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Abstract

Neural network quantization has achieved a high com-

pression rate using fixed low bit-width representation of

weights and activations while maintaining the accuracy

of the high-precision original network. However, mixed

precision (per-layer bit-width precision) quantization re-

quires careful tuning to maintain accuracy while achiev-

ing further compression and higher granularity than fixed-

precision quantization. We propose an accuracy-aware cri-

terion to quantify the layer’s importance rank. Our method

applies imprinting per layer which acts as a proxy module

for accuracy estimation in an efficient way. We rank the

layers based on the accuracy gain from previous modules

and iteratively quantize first those with less accuracy gain.

Previous mixed-precision methods either rely on expensive

search techniques such as reinforcement learning (RL) or

end-to-end optimization with a lack of interpretation to the

quantization configuration scheme. Our method is a one-

shot, efficient, accuracy-aware information estimation and

thus draws better interpretability to the selected bit-width

configuration.

1. Introduction

Deep neural networks (DNN) models achieved state-of-

the-art (SOTA) accuracy in numerous applications. How-

ever, DNNs commonly demand large computational costs

and memory consumption. Numerous light-weight foot-

print architectures are designed to tackle the computa-

tion bottleneck deployment on embedded and edge de-

vices [13, 15, 14, 32]. Other ways to address this chal-

lenge are model pruning [11, 22, 7], low-rank factoriza-

tion [36, 4, 24], and quantization [19, 35, 23] that have

been extensively studied. Related to our work, quantiza-

tion converts weights and optionally activations from 32-bit

floating points to a low precision representation. The quan-

tized model requires less memory storage and computation

cost resulting in faster inference. Different layers might re-

quire different low-bit representations based on a multitude

of factors such as weight distribution, information gain, and

sensitivity to quantization.

Quantization stores parameters of a model with a low-bit

precision and utilizes the hardware’s ability to efficiently

process computational operations such as convolution with

low-bit operations to speed up the inference, which enables

us to run neural networks on edge devices. Conventional

quantization methods referred to as fixed-precision quan-

tization in the paper such as [23, 3, 26] ignore the fact

that different layers of a network have different levels of

redundancy. This observation led to the development of

mixed-precision quantization methods [35, 39, 5, 27, 34].

However, the challenge is to determine the bit length per

layer and explore the vast design space with minimal expert

knowledge. Current mixed-precision methods adopt com-

putationally expensive optimization to search for the con-

figuration with optimal bit-length per layer. Our method

is a one-shot search optimization that is followed by a

constant fine-tuning step. Computation in other quantiza-

tion methods grows linear in the compression target bud-

get. That stems from the iterative and progressive joint

quantization-finetuning usually adopted in current methods.

Figure 1 shows different budget-architecture pairs. Our

method achieves comparable accuracy with smaller model

sizes while adopting an efficient one-shot search optimiza-

tion.

In this paper, we propose an efficient one-shot mixed-

precision quantization method. We introduce an accuracy-

aware criterion using imprinting which is introduced in few-

shot learning literature [29] and adopted in pruning [7]. We

insert a proxy classifier after each layer and estimate the

accuracy gain per layer. The layer with the lowest rank is

quantized and imprinting is re-applied again to update the

ranks. This process is done iteratively until a model size
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Figure 1: Comparison under different dataset-budget pairs

with ResNet20 on CIFAR-100.

budget is reached. Finally, a fine-tunning step is performed

using the bit-length configuration. Our contributions can be

summarized as follows:

• We introduce the idea of accuracy estimation to

bring any fixed-precision quantization to a compressed

mixed-precision quantization so that further compres-

sion can be reached with higher flexibility.

• We propose an accuracy-aware criterion to weigh the

importance of each layer. This will allow us to have

a better interpretation of the final bit-length configura-

tion compared to other search methods.

• Our search method using imprinting is a one-shot step,

we are able to quickly identify rank the layers resulting

in shorter training time.

2. Related Work

In this section, we split quantization methods into two

main categories: 1) fixed-precision quantization, 2) mixed-

precision quantization.

2.1. Fixed­Precision Quantization

A plethora of network quantization methods has been

extensively studied and proposed. Han et al. [10] quan-

tized model using heuristics jointly with pruning. Krish-

namoorthi et al. [20] propose two designs of uniform quan-

tization leading to the conclusion that uniform quantization

can achieve 4x model size reduction with no accuracy drop

but to reach higher compression, non-uniform quantization

techniques will be required.

