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Abstract

To unlock video chat for hundreds of millions of peo-

ple hindered by poor connectivity or unaffordable data

costs, we propose to authentically reconstruct faces on the

receiver’s device using facial landmarks extracted at the

sender’s side and transmitted over the network. In this

context, we discuss and evaluate the benefits and disadvan-

tages of several deep adversarial approaches. In particular,

we explore quality and bandwidth trade-offs for approaches

based on static landmarks, dynamic landmarks or segmen-

tation maps. We design a mobile-compatible architecture

based on the first order animation model of Siarohin et al.

In addition, we leverage SPADE blocks to refine results in

important areas such as the eyes and lips. We compress the

networks down to about 3 MB, allowing models to run in

real time on iPhone 8 (CPU). This approach enables video

calling at a few kbits per second, an order of magnitude

lower than currently available alternatives.

1. Introduction

For many smartphone users around the world, video-

calling remains unavailable or unaffordable. These users

are driven out of this fundamental connectivity experience

by the prohibitive cost of data plans or because they de-

pend on outdated technologies and infrastructures. For in-

stance, networks might suffer from congestion, poor cover-

age, power fluctuations and datarate limits – 2G networks

allow for a maximum of 30 kbits/s. However, with cur-

rent technologies, an acceptable video-call quality requires

at least a stable 200 kbits/s connection.

Meanwhile, the research in generative models has now

come to a point where the quality of synthetic faces are

sometimes indistinguishable from real videos [14]. To name

a few, we may cite Deep video portraits [18], X2Face [45],

FSGAN [28], Neural Talking Heads [49], the Bilayer

model [48] and the First Order Model (FOM)[35]. This un-
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Figure 1. We propose to authentically reconstruct faces in real-

time on mobile devices using a stream of compressed facial land-

marks extracted from driving or target frames. The identity of the

sender is transmitted in one shot to the receiver at the beginning

of the call through a reference or source frame. This approach is

compatible with end-to-end encryption (E2EE).

precedented performance can now be exploited to the ben-

efit of higher quality video calls. However, there remain

important challenges to address before generative models

can offer ultra-low data-rate video-calling. In particular, to

unlock duplex video-calling for users with last-mile connec-

tivity issues or limited data plans, models need to be light

and fast enough to run on mobile handsets. In addition, to

deliver a more seamless and authentic experience, the mod-

els should adapt to the current appearance of the user with-

out additional training. In this work, we focus on identify-

ing the best generative strategy compatible with real-time

inference on device. We discuss the following approaches:

• The Bilayer model [48], where the face is recon-

structed from a stream of landmarks and a reference

frame sent once.

• The SegFace model, a novel architecture based on

SPADE [30] which requires sending an initial face em-

bedding and a stream of semantic segmentation maps.

• The FOM [35], which requires sending ten landmarks,

their related motion matrices, and a reference frame.
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Analysing the FOM in depth, we observe that only send-

ing the landmarks compressed with Huffman coding (no

motion matrices) achieves sufficient quality and leads to

an outstanding data-rate reduction. Compared to other ap-

proaches, this model allows for good identity and back-

ground preservation. Our contributions are the following:

• We provide the first comparative analysis of leading

generative approaches for the specific use-case of en-

abling ultra-low data-rate video calling.

• We develop a strong baseline leveraging the SPADE

architecture and segmentation maps.

• We propose a novel warping based approach building

on FOM and leveraging SPADE blocks to refine im-

portant face attributes such as eyes and lips.

• While previous approaches were tested on specialized

hardware (servers, mobile GPU), we provide first real-

time results on mobile CPU.

In parallel to our work [29] were recently developed two

generative approaches to video chat compression [44], that

are like us both building on the FOM approach, but present

important differences: First, Maxine [1, 44] is computation-

ally intensive, employing highly dimensional feature defor-

mations (128× 128× 32× 64, 128 times larger than ours).

Consequently, the approach cannot be ran on device like

ours, creating a problem of two-way applicability in a real

low bandwidth use-case: The landmarks of a person A with

a poor connection can be compressed and reconstructed on

server allowing a receiver to see the video, but the person A

will not be able to download a reconstructed video from the

receiver: the bandwidth savings are limited to upload sav-

ings. Second, [19] applies the FOM as is, and suggests an

algorithm to optimally select frames to compress, which is

an orthogonal direction to our work.

