This CVPR 2021 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Layer Importance Estimation with Imprinting for Neural Network Quantization

Hongyang Liu
University of Alberta
hliull@ualberta.ca

Sara Elkerdawy
University of Alberta

elkerdaw@ualberta.ca

Nilanjan Ray
University of Alberta

nrayl@ualberta.ca

Mostafa Elhoushi
Huawei

m.elhoushi@ieee.org

Abstract

Neural network quantization has achieved a high com-
pression rate using fixed low bit-width representation of
weights and activations while maintaining the accuracy
of the high-precision original network. However, mixed
precision (per-layer bit-width precision) quantization re-
quires careful tuning to maintain accuracy while achiev-
ing further compression and higher granularity than fixed-
precision quantization. We propose an accuracy-aware cri-
terion to quantify the layer’s importance rank. Our method
applies imprinting per layer which acts as a proxy module
for accuracy estimation in an efficient way. We rank the
layers based on the accuracy gain from previous modules
and iteratively quantize first those with less accuracy gain.
Previous mixed-precision methods either rely on expensive
search techniques such as reinforcement learning (RL) or
end-to-end optimization with a lack of interpretation to the
quantization configuration scheme. Our method is a one-
shot, efficient, accuracy-aware information estimation and
thus draws better interpretability to the selected bit-width
configuration.

1. Introduction

Deep neural networks (DNN) models achieved state-of-
the-art (SOTA) accuracy in numerous applications. How-
ever, DNNs commonly demand large computational costs
and memory consumption. Numerous light-weight foot-
print architectures are designed to tackle the computa-
tion bottleneck deployment on embedded and edge de-
vices [13, 15, 14, 32]. Other ways to address this chal-
lenge are model pruning [11, 22, 7], low-rank factoriza-
tion [36, 4, 24], and quantization [19, 35, 23] that have
been extensively studied. Related to our work, quantiza-
tion converts weights and optionally activations from 32-bit
floating points to a low precision representation. The quan-

tized model requires less memory storage and computation
cost resulting in faster inference. Different layers might re-
quire different low-bit representations based on a multitude
of factors such as weight distribution, information gain, and
sensitivity to quantization.

Quantization stores parameters of a model with a low-bit
precision and utilizes the hardware’s ability to efficiently
process computational operations such as convolution with
low-bit operations to speed up the inference, which enables
us to run neural networks on edge devices. Conventional
quantization methods referred to as fixed-precision quan-
tization in the paper such as [23, 3, 26] ignore the fact
that different layers of a network have different levels of
redundancy. This observation led to the development of
mixed-precision quantization methods [35, 39, 5, 27, 34].
However, the challenge is to determine the bit length per
layer and explore the vast design space with minimal expert
knowledge. Current mixed-precision methods adopt com-
putationally expensive optimization to search for the con-
figuration with optimal bit-length per layer. Our method
is a one-shot search optimization that is followed by a
constant fine-tuning step. Computation in other quantiza-
tion methods grows linear in the compression target bud-
get. That stems from the iterative and progressive joint
quantization-finetuning usually adopted in current methods.
Figure 1 shows different budget-architecture pairs. Our
method achieves comparable accuracy with smaller model
sizes while adopting an efficient one-shot search optimiza-
tion.

In this paper, we propose an efficient one-shot mixed-
precision quantization method. We introduce an accuracy-
aware criterion using imprinting which is introduced in few-
shot learning literature [29] and adopted in pruning [7]. We
insert a proxy classifier after each layer and estimate the
accuracy gain per layer. The layer with the lowest rank is
quantized and imprinting is re-applied again to update the
ranks. This process is done iteratively until a model size

~
o]

—-—- APoT
—— Ours
76 -
74 -
>
|9}
©72-
=)
|9}
(9}
< 70
o
Q
P 68 -
66 -
64 —— ResNet18
—— MobileNetV2
1 2 3 4 5 6

Model Size (MB)

Figure 1: Comparison under different dataset-budget pairs
with ResNet20 on CIFAR-100.

budget is reached. Finally, a fine-tunning step is performed
using the bit-length configuration. Our contributions can be
summarized as follows:

e We introduce the idea of accuracy estimation to
bring any fixed-precision quantization to a compressed
mixed-precision quantization so that further compres-
sion can be reached with higher flexibility.

* We propose an accuracy-aware criterion to weigh the
importance of each layer. This will allow us to have
a better interpretation of the final bit-length configura-
tion compared to other search methods.

* Qur search method using imprinting is a one-shot step,
we are able to quickly identify rank the layers resulting
in shorter training time.

2. Related Work

In this section, we split quantization methods into two
main categories: 1) fixed-precision quantization, 2) mixed-
precision quantization.

2.1. Fixed-Precision Quantization

A plethora of network quantization methods has been
extensively studied and proposed. Han et al. [10] quan-
tized model using heuristics jointly with pruning. Krish-
namoorthi et al. [20] propose two designs of uniform quan-
tization leading to the conclusion that uniform quantization
can achieve 4x model size reduction with no accuracy drop
but to reach higher compression, non-uniform quantization
techniques will be required.