Zhou et al. [37] and Miyashita et al. [26] proposed non-

uniform quantization methods using powers-of-two values.

These methods give higher resolution for values near the

center of a bell-shaped weight/activation distribution [9].

Power-of-two (PoT) method converts floating-point mul-

tiplications into powers-of-two multiplications, which can

be easily achieved by utilizing efficient bit-shift operations.

TQT [18] introduced uniform quantization using trainable

interval values for thresholding.

Li et al. [23] improves over these methods to re-

cover from what they called rigid resolution limitation for

weight/activation values around zero. Therefore, PoT is un-

able to increase a model’s expressiveness effectively. Li et

al. [23] proposed Additive-Power-of-two (APoT) quantiza-

tion which adopts a finer resolution around zero, and thus,

reduces information loss. One issue with APoT is that the

model needs to be progressively trained from higher bits to

lower bits in order to get the optimal results. This will result

in a time-consuming training time for highly compressed

models.

Jacob et al. [17] managed to use integer-only arithmetics

during inference by quantizing the weights and activations

as 8-bit integers and biases as 32-bit integers during train-

ing. Quantization-aware training that simulates quantiza-

tion errors during training was also proposed in [17].

Some recent works focused on binary networks which

are essentially networks with 1-bit precision networks. [25]

proposed Bi-Real Net which is a variant of the residual

structure that preserves the real activation before the sign

function. [16] introduced a method that adds Shannon en-

tropy based penalty to convolutional filters to maintain the

same level of information capacity throughout the training

process for binary networks.

2.2. Mixed­Precision Quantization

Mixed-precision quantization methods focus on optimiz-

ing the bit-length per layer. As the number of layers in

the neural network increases, the search space of the tra-

ditional neural network quantization method will show ex-

ponential growth. As a result, it is impossible to achieve

the optimal quantization precision per layer by brute force

search. Wang et al. [34] introduce the hardware-aware

automatic quantization (HAQ) framework based on rein-

forcement learning (RL). The HAQ framework uses the RL

strategy, which can help predict the latency time of specific

hardware given a specific bit length. Then the RL proxy is

used to determine the bandwidth of each layer, that is, the

weight of each layer and the width of the activation bits.

However, the training time for HAQ is significant due to the

nature of RL.

BitPruning [27], formulates quantization as an optimiza-

tion problem, which incorporates a regularization loss to

penalize high bit-length representations throughout the ar-



chitecture. The results for ResNet18 [12] on Imagenet [30]

show that the quantized model can guarantee at least 90%

accuracy with low bit-length. As a result, the new bit prun-

ing strategy can quantify each layer of the neural network

better. It greatly reduces memory and the consumption of

hardware. However, end-to-end methods require incremen-

tal careful joint optimization between task and quantization

loss and hard to optimize. In addition, they lack interpreta-

tion of the final configuration.

In ZeroQ [2], a generated data obtained from the statis-

tics of batch normalization layers are used in bit configu-

ration search instead of the original data. Pareto frontier

optimization is proposed using the synthetic data generated

to find the optimal bit-precision configuration. Differen-

tial Quantization (DQ)[33] proposed a method to learn both

the range and threshold of quantization jointly with model

weights, from which the bit width can be inferred.

3. Methodology

Our motivation comes from the fact that different layers

have different effects on the final accuracy of a model [8].

Therefore, they should be treated differently during quanti-

zation. We propose to use imprinting [28], which is a one-

shot pass, to approximate the accuracy up to each layer. We

then rank based on the accuracy gain and efficiently single

out layers that will harm the final accuracy less after quanti-

zation. We refer to this as an important estimation. Our fo-

cus in the paper is to show the efficiency of imprinting as a

search optimization for the bit-length configuration; hence,

we adopt different quantization methods. We experimented

with uniform and non-uniform methods proposed in fixed-

precision quantization literature. Weights and activations

are quantized using any arbitrary quantization method as

per our final bit-length configuration after imprinting. Our

solution consists of two steps. First, we select the bit con-

figuration using Algorithm 1. Then, we fine-tune the model

with the selected bit configuration from the previous step,

using various quantization methods. The selection of the

optimal bit-width is orthogonal to the different quantization

methods proposed in the literature.