2. Related work

2.1. Face compression before deep learning

The idea of face-specific video compression is not novel

and appeared with classical computer vision tools, for in-

stance morphings using Delaunay triangulations, Eigen-

faces, or 3D models. The first reference we found on the

topic is the work of Lopez et al. [25] that proposes to en-

code only pose parameters of a 3D head model, which is

projected to reproduce a video sequence.

Previous work [21] use PCA to model the current frame

as a linear combination of three basis frames sent prior to

the call. The authors rely on known control points on the

face boundaries and landmarks. The principal drawback of

the approach is the presence of triangulation artefacts, even

when a large number of control points is used. The achieved

bandwidth is 1500 bits/frame. Similar usage of Eigenspaces

are suggested in [36, 38, 39]. Among these proposals using

Eigenspaces, one claims an extremely low bit-rates achieve-

ment of 100 bits/s [37]. However the proposed solution is

hard to scale, as it requires storing personal galleries of face

images to reconstruct videos at the receiver side.

2.2. Deep compression

The emergence of Generative Adversarial Networks

(GANs) stimulated the application of deep learning to video

compression. Super-resolution has been an active field of

research leveraging GANs for image and video compres-

sion. There have been a number of research works tack-

ling this problem [5, 9, 40]. However, for compressing

faces, these reconstructions methods are limited to restor-

ing personal traits from low level images and only work

well for limited upscaling factors (around 2× in resolution).

The power of GANs for lossy image compression started

to be demonstrated in the Generative compression work

of Santukar et al. [34], using an auto-encoder combined

with adversarial training. The state-of-the-art has since im-

proved with the Extreme Learned Image Compression work

of Agustsson et al. [2], thanks to a multi-scale architecture

and the usage of semantic segmentation information, among

other tricks used by the authors. The work of Liu et al. [23]

surveys deep learning-based approaches for general purpose

video compression. Among them, Learned Video Compres-

sion [31] demonstrates for the first time the superior capac-

ity of an end-to-end machine learning approach over stan-

dard codecs. By focusing on faces only, we can lower the

bandwidth, improve the quality and compress models com-

pared to using more generic methods. Therefore, we review

next deep face videos reconstruction approaches and their

adequacy to video chat compression.

2.3. Deep talking head approaches

3D based approaches produce realistic avatars which can

be animated in real-time [6]. However, such methods re-

quire to capture a set of images of the user (a few dozens)

to build their personal face model. PAGAN [26] gener-

ates key face expression textures that can be deformed and

blended in real-time on mobile from a single frame. How-

ever, the reconstruction of certain features, notably the hair,

is still problematic in 3D model-based approaches. Deep

video portraits [18] is handling this issue using a rendering-

to-video translation network, but the approach needs about

a thousand images per subject for training. Stimulated by

advancements in face swapping pipelines [20, 45], a num-

ber of deep generative re-enactment approaches arose. Con-

trary to warping based re-enactment [3], learning faces re-

constructions enables extra robustness in presence of large

head angles. The Face Swapping GAN [28] relies on sev-

eral steps: landmarks extraction, segmentation, interpola-

tion and inpainting. This complex pipeline may result in ro-



Figure 2. Deep generative approaches discussed in this study.

We detail two novel architectures, SegFace, and Hybrid Motion-

SPADE that builds on existing FOM [35] model. For all models,

we assume the generation is performed by the encoder-decoder

pair on the receiver device, while the emitter sends a reference

frame (or several) at the beginning of inference, and streams a se-

ries of landmarks or segmentation maps.

bustness issues and limited bandwidth gain due to the need

of sending both compressed segmentations and landmarks.

Similarly, the vid2vid approach ([43], [42]) requires send-

ing a “sketch” (edge map) for each frame in order to re-

enact a face, which has a relatively high bandwidth cost. In

the next section, we discuss and compare the learning based

approaches which yield the most promising results in terms

of bandwidth, visual quality and inference time.