Zhou et al. [37] and Miyashita et al. [26] proposed non-
uniform quantization methods using powers-of-two values.
These methods give higher resolution for values near the
center of a bell-shaped weight/activation distribution [9].
Power-of-two (PoT) method converts floating-point mul-
tiplications into powers-of-two multiplications, which can
be easily achieved by utilizing efficient bit-shift operations.
TQT [18] introduced uniform quantization using trainable
interval values for thresholding.

Li et al. [23] improves over these methods to re-
cover from what they called rigid resolution limitation for
weight/activation values around zero. Therefore, PoT is un-
able to increase a model’s expressiveness effectively. Li et
al. [23] proposed Additive-Power-of-two (APoT) quantiza-
tion which adopts a finer resolution around zero, and thus,
reduces information loss. One issue with APoT is that the
model needs to be progressively trained from higher bits to
lower bits in order to get the optimal results. This will result
in a time-consuming training time for highly compressed
models.

Jacob et al. [17] managed to use integer-only arithmetics
during inference by quantizing the weights and activations
as 8-bit integers and biases as 32-bit integers during train-
ing. Quantization-aware training that simulates quantiza-
tion errors during training was also proposed in [17].

Some recent works focused on binary networks which
are essentially networks with 1-bit precision networks. [25]
proposed Bi-Real Net which is a variant of the residual
structure that preserves the real activation before the sign
function. [16] introduced a method that adds Shannon en-
tropy based penalty to convolutional filters to maintain the
same level of information capacity throughout the training
process for binary networks.

2.2. Mixed-Precision Quantization

Mixed-precision quantization methods focus on optimiz-
ing the bit-length per layer. As the number of layers in
the neural network increases, the search space of the tra-
ditional neural network quantization method will show ex-
ponential growth. As a result, it is impossible to achieve
the optimal quantization precision per layer by brute force
search. Wang et al. [34] introduce the hardware-aware
automatic quantization (HAQ) framework based on rein-
forcement learning (RL). The HAQ framework uses the RL
strategy, which can help predict the latency time of specific
hardware given a specific bit length. Then the RL proxy is
used to determine the bandwidth of each layer, that is, the
weight of each layer and the width of the activation bits.
However, the training time for HAQ is significant due to the
nature of RL.

BitPruning [27], formulates quantization as an optimiza-
tion problem, which incorporates a regularization loss to
penalize high bit-length representations throughout the ar-

chitecture. The results for ResNet18 [12] on Imagenet [30]
show that the quantized model can guarantee at least 90%
accuracy with low bit-length. As a result, the new bit prun-
ing strategy can quantify each layer of the neural network
better. It greatly reduces memory and the consumption of
hardware. However, end-to-end methods require incremen-
tal careful joint optimization between task and quantization
loss and hard to optimize. In addition, they lack interpreta-
tion of the final configuration.

In ZeroQ [2], a generated data obtained from the statis-
tics of batch normalization layers are used in bit configu-
ration search instead of the original data. Pareto frontier
optimization is proposed using the synthetic data generated
to find the optimal bit-precision configuration. Differen-
tial Quantization (DQ)[33] proposed a method to learn both
the range and threshold of quantization jointly with model
weights, from which the bit width can be inferred.

3. Methodology

Our motivation comes from the fact that different layers
have different effects on the final accuracy of a model [&].
Therefore, they should be treated differently during quanti-
zation. We propose to use imprinting [28], which is a one-
shot pass, to approximate the accuracy up to each layer. We
then rank based on the accuracy gain and efficiently single
out layers that will harm the final accuracy less after quanti-
zation. We refer to this as an important estimation. Our fo-
cus in the paper is to show the efficiency of imprinting as a
search optimization for the bit-length configuration; hence,
we adopt different quantization methods. We experimented
with uniform and non-uniform methods proposed in fixed-
precision quantization literature. Weights and activations
are quantized using any arbitrary quantization method as
per our final bit-length configuration after imprinting. Our
solution consists of two steps. First, we select the bit con-
figuration using Algorithm 1. Then, we fine-tune the model
with the selected bit configuration from the previous step,
using various quantization methods. The selection of the
optimal bit-width is orthogonal to the different quantization
methods proposed in the literature.

3.1. Preliminaries

For quantization, we consider two operations: clipping
and projection. Suppose we define the weight of a convolu-
tional layer as W, then the quantized weight will be defined
as:

W =] sl W, el e

where | W, «] is the clipping function that clips W to the
range [—a, a]. Q(«, b) is a set of quantization levels whose
maximum is «, and b is the bit-width. [] denotes the pro-
jection function which will project the clipped weight onto

the quantization levels. For uniform quantization, the quan-
tization levels will be

+1 +2 +3
2b—1 17 20-1 17 2b-1 17"

Quni(a,b) = ax{0, ., +1}

()
3.2. Bit-width selection

Ideally, to accurately rank layers based on task accu-
racy, we could insert an untrained task predictor after each
layer. That is to create a classifier head with adaptive aver-
age pooling, fully-connected layer, and softmax, then train
the weights of these classifiers after each layer. This will be
time-consuming to train such a large number of classifiers.
Instead, we adopt imprinting to approximate the weights of
the fully connected layer without training.