3.1. Preliminaries

For quantization, we consider two operations: clipping

and projection. Suppose we define the weight of a convolu-

tional layer as W , then the quantized weight will be defined

as:

W̃ =
∏

Q(α,b)⌊W , α⌉ (1)

where ⌊W , α⌉ is the clipping function that clips W to the

range [−α, α]. Q(α, b) is a set of quantization levels whose

maximum is α, and b is the bit-width.
∏

denotes the pro-

jection function which will project the clipped weight onto

the quantization levels. For uniform quantization, the quan-

tization levels will be

Quni(α, b) = α×{0,
±1

2b−1 − 1
,

±2

2b−1 − 1
,

±3

2b−1 − 1
, ...,±1}

(2)

3.2. Bit­width selection

Ideally, to accurately rank layers based on task accu-

racy, we could insert an untrained task predictor after each

layer. That is to create a classifier head with adaptive aver-

age pooling, fully-connected layer, and softmax, then train

the weights of these classifiers after each layer. This will be

time-consuming to train such a large number of classifiers.

Instead, we adopt imprinting to approximate the weights of

the fully connected layer without training.

We use imprinting to get the approximate weights with

only one epoch. The method is adopted from [7], we used

quantized convolutional layer instead of what’s used in [?].

To simplify the imprinting module across all layers, we

sample from the input feature maps using adaptive average

pooling. The kernel size for adaptive average pooling is au-

tomatically calculated such that all layers generate a 1D em-

bedding of a similar length. This stage is named as weights

imprinting stage which can be formulated as the following

[7]:

d = round(

√

N

fi
)

Ei = AdaptiveAvgPool(Fi, d),

(3)

where N is the length of embedding and fi is the number

of filters in the i-th layer. Fi is the i-th layer’s feature map

and Ei is our re-shaped embedding which is also the input

of imprinting.

The layer ranking stage is then formulated to calculate

the accuracy using the imprinted weights. Figure 2 shows

the whole pipeline for the imprinting step. This setup is

motivated by the pruning work [7].

For example, we can see from Figure 5 for ResNet20

on CIFAR-10, some layers have similar or even lower esti-

mated accuracy as the layer before them (e.g. layer conv18

has the same accuracy as layer conv17 in the Figure 5). This

implies that these latter layers have less importance gain

compared to the early ones and thus can be compressed us-

ing a smaller bit length.

We start with all the layers set to the same bit length.

Then we iteratively select one layer to be 1 bit lower in both

weights and activations based on the difference between the

estimated accuracy and that of the previous layer until the

target budget on the bit length is reached. This budget con-

straint could be the total minimum bit length or model size.

The effect of this method is shown in Figure 6.
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Figure 2: Pipeline illustrating layer ranking by imprinting.

An embedding Ei is sampled from input feature maps Fi.

Imprinting is then applied on the embedding to estimate the

weight matrix W . Accuracy per layer is then calculated

by a simple dot product between embedding and imprinted

weights.

3.3. Quantization

The bit-width selection method mentioned before can be

applied to any fixed-precision quantization method. Quan-

tization consists of clipping and projection, for example,

APoT, has these two parts respectively: the reparameter-

ized clipping function and the additive power of two quan-

tization schema.

Reparameterized Clipping Function The clipping

threshold α is the value that defines the range of weights

in a quantization layer. If α is too small, the clipping func-

tion will throw away too many outliers. If α is too large, the

weights around the center will not have enough resolution

for projection, since the weights are long-tail distributed [9].

Thus, finding an optimal α is a crucial challenge in quanti-

zation.

Most of the recent papers use a Straight-Through Esti-

mator (STE) [1] to help jointly train the clipping threshold

and weights. STE is used to estimate the gradient of α for

back propagation:

∂W̃

∂α
=

{

∂⌊W ,α⌉
∂α

= sign(W ) if |W | > α

0 if |W | ≤ α
(4)

It is clear that the clipped weights are not contributing to the

gradient. Thus, the estimation is not accurate here. There-

fore, AOPT [23] proposed the following clipping function:

W̃ = α
∏

Q(1,b)⌊
W

α
, 1⌉, (5)

which scales the weights into range [−1, 1] then scales them

back after projection. The estimated gradient is, therefore,

changed to

∂W̃

∂α
=

{

sign(W ) if |W | > α
∏

Q(1,b)
W

α
− W

α
if |W | ≤ α

(6)

