly on the lack of geo-

metrical modeling and complex label assignments or re-

peated feature aggregations. To tackle these problems, we

propose RSCA: a Real-time Segmentation-based Context-

Aware model for arbitrary-shaped scene text detection with

local context-aware upsampling and dynamic text-spine la-

beling, which models local spatial transformation and sim-

plifies label assignments separately. Our experiments show

that RSCA achieves state-of-the-art performances with real-

time inference speed on multiple arbitrary-shaped scene text

detection benchmarks.
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