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Abstract 

Despite significant recent developments, visual assistance 

systems are still severely constrained by sensor 

capabilities, form factor, battery power consumption, 

computational resources and the use of traditional 

computer vision algorithms. Current visual assistance 

systems cannot adequately perform complex computer 

vision tasks that entail deep learning. We present the design 

and implementation of a novel visual assistance system that 

employs deep learning and point cloud processing to 

perform advanced perception tasks on a cost-effective, low-

power mobile computing platform.  The proposed system 

design circumvents the need for expensive, power-intensive 

Graphical Processing Unit (GPU)-based hardware 

required by most deep learning algorithms for real-time 

inference by employing instead edge Artificial Intelligence 

(AI) accelerators such as the Neural Compute Stick-2 

(NCS2), model optimization techniques such as OpenVINO, 

and TensorFlow Lite, and smart depth sensors such as 

OpenCV AI Kit-Depth (OAK-D). Critical system design 

challenges such as training data collection, real-time 

capability, computational efficiency, power consumption, 

portability and reliability are addressed. The proposed 

system includes more advanced functionality than existing 

systems such as assessment of traffic conditions and 

detection and localization of hanging obstacles, 

crosswalks, moving obstacles and sudden elevation 

changes. The proposed system design incorporates an AI-

based voice interface that allows for user-friendly 

interaction and control and is shown to realize a simple, 

cost-effective, power-efficient, portable and unobtrusive 

visual assistance device.  

Keywords: Edge Artificial Intelligence (AI), Mobile 

Computing, Visual Assistance Device, Deep Learning 

1. Introduction 

Visual impairment has been a global issue for several 

decades. According to a report published by the World 

Health Organization titled “Global Data on Visual 

Impairments 2010”, of an estimated 285 million visually 

impaired people globally in 2010, 246 million suffered from 

low levels of vision and 39 million were completely blind 

[1]. It was estimated that 65% of the visually impaired and 

82% of the blind were 50 years of age or older. The major 

causes for visual impairment were noted to be uncorrected 

refractive errors (43%) and presence of cataract (33%) [1]. 

The causes for blindness included cataract (51%), glaucoma 

(8%), age-related macular degeneration (5%), childhood 

blindness and corneal opacities (4%), and undetermined 

causes (21%) [1]. In the years between 1990 and 2015 there 

has been considerable improvement globally in the relative 

percentage of people with visual impairment (from 4.58% 

to 3.38%), considering a 38% increase in the overall world 

population and near doubling of the population of adults 50 

years and older [2], [3], [4]. Increased public awareness, 

affordable eye health care services and decline in poverty 

levels are among the key factors for this positive 

development. However, there has been a significant 

increase in the number of visually impaired people on 

account of the steadily increasing population, especially the 

older population [2], [3], [4]. By 2030, there are estimated 

to be 385 million visually impaired people globally, of 

which 330 million will suffer from low levels of vision and 

55 million will be legally blind [2].  

Common challenges faced by visually impaired people 

include dependency on others, unemployment, reduced 

social interactions, difficulty reading, writing, performing 

daily activities, transportation, medication handling, and 

operating devices such as phones and laptops, anxiety in 

crowded areas, ambulatory injuries and victimization by 

seemingly overly helpful individuals [5], [6], [7], [8], [9]. 

Specifically, while navigating outdoors visually impaired 

people are unable to accurately assess the traffic, sidewalk 

and road conditions. Guide dogs, walking canes and Global 

Positioning System (GPS)-enabled devices are commonly 

employed to deal with these situations. While guide dogs 

can detect obstacles, their communication methods with 

human dependents are often unclear. Walking canes are 

extremely effective in spotting ground-level anomalies; 

however, their use entails constant probing, ineffective in 

detecting overhanging obstacles like tree branches, open 

windows or wires. GPS-enabled devices can help with 

routing but not with obstacle detection. An advanced 

Artificial Intelligence (AI)-based perception system can be 

deemed to be the best means of assisting the visually 

impaired by providing a comprehensive, rich understanding 

of the environment and enabling safe navigation. 

However, developing an advanced AI-based perception 

system for visual assistance is far from trivial. Accurate 



modelling of outdoor environments entails comprehensive 

training of deep learning models, which is a highly data-

intensive process that requires powerful Graphical 

Processing Unit (GPU)-based hardware for real-time 

inference. High-performance GPUs also contribute to an 

unreasonable form factor, high battery power consumption 

and high cost resulting in a physical setup that is heavy, 

expensive, obtrusive and not user-friendly.  