Additive Power of Two Unlike uniform quantization,

[23] defines the quantization levels as a set of sums of mul-

tiple power-of-two terms, as shown below:

QAPoT (α, kn) = γ × {

n−1
∑

i=0

pi},

where pi ∈ {0,
1

2i
,

1

2i+n
, ...,

1

2i+(2k−2)n
}

(7)

where k is a hyper parameter that defines base bit-width,

and n is the number of additive terms. If the bit-width is

b, n can be calculated as n = b
k

. Finally, γ is a scaling

coefficient to guarantee the maximum level equals α

These quantization levels will project the values non-

uniformly and enable more levels near 0 which is the cen-

ter of the weights after clipping. Since the distribution of

the weights of convolutional layers is long-tailed and bell-

shaped [9]. This will give us the ability to have more reso-

lution around the center.

4. Experiments & Analysis

We validate our method with ResNet18 [6], ResNet-20,

ResNet-56 [12] and MobileNet-V2 [31] on CIFAR-10 and

CIFAR-100 [21] datasets. We also evaluate ResNet18 on

ImageNet-ILSVRC2012 [30]. For our method, we start our

training by setting the weights and activations of all the con-

volutional layers to a 4 bit-width representation for CIFAR

and 5 bit-width for ImageNet. The first and last layer, how-

ever, is kept at 8 bit to balance the accuracy drop and hard-

ware overhead as a common practice in quantization papers

[?, ?, ?]. The minimum bit lengths of weights and activa-

tions are set to 1 and 2, respectively, following [38] which

shows that increasing bit-width of activation from 1-bit to

2-bit leads to a better accuracy-efficiency trade-off. For CI-

FAR, the number of fine-tuning epochs is 300 with batch

size=128. The learning rate is initialized with 0.1 and is di-

vided by 10 at 150 and 225 epoch. For ImageNet, the num-

ber of fine-tuning epochs is 120 with batch size=256. The

initial learning rate is set to 0.01 and decays by 10 times ev-

ery 30 epochs. We did not use quantization-aware training

[17] but the clipping threshold α is trainable and is learned

during the training process.

4.1. CIFAR

Imprinting Evolution We first show the layer rank evo-

lution using imprinting as a criterion. Figure 6 shows sam-

pled iterations from different stages in the search loop to

select bit length for ResNet-20 on CIFAR-10. The x-axis



Algorithm 1 Pipeline for bit-selection

Input: initial bit length configuration of all convolutional

layers Bstart, minimum bit length configuration of all con-

volutional layers Bend , number of convolutional layers K

Output: bit configuration for all convolutional layers B

1: Calculate maximum total bit-length B̂max =
∑K

i=0 bi , bi ∈ Bstart

2: Calculate minimum total bit-length B̂min =
∑K

i=0 bi , bi ∈ Bend

3: Calculate maximum of iterations needed Nmax =
B̂max − B̂min + 1

4: Initialize the configuration to use Bcurrent = Bstart

5: for iteration N = 1, 2, . . . , Nmax do

6: With Bcurrent, use imprinting with quantization to

get the estimated accuracy of each convolutional layer,

Acc = {acc1, acc2, . . . , accK}
7: Find the difference between each layer and its pre-

vious layer, diff = {‖acci − acci−1‖ |∀i ∈ [2,K −
1], acci ∈ Acc}

8: Find the index of the minimum difference, idx =
argmin(diff))

9: Record the configuration as BN

10: Record the accuracy of the last layer as AccN
11: Update the configuration Bcurrent by setting

bidx = bidx − 1
12: end for

13: Choose the best configuration B = BN where AccN =
max({Acci|∀i ∈ [1, Nmax]})

shows the type of the convolutional layers and the y-axis

represents the estimated accuracy obtained through imprint-

ing. The first and last layers are set to 8 bits and will not be

selected to change their bit length for the entire selection

process. Figure 6 shows that the second layer of each block

will usually bring the accuracy down which is also observed

in [7]. This can be attributed to the fact that the second layer

in ResNet block heavily acts as a residual to the identity

path so accuracy using its output alone is not meaningful.