We use imprinting to get the approximate weights with
only one epoch. The method is adopted from [7], we used
quantized convolutional layer instead of what’s used in [?].
To simplify the imprinting module across all layers, we
sample from the input feature maps using adaptive average
pooling. The kernel size for adaptive average pooling is au-
tomatically calculated such that all layers generate a 1D em-
bedding of a similar length. This stage is named as weights
imprinting stage which can be formulated as the following

[7]:
d= round(\/f) 3)

E; = Adaptive AvgPool(F}, d),

where NV is the length of embedding and f; is the number
of filters in the i-th layer. F; is the i-th layer’s feature map
and F; is our re-shaped embedding which is also the input
of imprinting.

The layer ranking stage is then formulated to calculate
the accuracy using the imprinted weights. Figure 2 shows
the whole pipeline for the imprinting step. This setup is
motivated by the pruning work [7].

For example, we can see from Figure 5 for ResNet20
on CIFAR-10, some layers have similar or even lower esti-
mated accuracy as the layer before them (e.g. layer conv18
has the same accuracy as layer conv17 in the Figure 5). This
implies that these latter layers have less importance gain
compared to the early ones and thus can be compressed us-
ing a smaller bit length.

We start with all the layers set to the same bit length.
Then we iteratively select one layer to be 1 bit lower in both
weights and activations based on the difference between the
estimated accuracy and that of the previous layer until the
target budget on the bit length is reached. This budget con-
straint could be the total minimum bit length or model size.
The effect of this method is shown in Figure 6.

Weights imprinting stage

i .I p c
i N
I
| Sampler
f—%f P E; — Imprinting 1 w
F; ; 2 ' N

J

Layer ranking stage
i g i)
! /—A
|
| Sampler e ‘
B 3 w
T
F; | 4
i
i

Figure 2: Pipeline illustrating layer ranking by imprinting.
An embedding E; is sampled from input feature maps F;.
Imprinting is then applied on the embedding to estimate the
weight matrix W. Accuracy per layer is then calculated
by a simple dot product between embedding and imprinted
weights.

Accuracy
[
[
|

3.3. Quantization

The bit-width selection method mentioned before can be
applied to any fixed-precision quantization method. Quan-
tization consists of clipping and projection, for example,
APOT, has these two parts respectively: the reparameter-
ized clipping function and the additive power of two quan-
tization schema.

Reparameterized Clipping Function The clipping
threshold « is the value that defines the range of weights
in a quantization layer. If « is too small, the clipping func-
tion will throw away too many outliers. If « is too large, the
weights around the center will not have enough resolution
for projection, since the weights are long-tail distributed [9].
Thus, finding an optimal « is a crucial challenge in quanti-
zation.

Most of the recent papers use a Straight-Through Esti-
mator (STE) [1] to help jointly train the clipping threshold
and weights. STE is used to estimate the gradient of « for
back propagation:

W:{Wzsign(W) if|[W] >« @)
Oa 0 ifI] W <a

It is clear that the clipped weights are not contributing to the

gradient. Thus, the estimation is not accurate here. There-
fore, AOPT [23] proposed the following clipping function:

) W
W= O‘HQ(l,b)LE71-|7 (5)

which scales the weights into range [—1, 1] then scales them
back after projection. The estimated gradient is, therefore,

changed to
8W_ sign(W) if|W]| >« ©)
da HQ(I,b)%_% ifIW]<a
Additive Power of Two Unlike uniform quantization,
[23] defines the quantization levels as a set of sums of mul-
tiple power-of-two terms, as shown below:

n—1
Qapor(a,kn) =7 x {>_pi},
i=0 @)
1 1 1
where p; € {0, = 1

917 9i+n’ " 9it(2F—2)n

where k is a hyper parameter that defines base bit-width,
and n is the number of additive terms. If the bit-width is
b, n can be calculated as n = % Finally, v is a scaling
coefficient to guarantee the maximum level equals «

These quantization levels will project the values non-
uniformly and enable more levels near O which is the cen-
ter of the weights after clipping. Since the distribution of
the weights of convolutional layers is long-tailed and bell-
shaped [9]. This will give us the ability to have more reso-

lution around the center.