3. Generative models

In this section, we first briefly describe two recent face

animation algorithms as well as SPADE. We then introduce

our two model contributions, namely SegFace and Hybrid

Motion-SPADE, see Fig. 2. For our self-reenactment task,

the goal is to generate frames based on (i) one fixed ref-

erence or source frame and (ii) position information (e.g.

landmarks) from a stream of driving or target frames (see

Figure 1).

3.1. Background

3.1.1 Bilayer model

The Bilayer synthesis approach [48] decouples high fre-

quencies and low frequencies generation, does not require

fine-tuning step as [49], and leads to visually appealing and

sharp results. In our observations (see Figure 5), the identity

preservation suffers from a stronger uncanny valley effect.

In terms of bandwidth, the bilayer approach would require

sending 68 compressed landmarks.

3.1.2 First order model for image animation (FOM)

The “First Order Model” approach of Siarohin et al. [35]

deforms a reference source frame to follow the motion of a

driving video. FOM follows an encoder-decoder architec-

ture with a motion transfer component:

• A landmark extractor is learned using an equivariant

loss, without explicit labels.

• Two sets of ten learned landmarks are computed for

the source and driving frames.

• A dense motion network uses the landmarks and the

source frame to produce a dense motion field and an

occlusion map.

• The encoder encodes the source frame.

• The resulting feature map is warped using the dense

motion field (using a differentiable grid-sample opera-

tion [17]), then multiplied with the occlusion map.

• The decoder generates an image from the warped map.

The networks are trained end-to-end on video frames, using

perceptual losses, and are then optionally fine-tuned with an

adversarial net. The self-supervised landmarks do not nec-

essarily match precise locations of the face. Instead, they

correspond to point coordinates optimized to achieve the

best deformation of the source frame. [35] describes how to

improve motion estimation in landmark areas by estimating

Jacobian matrices to model motion in their neighborhood.

3.1.3 SPADE

SPADE blocks, introduced in [30], are normalization layers

that incorporate spatial information from semantic segmen-

tation maps. They are typically used to generate new images

from layouts.

3.2. Our contributions: from segmentation to land­
marks for video chat compression

3.2.1 SegFace

This approach builds upon SPADE [30]. Unlike

MaskGAN [22], we propose to use a face descriptor com-



puted on a source frame, and decode it by conditioning on

face segmentation maps from a driving frame. It follows an

encoder-decoder architecture described as follows:

• A face descriptor is computed on a source frame.

• This face descriptor is given to a decoder network, that

applies SPADE normalization blocks at each layer us-

ing the face segmentation maps of the driving frame,

ensuring all parts of the face are correctly placed.

The decoder network is trained using VGGFace2 face em-

beddings [7], and segmentation maps from [47] as inputs.

Its objective during training is to reconstruct the same

source frame. The optimization is done using losses from

[30], and the face perceptual loss from [15]. This method

operates on independent frames, and thus allows to use

high-resolution training data, leading to high quality results.

Training is achieved using CelebA [24] and Flickr-Faces-

HQ datasets.

Bandwidth The model requires a segmentation map la-

beled for 15 categories (eyes, hairs, ears etc.). Sending com-

pressed segmentation maps would require 18/25 kbits/s at

resolutions 48×/64×, knowing that there is a trade-off be-

tween the resolution of the transmitted segmentation maps

and the quality of the generated faces. We do not build on

this method further for low-bandwidth video-chat because

the cost of running a face parser inference step and the band-

width requirements are too high. The SegFace implemen-

tation, however, allows us to observe that the generated im-

ages respect the segmentation map labels almost perfectly.

We build on this property with our Hybrid Motion-SPADE

approach, after introducing some variants of the First order

animation model.

3.2.2 FOM Variants

First, our implementation does not use the Jacobian com-

ponent, as we do not observe a strong effect the quality of

the results. We refer to the resulting model as “Motion Net

(MN-10)” as it no longer uses first order approximation any-

more and employs a set of ten landmarks.

Second, we explore using off-the-shelf facial landmarks

extraction to replace the unsupervised landmarks. In this

case, we only stream 20 or 68 compressed landmarks.

Third, we explore a combined strategy employing both

10 self-supervised landmarks and 20 supervised ones, that

we note MN-10+20. We introduce a fourth variant in Sec-

tion 3.2.3 below.