In this paper, we propose a computer vision-based 

visual assistance system to overcome these limitations 

using edge AI accelerator devices such as the Intel’s Neural 

Compute Stick-2 (NCS2) in conjunction with model 

conversion and optimization techniques such as 

quantization using OpenVINO and TensorFlow Lite.  We 

also employ a state-of-the-art OpenCV AI Kit-Depth (OAK-

D) sensor that provides RGB images along with depth 

information using stereo vision. More importantly, the 

OAK-D sensor has an inbuilt on-chip AI processor, i.e., the 

Intel MyriadX, capable of running inference models on the 

captured video data before transmitting the video frames to 

the host machine. We also leverage existing pretrained 

Advanced Driver Assistance System (ADAS) models used 

in autonomous vehicles to perform complex perception 

tasks such as the detection of roads, sky, crosswalk, curbs, 

cars and vegetation amongst other common object classes. 

As a result, we have developed a visual assistance system 

with a simple form factor that is cost effective, portable, and 

almost unnoticeable as an assistive device. The proposed 

system design shows how deep learning algorithms can be 

efficiently incorporated within computer vision-based 

visual assistance systems. More importantly, through this 

project we hope to contribute to the quality of life of 

visually impaired people by increasing their involvement in 

and enjoyment of daily activities. 

The remainder of this paper is organized as follows: we 

discuss related work and similar projects in Section 2; in 

Section 3 we detail the design of the proposed visual 

assistance system and the associated deep learning 

approaches; in Section 4, we describe the hardware and 

physical setup of the proposed system and in Section 5, we 

present the performance evaluation results of the proposed 

system. Finally, we conclude the paper in Section 6 and 

present an outline for future enhancements and extensions 

to this project. 

2. Related Work 

Visual assistance devices are commonly classified as 

Electronic Travel Aids (ETAs) that provide information 

about the environment through a convenient user interface. 

Various approaches have been proposed in the literature for 

the design of visual assistance systems based on the 

underlying sensory systems, hardware configuration, 

physical setup, data inference techniques and user interface. 

The most used sensor types include ultrasound, sonar, laser, 

RGB CCD camera, infrared (IR) camera and GPS. Some 

approaches convert the input sensor data to other modalities 

[11], [12]. For the user interface, audio transmitted via 

earphones or hand gloves equipped with buzzers or tiny 

vibrating actuators are typically used. 

Early visual assistance system designs were based on 

projecting a camera image onto the human skin using 

vibrating motors [10] and sensor modality conversion, 

where ultrasonic waves were converted to the audible range 

and the converted audio was used to understand the 

environment [11], [12]. Although the vOIce system [12], 

where visual image data are converted to human audible 

frequency, showed promising results these systems were 

typically slow, physically uncomfortable, and obtrusive, 

provided only very coarse information about the 

surroundings and required extensive user training to be used 

effectively. Early visual assistance systems based on GPS 

data [13], focused primarily on navigation (i.e., neither 

collision avoidance nor obstacle detection was performed) 

and often suffered from signal loss, especially in indoor 

environments and urban areas. Visual assistance systems 

based on RFID technology provided good localization in 

indoor environments wherein RFID tags were physically 

placed [14]. Since RFID sensing methods provide a range 

rather than an accurate geolocation of the tags, the resulting 

localization errors were unacceptable in certain situations.  

In the past few decades, as the sensor and computing 

technologies have evolved remarkably, so have visual 

assistance systems. NavBelt [15] is a real-time visual 

assistance system that uses eight ultrasonic sensors 

mounted on a waist belt worn by the user with a computing 

unit located in a backpack. GuideCane [16] is a wheel-

based cane with an ultrasonic sensor attached to a main 

processing unit that is mounted on the cane. Bousbia-Salah 

et al. [17] describe a visual assistance system that uses two 

ultrasonic sensors strapped onto the user’s shoulders 

accompanied by an accelerometer, with a foot switch for 

error control.  The CyARM system [18] consists of a 

handheld device with two ultrasonic sensors to detect 

obstacles, coupled with a wire-enabled user interface 

mounted through a waist belt. While ultrasonic sensors are 

low-cost and fast, they fail to provide accurate geometric 

descriptions of the obstacles encountered and are prone to 

errors caused by noise and signal reflections. Extensive 

reviews of ETAs and the challenges faced in their design 

and deployment can be found in [19] and [20]. 