4. Experiments & Analysis

We validate our method with ResNet18 [6], ResNet-20,
ResNet-56 [12] and MobileNet-V2 [31] on CIFAR-10 and
CIFAR-100 [21] datasets. We also evaluate ResNet18 on
ImageNet-ILSVRC2012 [30]. For our method, we start our
training by setting the weights and activations of all the con-
volutional layers to a 4 bit-width representation for CIFAR
and 5 bit-width for ImageNet. The first and last layer, how-
ever, is kept at 8 bit to balance the accuracy drop and hard-
ware overhead as a common practice in quantization papers
[?, 2, ?]. The minimum bit lengths of weights and activa-
tions are set to 1 and 2, respectively, following [38] which
shows that increasing bit-width of activation from 1-bit to
2-bit leads to a better accuracy-efficiency trade-off. For CI-
FAR, the number of fine-tuning epochs is 300 with batch
size=128. The learning rate is initialized with 0.1 and is di-
vided by 10 at 150 and 225 epoch. For ImageNet, the num-
ber of fine-tuning epochs is 120 with batch size=256. The
initial learning rate is set to 0.01 and decays by 10 times ev-
ery 30 epochs. We did not use quantization-aware training
[17] but the clipping threshold « is trainable and is learned
during the training process.

4.1. CIFAR

Imprinting Evolution We first show the layer rank evo-
lution using imprinting as a criterion. Figure 6 shows sam-
pled iterations from different stages in the search loop to
select bit length for ResNet-20 on CIFAR-10. The x-axis

Algorithm 1 Pipeline for bit-selection

Input: initial bit length configuration of all convolutional
layers Bgiqrt, minimum bit length configuration of all con-
volutional layers B.,q , number of convolutional layers K
Output: bit configuration for all convolutional layers B

1: Calculate maximum total bit-length B’mm =
K
Ei:o bl s bl c Bstart
2: Calculate minimum total bit-length B,,;,
K
Zi:o bz 5 bl S Bend
3: Calculate maximum of iterations needed N,,qzx =
Bmar - Bmzn +1
4: Initialize the configuration to use Beyrrent = Bstart
5: for iteration N = 1,2, ..., Nyao do
6: With B.yrrent, Use imprinting with quantization to
get the estimated accuracy of each convolutional layer,
Ace = {acey, acea, . . . acci }
7: Find the difference between each layer and its pre-
vious layer, diff = {|acc; — acc;—1]|||Vi € [2,K —
1], acc; € Acc}

8: Find the index of the minimum difference, idx =
argmin(diff))

9: Record the configuration as By

10: Record the accuracy of the last layer as Accyy

11: Update the configuration Biyrrent by setting
bidm = bzd'r -1

12: end for

13: Choose the best configuration B = By where Accy =
max({Acc;|Vi € [1, Npaz|})

shows the type of the convolutional layers and the y-axis
represents the estimated accuracy obtained through imprint-
ing. The first and last layers are set to 8 bits and will not be
selected to change their bit length for the entire selection
process. Figure 6 shows that the second layer of each block
will usually bring the accuracy down which is also observed
in [7]. This can be attributed to the fact that the second layer
in ResNet block heavily acts as a residual to the identity
path so accuracy using its output alone is not meaningful.
In the first step, as shown in Figure 6a, the second layer
of the 8th block, conv8.2, has the smallest difference from
the previous layer. Therefore, conv8.2 will be selected to
be 1 bit smaller, which is 3 bits. After 7 iterations (Figure
6b), conv8.2 is selected again, which sets its configuration
to 2 bits. Around 20 iterations later, conv5.1 will be se-
lected as shown in Figure 6c, leading to a bit length of 2.
This process continues until we meet the target average bit
length requirement. The final layer’s accuracy of each iter-
ation will be recorded as a measurement of the performance
of that bit-length configuration. The configuration with the
best final-layer accuracy within a certain average bit length
range is selected as the final configuration. The overall ac-
curacy from one iteration to the next drops because there is

no fine-tuning between the iterations. Adding a small fine-
tuning step between the iterations can help to maintain a
similar level of accuracy (see Figure 7). However, since the
final fine-tuning result after using such bit-selection with
fine-tuning does not improve much, we didn’t include it in
our algorithm.

Different quantization With this selection method, we
conduct experiments using different quantization methods
to show the applicability of our method to different quanti-
zation methods. We apply fixed-precision quantization re-
sults for Uniform, Power of Two, Additive Power of Two
(APoT) quantization methods, with bit-width set to 4, 3, and
2. Then we apply our method to each of these methods to
find the best mixed-precision configuration whose average
bit length is in-between 4, 3, and 2 bits. These experiments
are evaluated using ResNet-20 on CIFAR-10. The final
bit-length configuration is shown in Figure 4. To compare
to more state-of-the-art methods, we also included results
for PACT and ZeroQ [2] as well as the results reported in
[33] for the Differential Quantization (DQ)[33] and Trained
Quantization Threshold(TQT)[18] methods. These results
are shown in Table 1. PACT[3] uses uniform quantiza-
tion. Comparing to our method with uniform quantization,
PACT is outperformed. ZeroQ [2] achieves better accuracy
than our method on a similar model size but the average
bit length for the activation is also higher than ours. Com-
paring to DQ [33] and TQT [18], we are able to maintain
a comparable level of accuracy with a similar weight size
with ResNet-20 on CIFAR-10. We can also see that as the
average bit length gets smaller, the accuracy is not hurt sig-
nificantly. One huge advantage of our method compared
to APoT [23], is that, instead of using the fine-tuned pre-
trained higher precision model as a starting point to train a
lower bit configuration, our approach does not require such
a high amount of fine-tuning epochs to reach a low bit con-
figuration and smaller model size. It is worth mentioning
that in some cases the model size can be larger even if the bit
length for weights and activations are smaller. The reason is
that these bit lengths are average values of all convolutional
layers and some layers are much more compressed than in
our mixed-precision quantized model than their counterpart
fixed-precision quantized models.