In the first step, as shown in Figure 6a, the second layer

of the 8th block, conv8.2, has the smallest difference from

the previous layer. Therefore, conv8.2 will be selected to

be 1 bit smaller, which is 3 bits. After 7 iterations (Figure

6b), conv8.2 is selected again, which sets its configuration

to 2 bits. Around 20 iterations later, conv5.1 will be se-

lected as shown in Figure 6c, leading to a bit length of 2.

This process continues until we meet the target average bit

length requirement. The final layer’s accuracy of each iter-

ation will be recorded as a measurement of the performance

of that bit-length configuration. The configuration with the

best final-layer accuracy within a certain average bit length

range is selected as the final configuration. The overall ac-

curacy from one iteration to the next drops because there is

no fine-tuning between the iterations. Adding a small fine-

tuning step between the iterations can help to maintain a

similar level of accuracy (see Figure 7). However, since the

final fine-tuning result after using such bit-selection with

fine-tuning does not improve much, we didn’t include it in

our algorithm.

Different quantization With this selection method, we

conduct experiments using different quantization methods

to show the applicability of our method to different quanti-

zation methods. We apply fixed-precision quantization re-

sults for Uniform, Power of Two, Additive Power of Two

(APoT) quantization methods, with bit-width set to 4, 3, and

2. Then we apply our method to each of these methods to

find the best mixed-precision configuration whose average

bit length is in-between 4, 3, and 2 bits. These experiments

are evaluated using ResNet-20 on CIFAR-10. The final

bit-length configuration is shown in Figure 4. To compare

to more state-of-the-art methods, we also included results

for PACT and ZeroQ [2] as well as the results reported in

[33] for the Differential Quantization (DQ)[33] and Trained

Quantization Threshold(TQT)[18] methods. These results

are shown in Table 1. PACT[3] uses uniform quantiza-

tion. Comparing to our method with uniform quantization,

PACT is outperformed. ZeroQ [2] achieves better accuracy

than our method on a similar model size but the average

bit length for the activation is also higher than ours. Com-

paring to DQ [33] and TQT [18], we are able to maintain

a comparable level of accuracy with a similar weight size

with ResNet-20 on CIFAR-10. We can also see that as the

average bit length gets smaller, the accuracy is not hurt sig-

nificantly. One huge advantage of our method compared

to APoT [23], is that, instead of using the fine-tuned pre-

trained higher precision model as a starting point to train a

lower bit configuration, our approach does not require such

a high amount of fine-tuning epochs to reach a low bit con-

figuration and smaller model size. It is worth mentioning

that in some cases the model size can be larger even if the bit

length for weights and activations are smaller. The reason is

that these bit lengths are average values of all convolutional

layers and some layers are much more compressed than in

our mixed-precision quantized model than their counterpart

fixed-precision quantized models.

We also evaluate our method with APoT quantization on

different models. Results of CIFAR-10 and CIFAR-100 are

shown in Table2 and 3 respectively. From the table, we can

see that we can achieve results similar to APoT[23] on most

of the ResNet models, but with less average bit length and

model size. We have a larger accuracy drop for MobileNet-

V2 compared to APoT[23]. However, we are still able to

produce some mixed-precision settings with less model size

but higher accuracy than APoT.



Method Weight Activation Size (MB) Accuracy Epoch

PACT [3] 4 4 - 91.3 -

APoT [23] 4 4 0.14 92.45 300

PoT 4 4 0.14 91.85 300

Uniform 4 4 0.14 92.86 300

ZeroQ [2] learned 8 0.13 93.16 -

Ours(APoT) 3.85 3.85 0.13 92.82 300

Ours(Uniform) 3.1 3.3 0.12 92.04 300

Ours(PoT) 3.3 3.4 0.11 91.37 300

PACT [3] 3 3 - 91.1 -

Ours(Uniform) 2.8 3.15 0.11 91.87 300

APoT [23] 3 3 0.1 92.49 600

PoT 3 3 0.1 91.78 600

Uniform 3 3 0.1 92.36 600

Ours(PoT) 2.8 3 0.1 91.29 300

Ours(APoT) 2.3 2.7 0.1 91.65 300

PACT [3] 2 2 - 89.7 -

DQ(Uniform) [33] learned 4 0.07 91.42 160

DQ(POT) [33] learned 4 0.07 88.77 160

APoT[23] 2 2 0.07 90.96 900

PoT 2 2 0.07 91.14 900

Uniform 2 2 0.07 91.06 900

Ours(PoT) 1.7 2.4 0.07 90.28 300

TQT (Uniform) [18] 2.3 4 0.065 90.83 160

TQT (POT) [18] 2.3 4 0.065 88.71 160

Ours(APoT) 1.6 2.4 0.06 90.64 300

Ours(Uniform) 1.5 2.3 0.06 90.04 300

Table 1: Comparing different quantization methods with

ResNet20 on CIFAR-10
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Figure 3: Accuracy approximation using imprinting. The