Recently, promising advancements in the design of 

ETAs have been made using computer vision-based 

approaches. Tapu et al. [21] use a smartphone camera 

mounted on a chest harness to detect moving obstacles 

using the multiscale Lucas-Kanade feature tracking 

algorithm. Object detection is performed by classifying a 

Bag of Visual Words (BoVW) and Histogram of Oriented 

Gradients (HOG) features using linear classifiers such as 

the Support Vector Machine (SVM) and image ranking 



methods. Jabnoun et al. [22] propose an ETA that uses SIFT 

feature-based object detection on video streams. These 

ETAs employ traditional computer vision methods for 

object detection that are not robust in real-world 

environments. Moreover, they lack 3D information, in that 

the user does not know how far away the obstacles are. 

The Electron-Neural Vision System (ENVS) uses 

eyewear-based stereo cameras to obtain 3D descriptions of 

the environment from depth images [23]. The system is also 

equipped with a GPS, portable computer, Transcranial 

Electrical Nervous Stimulation (TENS) unit and a TENS-

based glove as the user interface. Rodriguez et al. [24] 

propose a stereo vision-based system where plane 

segmentation is performed to detect ground pixels and a 

polar grid notation used to detect obstacles within depth 

images. The stereo cameras are mounted in the chest region, 

coupled with an audio-based user interface. Johnson and 

Higgins [25] proposed a stereo vision-based scheme, with 

stereo cameras mounted in the hip region on a tactile belt 

with 14 vibrating motors worn by the user, that also serves 

as a user interface. While the above systems provide 

advanced, accurate 3D perception of the environment and 

have robust, reliable obstacle detection capabilities by 

exploiting stereoscopic vision, they lack the scene 

understanding capabilities needed for assessment of traffic, 

road and sidewalk conditions, and advanced deep learning-

based perception capabilities, such as image classification, 

objection detection and semantic image segmentation. 

There has been significant recent progress in the design 

and development of visual assistance systems that derive a 

richer understanding of the user’s environment. State-of-

the-art visual assistance systems are designed to use a 

variety of sensor types including conventional CCD RGB 

cameras, stereoscopic cameras, GPS-enabled devices, and 

ultrasound and RFID sensors. Several systems incorporate 

sensor modality conversion techniques in conjunction with 

an intuitive user-friendly interface. Existing systems that 

use camera-based sensors typically employ traditional 

computer vision algorithms on predefined image features 

such as SIFT, HOG and BoVW, to mention a few, that are 

observed to perform adequately in constrained, well-

defined environments but fail to generalize to a real-world 

settings characterized by greater variability. Also, existing 

camera-based systems do not adequately tackle advanced 

perception tasks such as assessment of traffic conditions 

and elevation changes (e.g., curb detection), understanding 

of traffic signs, detection of crosswalks, etc. Several 

conventional camera-based systems have a bulky, obtrusive 

physical setup, which is not user-friendly and may draw 

unwarranted attention in public spaces. Consequently, there 

is a need for visual assistance systems that execute deep 

learning-based inference algorithms for advanced 

perception tasks, while preserving a simple, unobtrusive 

form factor and consuming sufficiently low battery power. 

This would ensure user mobility and avoid unwarranted 

attention during user ambulation in public spaces. 

In this paper we propose a novel and practical design for 

a visual assistance system using a smart stereo vision sensor 

called OAK-D and edge AI devices that can overcome the 

limitations of existing approaches by using edge AI 

technology. We propose a visual assistance system with 

deep learning capabilities to perform advanced computer 

vision tasks, such as object detection and semantic image 

segmentation in real time using edge AI devices such as the 

Intel’s NCS2. The proposed system is designed to perform 

sophisticated scene understanding tasks such as detection of 

roads, curb entry/exit locations, crosswalks, assessment of 

traffic conditions by detecting traffic lights and congestion, 

reading of traffic signs and street names using state-of-the-

art computer vision and deep learning methods. The 

proposed system can perform 3D point cloud processing to 

detect elevation changes at curb entry/exit locations.  

The proposed system is equipped with a GPS-enabled 

device for geolocalization that can save custom locations 

for convenience. The GPS coordinates along with a 

snapshot of the current location can be shared with 

preferred contacts over a short message service (SMS) if the 

user needs emergency assistance. A user-friendly, 

customizable, AI-based interactive voice interface 

equipped with speech recognition provides the user periodic 

updates about the environment. The physical setup consists 

of a chest-mounted OAK-D sensor placed inside a vest and 

connected to a computing unit placed in a small backpack. 

Wireless Bluetooth earphones with a microphone are used 

for voice-based interactions. The setup is unobtrusive and 

not noticeable as an assistive system. Interviews were 

conducted with visually impaired people, including those 

from non-profit organizations such as LightHouse for the 

Blind Inc., to comprehend and catalog the common daily 

challenges they face. We prioritized and ranked the 

identified challenges based on these interviews and 

addressed them in our design. 