We also evaluate our method with APoT quantization on
different models. Results of CIFAR-10 and CIFAR-100 are
shown in Table2 and 3 respectively. From the table, we can
see that we can achieve results similar to APoT[23] on most
of the ResNet models, but with less average bit length and
model size. We have a larger accuracy drop for MobileNet-
V2 compared to APoT[23]. However, we are still able to
produce some mixed-precision settings with less model size
but higher accuracy than APoT.

Method Weight | Activation | Size (MB) | Accuracy | Epoch
PACT [3] 4 4 - 91.3 -
APoT [23] 4 4 0.14 92.45 300
PoT 4 4 0.14 91.85 300
Uniform 4 4 0.14 92.86 300
ZeroQ (2] learned 8 0.13 93.16 -
Ours(APoT) 3.85 3.85 0.13 92.82 300
Ours(Uniform) 3.1 33 0.12 92.04 300
Ours(PoT) 33 34 0.11 91.37 300
PACT [3] 3 3 - 91.1 -
Ours(Uniform) 2.8 3.15 0.11 91.87 300
APoT [23] 3 3 0.1 92.49 600
PoT 3 3 0.1 91.78 600
Uniform 3 3 0.1 92.36 600
Ours(PoT) 2.8 3 0.1 91.29 300
Ours(APoT) 2.3 2.7 0.1 91.65 300
PACT [3] 2 2 - 89.7 -
DQ(Uniform) [33 learned 4 0.07 91.42 160
DQ(POT) [33] learned 4 0.07 88.77 160
APoT[23] 2 2 0.07 90.96 900
PoT 2 2 0.07 91.14 900
Uniform 2 2 0.07 91.06 900
Ours(PoT) 1.7 24 0.07 90.28 300
TQT (Uniform) [18] 2.3 4 0.065 90.83 160
TQT (POT) [18] 23 4 0.065 88.71 160
Ours(APoT) 1.6 24 0.06 90.64 300
Ours(Uniform) 1.5 2.3 0.06 90.04 300

Table 1: Comparing different quantization methods with
ResNet20 on CIFAR-10

91192
83
80
69 69
65
60 57
52 L) 52
47
a0 39 39
36
23
24
20
o

.
9

u
S

Accuracy

convi.1
convi.2
conv2.1
conv2.2
conv3.1
conva.2
convs.1
convs.2
convé.1
conv6.2
conv7.1
conv7.2
conv8.1
conve.2
conva.1
conva.2

)
downsamplel _m
conva _

-

-

downsample2

Figure 3: Accuracy approximation using imprinting. The
model used is ResNet20 on CIFAR-10

4.2. ImageNet

Table 5 shows the result of ResNet-18 on ImangeNet.
We compare our result to Pact[3] and BitPruning[27]. Our
method outperforms the mixed quantization method Bit-
Pruning and the fixed quantization method PACT on a sim-
ilar configuration. Although we achieve comparable accu-
racy to APoT, we perform quantization in constant time re-
gardless of the budget constrain. Unlike APoT, which ap-

Model Method | Weights | Activations | Accuracy | Size (MB) | Epoch
Baseline 32 32 94.97 44.61 300
APoT 4 4 94.57 5.62 300
Ours 3.07 4.35 94.11 4.87 300
ResNet18 Ours 2.7 3.11 94.02 4.79 300
APoT 3 3 94.13 4.23 600
Ours 1.96 2.55 93.42 2.95 300
APoT 2 2 93.22 2.84 900
Baseline 32 32 92.96 1.04 300
APoT 4 4 92.45 0.14 300
Ours 3.85 3.85 92.82 0.13 300
ResNet20 APoT 3 3 92.49 0.1 600
Ours 23 2.7 91.65 0.1 300
APoT 2 2 90.96 0.07 900
Ours 1.65 2.4 90.64 0.07 300
Baseline 32 32 94.46 331 300
APoT 4 4 93.93 0.42 300
Ours 3.37 3.42 93.74 0.32 300
ResNet56 APoT 3 3 93.77 0.32 600
APoT 2 2 93.05 0.21 900
Ours 2.37 2.75 92.89 0.2 300
Ours 1.82 2.42 9222 0.16 300
Baseline 32 32 94.24 8.7 300
APoT 4 4 89.99 1.19 300
APoT 3 3 83.85 0.92 600
MobileNetV2 Ours 3.32 3.39 84.82 0.87 300
APoT 2 2 69.79 0.66 900
Ours 2.48 2.83 74.42 0.63 300
Ours 1.32 2.14 63.92 0.55 300