3.2.3 Hybrid Motion-SPADE model

Important quality criteria for compressed video-chat in-

clude a good synchronization between the lips and the

speech, and a good rendering of the eyes and eyebrows;

therefore, it is crucial to generate these facial parts precisely.

We propose an improvement over the FOM-based Mo-

tion Net method, by adding SPADE normalization layers

in the upsampling blocks of the decoder network (in the

last step of the FOM approach). We draw polygons for

the eyes, eyebrows, lips and inner mouth using 60 extracted

face landmarks, and use these as semantic maps for SPADE.

The dense motion network receives (i) a downsampled

reference frame with (ii) the positions of N landmarks for

that frame, and (iii) the positions of the same landmarks for

a driving frame. It outputs a motion field M and an occlu-

sion map O. The encoder network outputs a feature map Fs.

The decoder warps Fs with the result of the dense motion

network M and multiplies it element-wise with the occlu-

sion map O, to obtain Fw. Then, Fw is processed by a stack

of five residual blocks and three upsampling blocks that ap-

ply the SPADE normalization using a set of 60 landmarks.

Training is performed with a multiscale perceptual loss

(based on a VGG-19 architecture) with a weight λp = 10 in

addition to an equivariance loss with a weight λeq = 1 for

the unsupervised landmark detector when applicable, fol-

lowing the procedure described in [35].

Bandwidth The necessary segmentation maps are ob-

tained by plotting the polygons of the facial landmarks ex-

tracted using a landmark detector (see Figure 2), rather than

running a face segmentation network. Moreover, landmark

coordinates are inexpensive to transmit, while rasterized

segmentation maps are more difficult to compress, espe-

cially at higher resolutions. In terms of bandwidth, this ap-

proach requires sending N+60 compressed landmarks. We

experiment with N = 10, 20, and 30.

4. Compression

In this section, we explain different strategies to make

architectures – and in particular our novel hybrid Motion-

SPADE – compatible with low-bandwidth video calls on

mobile. We first detail the architectures and then the com-

pression aspects for the models and the bandwidth. Results

are displayed in Table 1.

4.1. Mobile architectures

Base blocks We rely on the open-source FbNet family of

architectures [12, 41, 46] to design mobile-capable models

for our Motion Net and Motion-SPADE approaches. These

networks typically build on blocks combining 1 × 1 point-

wise and 3×3 depth-wise convolutions [33] that require less

floating-point operations than traditional 3×3 convolutions

found in residual blocks. We provide further architecture

details in Figure 3.



Model variant Inputs FPS #Params #FLOPS int8 size Raw BW Compressed BW

Motion Net 10 U 18 2.9 M 1411 M 3.1 MB 3.9 kbits/s 1.4 kbits/s

Motion Net 20 L 19 2.3 M 1293 M 2.5 MB 7.8 kbits/s 2.2 kbits/s

Motion Net 10 U + 20 L 14 3.0 M 1505 M 3.4 MB 11.7 kbits/s 3.6 kbits/s

Motion SPADE 10 U 16 2.9 M 1198 M 3.2 MB 27.3 kbits/s 8.0 kbits/s

Motion SPADE 20 L 19 2.3 M 1029 M 2.5 MB 41.2 kbits/s 8.8 kbits/s

Motion SPADE 10 U + 20 L 13 3.0 M 1292 M 3.4 MB 35.3 kbits/s 10.2 kbits/s

Table 1. Comparison of our approaches running on mobile in terms of compression for both model size and stream.“10 U” (resp. “20 L”)

means that 10 unsupervised landmarks (resp. 20 facial landmarks) are used as inputs to the dense motion network. SPADE variants require

60 extra facial landmarks to draw the facial label maps. Notes: the “int8 size” is the full combined size of the models. The number of

frames per second (FPS) is measured for the whole int8-quantized pipeline running on an iPhone 8 CPU, including landmark detection,

grid-samples and face alignment. The #FLOPS count is for the dense motion, decoder, and unsupervised landmark extractor networks.

The bandwidth (BW) is measured at 25 FPS, without (Raw BW) and with Huffman encoding (Compressed BW).