3. System Design and Methods 

The AI software system is divided primarily into the 

perception module and user interface as depicted in Fig. 1. 

The perception module is further subdivided into three 

major submodules, i.e., the primitive perception, advanced 

perception and localizer submodules. The primitive 

perception submodule deals primarily with obstacle 

presence detection using depth information while the 

advanced perception submodule provides the user with a 

more comprehensive description of the environment using 

complex computer vision algorithms for object detection, 

semantic image segmentation and image classification. The 

localizer submodule is used to geolocate the user within the 

environment. The user interface module includes the speech 

recognition, text-to-speech and SMS submodules. 



 
Figure 1: System Design Block Diagram. Each block contains its task 

description and hardware requirements. Blocks with cyclic arrows are 

executed in a continuous loop, others are triggered by external events 

like voice control.  

3.1 Primitive perception  

In the primitive perception submodule, obstacles within 

a certain range are detected and the user updated 

sufficiently in advance to avoid collisions. It is designed to 

be simple and fast, as the priority is to detect obstacles 

rather than understand them using depth data from the 

OAK-D sensor. The raw depth frame is divided into 

multiple grids and grid positions are chosen to cover various 

locations around the user (right, left, center, top) to handle 

various scenarios including hanging obstacles. The grid 

depth data is converted to a point cloud format for further 

processing using the right camera’s intrinsic matrix 

obtained via camera calibration. Point cloud processing is 

performed using the Open3D software library. In each grid, 

the number of points within a specified distance (1.5m), 

after noise removal, is computed and if this count exceeds 

a threshold (800 points found to be optimal) the grid is 

marked to contain an obstacle. A cuboid is fitted to the grid 

points to estimate the rough shape of the obstacle. The depth 

data from the OAK-D sensor is not reliable for closer ranges 

(< 0.8m), so the proximity range cannot be reduced further. 

This submodule allows for robust obstacle detection for 

many shapes at various heights including wires, kitchen 

slabs etc. at a high inference rate on the host CPU machine. 

A few sample outputs along with the RGB image and fitted 

cuboids are shown (Figs. 2, 3). The grid positions marked 

with ‘x’ represent obstacles within the proximity range. 

 
(a)                             (b)                           (c)                   

Figure 2: Sensor recognizing a wire from a utility pole. (a) color image (b) 

center grid with detected obstacle (c) cuboid fitted to point cloud in grid 

 
Figure 3: Sensor recognizing tree branches extending onto sidewalk. 

3.2 Advanced perception 

The advanced perception submodule performs 

sophisticated scene understanding tasks such as image 

classification, object detection, semantic image 

segmentation and 3D point cloud processing to extract 

complex perceptual information about the environment. We 

treat the visual assistance system design problem as we 

would the design of self-driving vehicles, requiring reliable 

sensors, large training datasets, the training of complex 

deep learning models with high accuracy and fast inference 

rates. In our design, we leverage techniques and models 

developed in the domain of self-driving vehicles, however, 

we are constrained by cost, computational complexity, 

battery power consumption and physical form factor. We 

propose a solution using edge AI optimization techniques 

that allow us to implement computationally intensive deep 

learning models on small and cheap edge devices. These 

models are further optimized using OpenVINO 

optimization techniques, permitting the execution of 

multiple objection detection, image classification and 

semantic image segmentation models in real time to provide 

accurate visual assistance. Unlike existing systems, our 

solution can detect people, cars, traffic lights, yellow 

pavements that aid the blind, traffic signs such as stop signs, 

and signs denoting sidewalk closures, pedestrian crossings 

and speed limits. Our semantic image segmentation models 

can detect the road, curb and road marking pixels. 

A large collection of datasets was used for training our 

model, including the Google Open Image (GOI) dataset, 

Laboratory for Intelligent and Safe Automobiles (LISA) 

traffic signs dataset, German Traffic Sign Recognition 

Benchmark (GTSRB) dataset, Traffic Cone dataset and 

Cityscapes dataset. We also collected and labelled several 

thousand custom images to create our own dataset for each 

camera position by walking on the sidewalks in the 

downtown and nearby areas of Monrovia, CA at various 

times of the day. Models pretrained on the PASCAL VOC 

dataset from Luxonis’ DepthAI library [26] were also used. 

As the GOI dataset is large, images with class labels 

relevant to our project, i.e., traffic lights, traffic signs and 

street names, were chosen and their labels converted to the 

PASCAL VOC format for training purposes. The GOI 

dataset had some labelling inconsistencies which were 

manually corrected. The custom dataset for detecting object 

classes such as traffic lights, traffic signs, fire hydrants etc. 

includes a total of 599 images, 10% of which are from the 

GOI dataset and other sources. For traffic signs 

classification we use a combination of  the LISA and 

GTRSB datasets and our custom dataset which includes 

~560 images. Fig. 4 shows some sample images collected 

for our custom dataset available at: 

https://drive.google.com/drive/folders/1HgLOO-

HA3YntmjhF0FZvdrJhK-FmV-2C?usp=sharing. 