Table 2: Comparing different Models (CIFAR-10)

Model Method | Weights | Activations | Accuracy | Size (MB) | Epoch
Baseline 32 32 78.07 44.79 300
APoT 4 4 71.75 5.8 300
Ours 3.03 322 7742 4.72 300
ResNet18 APoT 3 3 76.11 441 600
Ours 2.67 3.04 76.01 4.38 300
APoT 2 2 71.7 3.01 900
Ours 1.29 2.18 73.34 1.8 300
Baseline 32 32 66.93 1.09 300
APoT 4 4 66.95 0.16 300
Ours 3.8 3.8 67.9 0.15 300
ResNet20 APoT 3 3 66.98 0.13 600
Ours 2.3 2.75 66.42 0.12 300
APoT 2 2 66.42 0.09 900
Ours 1.8 245 64.25 0.09 300
Baseline 32 32 94.46 3.27 300
APoT 4 4 93.93 0.42 300
Ours 3.37 3.42 93.74 0.32 300
ResNet56 APoT 3 3 93.77 0.32 600
APoT 2 2 93.05 0.21 900
Ours 2.37 2.75 92.89 0.2 300
Ours 1.82 2.42 92.22 0.16 300
Baseline 32 32 75.58 9.13 300
APoT 4 4 75.2 1.63 300
Ours 3.94 3.94 75.21 1.62 300
MobileNetV2 | APoT 3 3 74.14 1.36 600
APoT 2 2 67.4 1.09 900
Ours 2.19 2.69 71.24 1.01 300
Ours 1.71 2.37 62.9 1 300

Table 3: Comparing different Models (CIFAR-100)

plies an iterative process where each fine-tuned model is
used as a starting point for the next bit-width configuration.
This means training time grows linearly as a lower budget
is targeted.

: ; % N T
| | 1 B i 1 poA A]
H H ! i\ n A Iy i N |
H H M i n a " I i |
i i P H i\ " i I fi} o |
I 1 I H i\ " il i fid A {
I3 ' [35 % I i i A PR |
\ i v g oAb i LR A Y |
o £ 8N A AW B A |
: A A N R | SO I I] A RN e RO R |
L / R W A R L 0 A O L [IRV 0 S IR
i i ! A/ \ i oo N Vi [IRV AR |
Y vy IRV S ¢ | S e R T A Y AR R |
3.0 I : A B 30 W 4 fhriei-e-—4 ¢ RIS Rl AR e
! 1 ! Vol ol I ilh I N s o B o !
' i ! Vo v Vo o Vo i | BRI (IR I i
' i 414 o ol o ol iV 8 e T S i
@ i i ! Vo (S o Vol T Vit O R T e IR T O | @
g Vo ! A Wi s Al A A e I M A R R S §
225 T | Vi sl >25 4 Lo Pl A o e L i e e >
T i I H] g 8 oy I [(W | iy i L [I} L1
= oA ! i nhi) 3 i Hl P IR 1 e 5
ol 1 i |] i oo (iR] i i A
o \ i R i o wo ooy I I il
v W u g gl COR T | W el W]
20 Lo i L 20 O L e B i}
1A ol \ rau Y O N I\ K|
o iy iy 1 1 n LW W) W iy
i ¥ \ i i o vy Vi M S
i i ot e I A) [
1.5 -# (‘APOT' 3.85) 1 8 L5 -3\ (APdT23) 1 4 4 \ A
] \ 1 \
=+=- (IPOT", 3.3) i ‘\; *0”“('P01]',2,8)'| it ‘nl',' Y W “I
. 9 Hi fUnif . 1 i} ! ! W
(‘uniform’, 3.1) i i Yluniforny', 208) | ¥ b i Yy
¥ v P Y H
1.0 1 1.0 - L1 L 1
N A N N N N H NN AN AN AN W N A N N o N e N A NN AN AN e
N I IR TR TR B .S BV A B A i B S o damH Y sunne e SN oo
23332233322 ¢8¢s332¢2¢2 233$3¥2%2s322¢gs33¢2¢2¢e
2 zgzzzgzzzzzezzgezgzzzezz 2 zzzzzgzzzzzzgzzzzzz
§ 56655 S §6§ 6566555 5§56 655§ §6§ 66555 §5 655855 §6§ 6566555
8§ 88888 g88 8888388888 8 8888588 g8 88888 g8 888 8 8
2 2 2 2
2 2 2 H
H H 3 3
3 3 $ 3
Bit Lenath Bit Lenath

models with average bit length € [3, 4]

models with average bit length € [2, 3]

4.0

3.

3.4

2.