model used is ResNet20 on CIFAR-10

4.2. ImageNet

Table 5 shows the result of ResNet-18 on ImangeNet.

We compare our result to Pact[3] and BitPruning[27]. Our

method outperforms the mixed quantization method Bit-

Pruning and the fixed quantization method PACT on a sim-

ilar configuration. Although we achieve comparable accu-

racy to APoT, we perform quantization in constant time re-

gardless of the budget constrain. Unlike APoT, which ap-

Model Method Weights Activations Accuracy Size (MB) Epoch

ResNet18

Baseline 32 32 94.97 44.61 300

APoT 4 4 94.57 5.62 300

Ours 3.07 4.35 94.11 4.87 300

Ours 2.7 3.11 94.02 4.79 300

APoT 3 3 94.13 4.23 600

Ours 1.96 2.55 93.42 2.95 300

APoT 2 2 93.22 2.84 900

ResNet20

Baseline 32 32 92.96 1.04 300

APoT 4 4 92.45 0.14 300

Ours 3.85 3.85 92.82 0.13 300

APoT 3 3 92.49 0.1 600

Ours 2.3 2.7 91.65 0.1 300

APoT 2 2 90.96 0.07 900

Ours 1.65 2.4 90.64 0.07 300

ResNet56

Baseline 32 32 94.46 3.31 300

APoT 4 4 93.93 0.42 300

Ours 3.37 3.42 93.74 0.32 300

APoT 3 3 93.77 0.32 600

APoT 2 2 93.05 0.21 900

Ours 2.37 2.75 92.89 0.2 300

Ours 1.82 2.42 92.22 0.16 300

MobileNetV2

Baseline 32 32 94.24 8.7 300

APoT 4 4 89.99 1.19 300

APoT 3 3 83.85 0.92 600

Ours 3.32 3.39 84.82 0.87 300

APoT 2 2 69.79 0.66 900

Ours 2.48 2.83 74.42 0.63 300

Ours 1.32 2.14 63.92 0.55 300

Table 2: Comparing different Models (CIFAR-10)

Model Method Weights Activations Accuracy Size (MB) Epoch

ResNet18

Baseline 32 32 78.07 44.79 300

APoT 4 4 77.75 5.8 300

Ours 3.03 3.22 77.42 4.72 300

APoT 3 3 76.11 4.41 600

Ours 2.67 3.04 76.01 4.38 300

APoT 2 2 71.7 3.01 900

Ours 1.29 2.18 73.34 1.8 300

ResNet20

Baseline 32 32 66.93 1.09 300

APoT 4 4 66.95 0.16 300

Ours 3.8 3.8 67.9 0.15 300

APoT 3 3 66.98 0.13 600

Ours 2.3 2.75 66.42 0.12 300

APoT 2 2 66.42 0.09 900

Ours 1.8 2.45 64.25 0.09 300

ResNet56

Baseline 32 32 94.46 3.27 300

APoT 4 4 93.93 0.42 300

Ours 3.37 3.42 93.74 0.32 300

APoT 3 3 93.77 0.32 600

APoT 2 2 93.05 0.21 900

Ours 2.37 2.75 92.89 0.2 300

Ours 1.82 2.42 92.22 0.16 300

MobileNetV2

Baseline 32 32 75.58 9.13 300

APoT 4 4 75.2 1.63 300

Ours 3.94 3.94 75.21 1.62 300

APoT 3 3 74.14 1.36 600

APoT 2 2 67.4 1.09 900

Ours 2.19 2.69 71.24 1.01 300

Ours 1.71 2.37 62.9 1 300

Table 3: Comparing different Models (CIFAR-100)

plies an iterative process where each fine-tuned model is

used as a starting point for the next bit-width configuration.