 
Figure 4: Sample images from our custom dataset 



Common object classes observed while walking on 

sidewalks include pedestrians, dogs, cats, bikes, trees, 

fences, road, cars, motorbikes, bicycles, traffic signs such 

as stop signs and signs denoting sidewalk closures, 

pedestrian crossings and speed limits, traffic lights, traffic 

cones, street names, public trash cans, sign boards etc. 

While some of these classes can be detected using object 

detection models, others require semantic image 

segmentation models. We trained custom object detection 

models and also used existing pretrained models from the 

OpenVINO and TensorFlow model zoos which include 

DepthAI’s SSD PASCAL object detection model, 

OpenVINO’s ADAS models and TensorFlow Lite’s model 

pretrained on the Cityscapes and ADEK20 datasets. 

3.2.1 Detecting Objects 

Apart from DepthAI’s SSD-MobileNet object detection 

model pretrained on the PASCAL VOC dataset, custom 

models were trained to detect traffic-related classes such as 

traffic signs, traffic lights, traffic cones, fire hydrants, 

yellow pavements, crosswalk buttons, public trash cans etc. 

The SSD-MobileNet model [27] was chosen for its 

compactness, speed and single-stage detection capability. 

The model was trained on multiple image resolutions 

ranging from 600�400 pixels to 300�300 pixels for 

300,000 steps with an initial learning rate of 0.0008, decay 

rate of 0.95 and batch size of 24. A training : validation : 

test data split of 70:20:10 was used. Best results were 

obtained on an image resolution of 300�300 pixels with a 

mean average precision (mAP) of 0.62.  

Lightweight models like SSD-MobileNet suffer from 

lack of accuracy resulting in false negatives (FN) (i.e., 

missed detections) and false positives (FP). To reduce the 

FN rate the model threshold was reduced to 0.3, which 

further increased the FP rate mostly for background classes 

such as leaves, sky and distant buildings. The FPs are 

largely suppressed by training another lightweight CNN-

based image classifier with a 

CONV=>RELU=>BN=>POOL layer and 2 sets of 

(CONV=>RELU=>CONV=>RELU)*2=>POOL layers as 

in the TrafficSignNet model (Fig. 5) [28]. The FPs were 

further removed by maintaining detection counts for > 2 

seconds, with detections that occurred for less than a 

threshold count deemed weak detections, and ignored. The 

object detection pipeline block diagram is shown in Fig. 6. 

 
Figure 5: The TrafficSignNet submodule 

 
Figure 6: Object detection pipeline 

 
Figure 7: Object detection model detecting traffic signs, traffic lights, 

road signs, trash can and yellow pavement. 

Table 1: Quality metrics of road segmentation model on the Mighty AI 

dataset (table obtained from openvinotoolkit.org) 

Label IOU ACC 

mean 84.4% 90.1% 

BG 98.6% 99.4% 

Road 95.4% 97.4% 

Curbs 72.7% 83.1% 

Marks 70.8% 80.6% 

IOU=Intersection Over Union; ACC=Accuracy 

 
(a)                                              (b) 

 
(c)                                                 (d) 

Figure 8: (a) Cityscapes semantic image segmentation model OpenVINO 

(b) TFLite ADE20K model (c) Road segmentation model OpenVINO (d) 

TFLite ADE20K Indoor segmentation model. 

 
Figure 9: Road segmentation model failure cases on sidewalk. 

3.2.2 Semantic scene understanding 

Object detection by itself is not adequate for complete 

scene understanding, especially in the case of recognition 

of sidewalks, roads, crosswalks and vegetation. As with 

self-driving vehicles, semantic image segmentation models 

are used for this purpose. Heavyweight models such as the 

UNet and PSPNet are not suitable for this application as 

they require powerful GPUs for real-time inference. The 

popular OpenVINO’s ADAS pretrained semantic image 



segmentation models such as semantic-segmentation-adas-

0001 [29] and road-semantic-segmentation-adas-0001 [30] 

along with TensorFlow Lite's DeepLabv3 MobileNet 

models pretrained on the Cityscapes and ADE20K datasets 

were used instead. The semantic-segmentation-adas-0001 

model produced the best results for outdoor scenarios. 