2.4

5

0

5

0

i
H
i
i
i
i
1
i
i
i
1
1
i
i
1
1
i
i
1
i
H
i
1
i
H
i
1
i
H
i
1
i

i

15 -4
-

Iy
)

convl.l

1

convi.2 |

('APOT", 1.65)
(‘POT", 1.7)
Uniform’, 1.5)

It

conv2.1

conv2.2

conv3.1¢

conv3.2 |

conv4.1l

conv4.2 ¢

.

conv5.1 ke

convs.2 |

convé.1

downsample1 |

Bit Lenath

convé.2

downsample2

conv7.1l

conv7.2

conv8.1l

conv8.2 ¢

conv9.1

conv9.2

(c) The final bit-length configuration for
models with average bit length € [1, 2]

Figure 4: The final big-length configuration for our ResNet20 models trained on CIFAR-10 with average weight bit-length

3 reported in 1

91 92

5

69 69
65
57
3352 52
50

Figure 5: Accuracy approximation using imprinting. The
model used is ResNet20 on CIFAR-10

Accuracy

47 46

w
&

31

24

0

convl.l
convl.2
conv2.1
conv2.2
conv3.1
conv3.2
downsamplel
conva.l
conva.2
convs.1
convs.2
conve.1
conve.2
downsample2
conv7.1
conv7.2
conva.1
conve.2
conva.l
conva.2

4.3. Ablation Study
4.3.1 Imprinting vs Statistical criteria

Our bit length selection with the imprinting method is an
efficient way to estimate layer importance based on accu-
racy. We also experimented with other statistical criteria for
layer importance estimation such as ¢ norm and variance.
The norm of a layer is calculated by taking the mean value
of the norm across the last two dimensions of the weights.
For each criterion, similar to imprinting, we rank the layers
based on that criteria, and then the selected layer is quan-
tized. However, as statistical criteria are model-based, we
perform a short-term fine-tuning for these criteria. We ob-
served that fine-tuning for one epoch does not produce an
accurate representation of the ranking of the different con-

Criterion Weights | Activations | Accuracy | Size (MB) | Epochs
max_variance 39 39 92.78 0.14 460
norm 39 39 92.66 0.14 460
qt_norm 3.8 3.8 92.58 0.14 460
Imprinting 3.85 3.85 92.82 0.13 300
min_variance 3.8 3.8 92.68 0.13 460
qt_norm 2.85 2.85 92.25 0.13 620
max_variance 2.9 2.9 91.77 0.13 620
Imprinting 2.3 2.7 91.65 0.1 300
norm 2.95 2.95 92.16 0.09 620
min_variance 29 2.35 91.99 0.07 620
qt_norm 1.85 2.8 90.82 0.09 780
max_variance 1.95 2.6 90.69 0.07 780
Imprinting 1.65 24 90.64 0.07 300
norm 1.95 22 91.09 0.06 780
min_variance 1.9 2.35 90.73 0.06 780

Table 4: Different bit selection criteria with ResNet-20 on
CIFAR-10. The quantization method used is APoT[23].
”norm”, “min_variance” and “max_variance” are the aver-
age statistics of full precision weights, whereas “qt_norm”
is the average norm of quantized weights.

figurations. To produce the best results of these criteria, we
have to fine-tune the model for a couple of epochs in each
iteration of the bit-length selection process. For this experi-
ment, we find that 8 epochs of fine-tuning are enough to ac-
curately represent the weights. The model used is ResNet-
20 on CIFAR-10. From Table 4, it is shown that the effect of
the two criteria is quite similar. However, as the imprinting
method is one-shot and the statistical criteria require fine-
tuning for a couple of epochs each selection, the imprinting

method is more efficient in terms of the overall time.

5. Conclusion

In this paper, we have introduced a bit-length selection

method to identify and rank the importance of each convo-
lutional layer by using one-shot imprinting. This method

o1 92

100 100
w0
6 6
6 63
52
4645
a 39
3

(a) An iteration from early stage. The sec- (b) An iteration from middle stage. The sec- (c) An iteration from late stage. The first
ond convolutional layer in the 8th block for ond convolutional layer in the 8th block for convolutional layer in the S5th block for
ResNet20 will reduce its bitwidth by 1 ResNet20 will reduce its bitwidth by 1 ResNet20 will reduce its bitwidth by 1

Figure 6: Evolution of layer ranking in iterative imprinting. The model used is ResNet20 on CIFAR-10 dataset.

89 89 8989

67 88
w0 o
0 w
66 g5 6464
&
a6
e s .
38
-
3I30 II Ii I

Accuracy
Aecuracy

(a) An iteration from early stage. The sec- (b) An iteration from middle stage. The first (c) An iteration from late stage. The sec-
ond convolutional layer in the 1st block for downsample layer for ResNet20 will reduce ond convolutional layer in the 6th block for
ResNet20 will reduce its bitwidth by 1 its bitwidth by 1 ResNet20 will reduce its bitwidth by 1

Figure 7: Evolution of layer ranking in iterative imprinting. We added a fine-tuning of 8 epochs between interations compared
to Figure 6. The model used is ResNet20 on CIFAR-10 dataset.