This means training time grows linearly as a lower budget

is targeted.
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Figure 5: Accuracy approximation using imprinting. The

model used is ResNet20 on CIFAR-10

4.3. Ablation Study

4.3.1 Imprinting vs Statistical criteria

Our bit length selection with the imprinting method is an

efficient way to estimate layer importance based on accu-

racy. We also experimented with other statistical criteria for

layer importance estimation such as ℓ2 norm and variance.

The norm of a layer is calculated by taking the mean value

of the norm across the last two dimensions of the weights.

For each criterion, similar to imprinting, we rank the layers

based on that criteria, and then the selected layer is quan-

tized. However, as statistical criteria are model-based, we

perform a short-term fine-tuning for these criteria. We ob-

served that fine-tuning for one epoch does not produce an

accurate representation of the ranking of the different con-

Criterion Weights Activations Accuracy Size (MB) Epochs

max variance 3.9 3.9 92.78 0.14 460

norm 3.9 3.9 92.66 0.14 460

qt norm 3.8 3.8 92.58 0.14 460

Imprinting 3.85 3.85 92.82 0.13 300

min variance 3.8 3.8 92.68 0.13 460

qt norm 2.85 2.85 92.25 0.13 620

max variance 2.9 2.9 91.77 0.13 620

Imprinting 2.3 2.7 91.65 0.1 300

norm 2.95 2.95 92.16 0.09 620

min variance 2.9 2.35 91.99 0.07 620

qt norm 1.85 2.8 90.82 0.09 780

max variance 1.95 2.6 90.69 0.07 780

Imprinting 1.65 2.4 90.64 0.07 300

norm 1.95 2.2 91.09 0.06 780

min variance 1.9 2.35 90.73 0.06 780

Table 4: Different bit selection criteria with ResNet-20 on

CIFAR-10. The quantization method used is APoT[23].

”norm”, ”min variance” and ”max variance” are the aver-

age statistics of full precision weights, whereas ”qt norm”

is the average norm of quantized weights.

figurations. To produce the best results of these criteria, we

have to fine-tune the model for a couple of epochs in each

iteration of the bit-length selection process. For this experi-

ment, we find that 8 epochs of fine-tuning are enough to ac-

curately represent the weights. The model used is ResNet-

20 on CIFAR-10. From Table 4, it is shown that the effect of

the two criteria is quite similar. However, as the imprinting

method is one-shot and the statistical criteria require fine-

tuning for a couple of epochs each selection, the imprinting

method is more efficient in terms of the overall time.

5. Conclusion

In this paper, we have introduced a bit-length selection

method to identify and rank the importance of each convo-

lutional layer by using one-shot imprinting. This method
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(b) An iteration from middle stage. The sec-
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Figure 6: Evolution of layer ranking in iterative imprinting. The model used is ResNet20 on CIFAR-10 dataset.
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(c) An iteration from late stage. The sec-

ond convolutional layer in the 6th block for

ResNet20 will reduce its bitwidth by 1

Figure 7: Evolution of layer ranking in iterative imprinting. We added a fine-tuning of 8 epochs between interations compared

to Figure 6. The model used is ResNet20 on CIFAR-10 dataset.

Method Weights Activations Accuracy

PACT [3] 5 5 69.8

APoT 5 5 70.75

Ours(APoT) 4.38 4.38 70.59

PACT [3] 4 4 69.2

APoT 4 4 70.74

Ours(APoT) 3.55 3.55 70.12

BitPruning [27] 3.38 4.14 69.19

PACT [3] 3 3 68.1

APoT 3 3 69.79

Ours(APoT) 2.72 2.72 69.84

APoT 2 2 66.46

Table 5: Results for ResNet18 on Imagenet. We

compared our results with the fixed-precision methods

PACT[3] and APoT[23], as well as mixed-precision method

BitPruning[27].

gives us the ability to convert any fixed-precision quantiza-

tion method into mixed-precision, which usually produces

neural network models with smaller model sizes. The use

of imprinting also reduces the training epochs required to

reach a relatively low average bit length. We have acquired

comparable results on CIFAR-10, CIFAR-100, and Ima-

geNet, compared to APoT. In future work, we want to in-

vestigate the use of different search methods in comparison

to the proposed greedy approach.
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