However, this model (FP16) is constrained by its size and 

cannot be loaded onto either OAK-D or NCS2 but ran at a 

speed of ~2.3 fps on the host CPU. The road-segmentation-

adas-0001 model is relatively smaller and executable on a 

multi-Myriad platform (comprising of OAK-D and NCS2), 

and is trained on 4 classes: road, sidewalk, road markings 

and background with model performance metrics shown in 

Table 1. This model is also used to detect crosswalks at 

intersections. The TensorFlow Lite models were slower 

(~0.4 fps); however, the pretrained ADE20K model yielded 

the best results for indoor scenarios. Also, since the 

pretrained models are often trained on datasets collected in 

a different setting, i.e., while driving with a camera 

mounted on the car, these models sometimes fail to 

differentiate between the road and sidewalk (Fig. 9). Fig. 8 

shows sample prediction outputs from various types of 

semantic image segmentation models. 

3.2.3 Crosswalk detection 

A common approach for road lane detection is to 

perform edge detection followed by the Hough transform to 

detect lanes. While this technique generally works, it 

requires the camera to be mounted on the car providing a 

smooth and contrasting image of the road with lanes. Also, 

only a predetermined subregion of the image is processed 

for lane detection in these methods. In this project, since the 

camera is at varying distances from the road, the road 

texture is enhanced, producing roughly textured and noisy 

images which overwhelm conventional image processing 

routines such as the Canny edge detector and color detector. 

Since we operate in an outdoor setting, most color detection 

methods are unreliable and are observed to perform poorly 

in bright sunlight and in the presence of reflections.  

We performed road marks segmentation using the road-

segmentation-adas-0001 model which provided better 

results for our application than traditional methods as 

shown in Fig. 10. The model predictions are processed 

further for noise removal followed by contour analysis. The 

size and shape of each connected component in the image 

is characterized in terms of its area, convex hull, orientation 

and solidity. The closed contours or blobs that are tall, with 

solidity values > 0.8, and orientation angles between 35o – 

65o and 100o – 140o are chosen to ensure that the user is 

facing the crosswalk line. The sample outputs of the road 

marks segmentation model are shown in Fig. 10. In cases 

where the lines are faded or covered with tire marks, the 

model performance suffers. The chest mounted camera 

provided better results than the hip mounted one probably 

due to the road textures being more prominent in the latter 

case. Currently, the crosswalk detection is performed only 

within a certain spatiotemporal range after detecting stop 

signs to reduce computational complexity. 

 
(a)                      (b)                  (c)                     (d) 

Figure 10: (a) Segmentation results (b) Connected component extraction 

for road markings (c) Noise removal and dilation (d) Contour analysis and 

final detection. 

3.2.4 Elevation change detection 

Failure to detect elevation changes such as when 

entering/exiting a curb, climbing/descending staircases can 

result in serious injuries. 3D point cloud data is typically 

used to estimate elevation. Presently, we are unable to 

estimate the surface normals reliably using OAK-D depth 

data due to its low depth resolution (96 depth levels). 

Consequently, we could not employ traditional point cloud 

processing methods for modelling elevation changes. 

Alternate approaches such as machine learning on depth 

images and semantic image segmentation were employed.  

Common point cloud-based machine learning (ML) 

models such as PointNet require a fixed number of features. 

While a mesh can be sampled to generate a fixed number of 

points, point clouds must be first converted to a mesh which 

is a computationally intensive procedure. Instead, we use an 

ensemble of 2 MiniVGGNet classifiers [31] for color 

images and depth images that are trained for up-curb, down-

curb and flat-surface classes. MiniVGGNet is a miniature 

version of VGGNet that is small, fast and can be used for 

simpler classification problems. A separate dataset 

comprising of ~9000 RGB color and depth images was 

collected in the vicinity of curb areas for this purpose. For 

a training:validation data split of 75:25 on the depth image 

dataset, learning rate of 0.001, batch size of 32 and 50 

epochs, the accuracy obtained was 96%. Similarly, for the 

RGB dataset with a learning rate of 0.001, batch size of 12 

and 50 epochs, the accuracy obtained was 97%. The entire 

dataset (with sample images shown in Fig. 11) is shared at 

https://drive.google.com/drive/folders/1ZpbacfzLHytdh07So

EwzpHpGz0ibIJp0?usp=sharing 

 
Figure 11: Curb dataset for elevation detection 

The MiniVGGNet models were initially trained using 

TensorFlow. On converting them to OpenVINO format we 

observe ~13� boost in inference speed with negligible 

decrease in accuracy. While this ML-based approach 

performs reasonably well, using a traditional point cloud-

based approach may potentially provide more robust 

results, and is planned in our future work. The current 

implementation can also be extended to staircase detection. 