Method Weights | Activations | Accuracy gives us the ability to convert any fixed-precision quantiza-
PACT [3] 5 5 69.8 tion method into mixed-precision, which usually produces
APoT 5 5 70.75 neural network models with smaller model sizes. The use
Ours(APoT) 4.38 4.38 70.59 of imprinting also reduces the training epochs required to
PACT [3] 4 4 69.2 reach a relatively low average bit length. We have acquired
APoT 4 4 70.74 comparable results on CIFAR-10, CIFAR-100, and Ima-
Ours(APoT) 3.55 3.55 70.12 geNet, compared to APoT. In future work, we want to in-
BitPruning [27] 3.38 4.14 69.19 vestigate the use of different search methods in comparison
PACT [3] 3 3 68.1 to the proposed greedy approach.
APoT 3 3 69.79
Ours(APoT) 2.72 2.72 69.84 References
APoT 2 2 66.46
[1] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville.
Table 5: Results for ResNetl8 on Imagenet. We Estimating or propagating gradients through stochastic neu-
Compared our results with the ﬁxed-precision methods rons for conditional computation. CoRR, abs/1308.3432,
PACT(3] and APoT[23], as well as mixed-precision method 2013.
BitPruning[27]. [2] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,

Michael W. Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. CoRR, abs/2001.00281,
2020.

(3]

(4]

5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: parameterized clipping activation
for quantized neural networks. CoRR, abs/1805.06085,
2018.

Emily Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. CoRR,
abs/1404.0736, 2014.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Ma-
honey, and Kurt Keutzer. HAWQ: hessian aware quan-
tization of neural networks with mixed-precision. CoRR,
abs/1905.03696, 2019.

Mostafa Elhoushi, Farhan Shafiq, Ye Henry Tian, Joey Yiwei
Li, and Zihao Chen. Deepshift: Towards multiplication-less
neural networks. CoRR, abs/1905.13298, 2019.

S. Elkerdawy, M. Elhoushi, A. Singh, H. Zhang, and N. Ray.
One-shot layer-wise accuracy approximation for layer prun-
ing. In 2020 IEEE International Conference on Image Pro-
cessing (ICIP), pages 2940-2944, 2020.

Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong
Zhang, and Nilanjan Ray. To filter prune, or to layer prune,
that is the question. In Proceedings of the Asian Conference
on Computer Vision, 2020.

Song Han, Huizi Mao, and William Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In arXiv preprint
arXiv:1510.00149, 10 2016.

Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CoRR, abs/1709.01507, 2017.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360, 2016.

Dmitry Ignatov and Andrey Ignatov. Controlling informa-
tion capacity of binary neural network. Pattern Recognition
Letters, 138:276-281, Oct 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference.
CoRR, abs/1712.05877, 2017.

Sambhav R. Jain, Albert Gural, Michael Wu, and Chris
Dick. Trained uniform quantization for accurate and efficient
neural network inference on fixed-point hardware. CoRR,
abs/1903.08066, 2019.

Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. CoRR,
abs/1806.08342, 2018.

Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. CoRR,
abs/1806.08342, 2018.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. CoRR,
abs/1608.08710, 2016.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-
two quantization: A non-uniform discretization for neural
networks. CoRR, abs/1909.13144, 2019.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.
Learning filter basis for convolutional neural network com-
pression, 2019.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-
mance of 1-bit cnns with improved representational capabil-
ity and advanced training algorithm. CoRR, abs/1808.00278,
2018.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann.
Convolutional neural networks using logarithmic data rep-
resentation. CoRR, abs/1603.01025, 2016.

Milos Nikoli¢, Ghouthi Boukli Hacene, Ciaran Bannon, Al-
berto Delmas Lascorz, Matthieu Courbariaux, Yoshua Ben-
gio, Vincent Gripon, and Andreas Moshovos. Bitpruning:
Learning bitlengths for aggressive and accurate quantization,
2020.

Hang Qi, Matthew Brown, and David G. Lowe. Learning
with imprinted weights. CoRR, abs/1712.07136, 2017.
Hang Qi, Matthew Brown, and David G Lowe. Low-shot
learning with imprinted weights. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5822-5830, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Fei-Fei Li. Imagenet large scale visual recognition chal-
lenge. CoRR, abs/1409.0575, 2014.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Inverted residuals and
linear bottlenecks: Mobile networks for classification, detec-
tion and segmentation. CoRR, abs/1801.04381, 2018.
Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Stefan Uhlich, Lukas Mauch, Kazuki Yoshiyama, Fa-
bien Cardinaux, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Differentiable quan-
tization of deep neural networks. CoRR, abs/1905.11452,
2019.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,
Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-
tion of convnets via differentiable neural architecture search.
CoRR, abs/1812.00090, 2018.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.
On compressing deep models by low rank and sparse decom-
position. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.
Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental network quantization: Towards lossless
cnns with low-precision weights. CoRR, abs/1702.03044,
2017.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man
Cheung, and Pascal Frossard. Adaptive quantization for deep
neural network. CoRR, abs/1712.01048, 2017.