In detecting elevation changes, we observe that moving the 

camera to the waist region produced results comparable to 

those from the chest mounted camera. This suggests that 

elevation change detection could benefit from an additional 

OAK-D camera. Note that an additional camera should not 

affect the system performance as the MiniVGGNet is a 

lightweight model and can be run directly on the OAK-D 

sensor. 

3.2.5 Localization 

A VK-162 G-Mouse USB-enabled GPS is used for 

geolocalization. The user can save common locations such 

as a friend’s apartment, grocery store, gym etc. tagged with 

their preferred names. For the purpose of localization, upon 

the user’s request, the system can read out the saved 

locations within a certain distance. Additionally, the GPS 

coordinates can be shared with known contacts via text-

based SMS service using the Twilio interface. Since an 

SMS service requires an internet connection, we used 

cellular tethering for the internet in our experiments. This 

feature can also capture images to be shared along with the 

GPS coordinates in the SMS text.  

3.3 System User Interface 

Significant attention was paid to providing a 

comfortable, friendly user experience by avoiding 

continuous bombardment of the user with information - a 

common issue with most existing apps. The complete 

system can be controlled using a voice-based interface. To 

reduce the annoyance of trivial messages, most updates are 

provided only upon user request with exceptions of critical 

updates related to user safety. Primitive perception updates 

that indicate a possible collision with an obstacle along with 

significant elevation changes are considered critical. 

Bluetooth-enabled wireless earbuds were used in this 

project. Common text-to-speech software packages such as 

GoogleTTS, Microsoft Speech Engine and TTS-Watson 

require an internet connection. Among the offline packages, 

Festival was observed to perform better than Pyttsx3.  For 

speech recognition, OpenVINO’s pretrained model, CMU’s 

PocketSphinx and the Vosk framework were tested. While 

the trigger-based word recognition in PocketSphinx was 

relatively faster, it resulted in lower speech recognition 

accuracy than OpenVINO. However, the Vosk framework 

was ultimately used, due to higher speech recognition 

accuracy. For predefined words such as the object 

detection/segmentation classes Google’s audio clips were 

downloaded and played using Python’s Playsound package. 

Trigger words are used to trigger system features such as to 

start the system (trigger word: “start”), describing detected 

objects using analog clock-angles (3 to 9 o’clock) in the 

scene (trigger word: “describe”), saving landmarks (trigger 

word: “save location”), listing nearby saved locations 

(trigger word: “locate”) and sending GPS location over 

SMS (trigger word: “send location”). These features are 

overridden if there are critical updates. On trigger word 

“describe”, the detected objects in the scene are listed along 

with their location angles represented in clock notation 

between 3 to 9 o’clock traversed anticlockwise. Speech 

recognition and text-to-speech conversion generally result 

in slow and blocking synchronous function calls. This 

reduces system performance by lowering the inference 

speed and producing unpredictable behavior. Hence the 

user interface stack is made asynchronous and runs in 

parallel along with the perception and localizer stacks. 

4. System Hardware Description 

We propose a simple system that does not entail 

handheld devices such as a cane, laser sensor or a guide dog. 

The system comprises a small backpack to hold a small host 

computing unit (Raspberry Pi, Chromebook or laptop) and 

a battery power unit. An OAK-D sensor (Fig. 12 (a)) is 

mounted in the chest region inside a vest (Fig. 12 (b)). The 

sensor does not have to be at the same location every time 

as there is no calibration involved. The sensor is then 

connected to the computing unit in the backpack (Fig. 13). 

The OAK-D sensor is chosen as it contains a built-in AI 

processing unit allowing most of the computer vison tasks 

to be performed directly on the sensor chip. The inference 

data is collected by the host and updates provided to the user 

via a voice interface using Bluetooth-enabled wireless 

earphones. A USB-enabled GPS device connected to the 

host computing unit is mounted outside, over the backpack. 

The OAK-D sensor is powered by a compact 10000 mAh 

pocket-sized battery pack for up to ~8 hours. A five-year 

old Lenovo Yoga laptop (8GB RAM, Intel i7 processor) is 

used as the host computing unit along with a neural compute 

stick. This setup is convenient to wear, unobtrusive, not 

noticeable as an assistive device and in conformity with a 

majority of user requests resulting from our interviews.  

5. Experimental Evaluation and Results  

We targeted lightweight models such as the SSD 

MobileNet for object detection to ensure higher inference 

rates of ~30fps just on the OAK-D sensor. This allowed us 

to run multiple object detection models simultaneously on 

the CPU, NCS2 and OAK-D, to detect as many object 

classes as possible in real time. Fig. 14 depicts the real-time 

perception performance of our system near a crosswalk 

intersection. Fig.  13 depicts the system performance in the 

context of detection of traffic lights, cars, road markings, 

yellow pavements, bicycles etc. on Myrtle Avenue, in the 

downtown area of Monrovia, CA. 

The traffic signs were classified using TrafficSign Net. 

The model performance is shown in Table 2. The model 

model was trained with a decaying learning rate of 0.0001, 

batch size of 64 and 100 epochs. Popular traffic datasets 

such as LISA and GTSRB were used along with our dataset. 

The detections were mapped to the depth image to compute 

their distances from the user. The TrafficSigNet model, 

after conversion to the OpenVINO format, results in 



inference rates > 60 fps on the OAK-D sensor and ~100 fps 

on the CPU. The SSD-MobileNet model has an inference 

rate of ~30fps. Since OAK-D does not support multi-object 

detection models, the traffic object detection model was run 

on the external NCS2 devices. The overall system with 

primitive perception, object detection models and 

classification models has an inference rate of  ~22fps. 

 
                (a)                          (b) 

Figure 12: (a) OAK-D Sensor (b) OAK-D embedded on the vest. 

 
(a)           (b)                 (c)                             (d)  

Figure 13: Physical setup showing (a) front view – sensors marked with 

black rectangular box (b) side view (c) GPS unit placed over the backpack 
and connected to the computing unit inside. (d) The computing unit 

inside the backpack along with NCS2s. 

  
                   (a)                                        (b)                                     (c)    

Figure 14: Real-time perception performance (a) object detection 

models detecting a stop sign, fire hydrant and car (b) road and curb 

pixels detection using road-segmentation-adas-0001 model (c) depth 

image processing for obstacle detection. 

However, running semantic image segmentation models 

simultaneously along with other models is nontrivial. None 

of the semantic image segmentation models were able to 

run on a single NCS2. The road-segmentation-adas-0001 

semantic image segmentation model is the fastest but 

requires a CPU or multiple NCS2 devices. The entire 

system, comprising this model, the primitive perception and 

object detection pipeline can infer at a satisfactory ~10 fps. 

However, other semantic image segmentation models suffer 

from high computational complexity and present a 

performance bottleneck. Models such as semantic-

segmentation-adas-0001 and DeepLabV3 MobileNet can 

infer at 1.56 fps and 0.42 fps respectively while also 

requiring a host CPU. The performance of the whole system 

suffered upon using these models along with the other 

models. Currently, these heavyweight models are used only 

upon the user’s request and the user is required to remain 

stationary for safety. 

The project source code is available at 

https://github.com/jaggiK/cv_visual_assistance 

 
                     (a)                                    (b) 

Figure 15:  (a) Object detection for traffic lights, bicycles, yellow 

pavements (b) detection of road markings  

Table 2: Traffic sign classifier performance 

Traffic Sign Precision Recall F-1 score 

Pedestrian Crossing 0.99 1.00 0.99 

Sidewalk closed 0.71 1.00 0.83 

Signal ahead 0.99 0.97 0.98 

Slow 1.00 1.00 1.00 

Stop 0.99 0.99 0.99 

Stop Ahead 1.00 0.97 0.98 

6. Conclusions and Future Work 

In this project we developed a novel, comprehensive 

vision system for the visually impaired for indoor and 

outdoor navigation, coupled with scene understanding. The 

system is simple, fashionable, unobtrusive, and not 

noticeable as an assistive device. Common challenges like 

detecting traffic signs, hanging obstacles, crosswalks, 

moving obstacles, elevation changes and geolocalization 

are addressed using advanced perception capabilities, 

implemented on a low-power device. A user-friendly voice 

interface allows users to easily control and interact with the 

system. Following several hours of testing in Monrovia, 

CA, we are confident that this project addresses the most 

common challenges faced by the visually impaired. 

Our future work will explore options to run multiple 

semantic image segmentation models simultaneously at a 

higher inference rate. At the time of this work, the OAK-D 

sensor was a Kickstarter project due to which we were 

unable to obtain multiple sensors. We plan to evaluate 

system performance with multiple OAK-D sensors 

simultaneously. We will also experiment with traditional 

point cloud methods to detect elevation changes using the 

Generation 2 DepthAI module and incorporate robust 

object tracking across frames for more accurate traffic 

analysis  More importantly, based on the insights gained 

from [31], [32], [33], we are confident that in our future 

work we can eliminate completely the need for a laptop, and 

replace it with a mobile device such as Google Pixel 2 and 

a low-power computing edge device such as Nvidia Jetson 

or TX2, making the application extremely mobile.  
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