Mobile SPADE normalization blocks When applicable,

we perform a SPADE normalization after the last 1 × 1

point-wise convolution, with kernel sizes of 1 × 1, and 32

hidden channels. We have found these parameters to pro-

vide a good trade-off between speed and quality while pre-

serving the fidelity of the SPADE approach.

4.2. Landmark stream compression

We compress the landmarks with Huffman encod-

ing [16]. In this approach, the landmark displacements are

first binarized into 32 bins plus one sign bit, and we en-

code the bin index with Huffman coding. This compression

leads to an average rate of 90 bits/frame for 20 landmarks,

hence 2.2 kbits/s at 25 FPS (see Table 1 for details). For

reference, bandwidth requirements for audio are around 10

kbits/s, while the AV1 video codec (not widely hardware-

supported to date) aims at 30 kbits/s [11]. Therefore, we

did not explore other variants such as Arithmetic Coding

[32] since the audio part takes most of the bandwidth of a

call with the proposed approach.

4.3. Model quantization

We rely on int8 post-training quantization. This tech-

nique simply consists in uniformly quantizing both weights

and activations over 8 bits, thus reducing the model size by a

factor 4. Moreover, int8 models traditionally benefit from

a ×2−3 speed-up compared to their fp32 counterparts for

both server and mobile CPUs. The scale and zero-point pa-

rameters1 of the quantized layers are calibrated after train-

ing using a few batches of training data. When not properly

calibrated, we found that the decoder generates an image

with a small amount of grain or noise, resulting in a loss

of visual quality. To compress the Motion based models,

we only rely on int8 since the non-compressed models

are already small. The models are converted to TorchScript.

Results are displayed in Table 1.

1The affine transform coefficients that allow converting an 8-bit quan-

tized tensor (integer-valued in [0, 255]) to its floating-point counterpart.

4.4. Mobile inference

We use CoreML to deploy our models on mobile. We

report the frame rates on various phones in Table 2. On the

iPhone 11 pro, the battery CPU overhead is 0.47, and the

battery NPE overhead is 0.05 (0.05% of battery is consumed

every minute during a call).

iPhone iPhone iPhone Samsung

12 pro 11 pro 8 S9

CPU (NE) 38 (125) 31 (80) 23 18

Table 2. FPS of Motion SPADE 20L model (Dense motion and

decoder parts) on various phones. NE: Neural Engine.

4.5. Implementation details

Our mobile models are trained on the DFDC dataset [14]

rather than the VoxCeleb [27] dataset, in contrast to the orig-

inal work of [35] (though we provide evaluation numbers

for comparison and reference). We split different identities

following a 90%-10% ratio, resulting in a total of 21899

training videos, and 2369 validation videos. We choose

DFDC in this work because the videos are higher-quality

and not cropped as tight, allowing for different face align-

ment procedures: (i) cropping around the face, or (ii) crop-

ping after rotation using the facial landmarks such that the

eyes are horizontally aligned. We have notably found that

for smaller Motion Net models, this alignment makes the

task easier and improves the results. The alignment proce-

dure is reproduced on mobile at inference time to match the

training distribution. We perform training on 8 GPUs using

a Distributed Data Parallel pipeline in Pytorch, with a batch

size of 48, for 265K steps. We use the Adam optimizer with

learning rate 2.10−4 on all networks in all experiments.

5. Experiments

Section 5.2 presents ablation study of FOM and our Hy-

brid SPADE approach. In section 5.3, we compare these



(a) Mobile architectures (dense motion net and landmark extractor)

(b) Generator architecture (Input: driving frame, output:

generation)

(c) Inverted residual (IRF) blocks

(d) SPADE blocks used in Motion-SPADE
Figure 3. Schemes of mobiles architectures for the Motion Net

((a), (c)) and Motion-SPADE approaches ((a), (b), (c), (d)).

results to alternative Segface and bilayer approaches. Fi-

nally, we conduct a human study in section 5.4 to quantify

improvements brought by our hybrid-SPADE approach.

5.1. Evaluation metrics

We evaluate the models using the perceptual LPIPS [50]

and multi-scale LPIPS-like metrics employed in [35], that

we name msVGG. Second, as argued in [8], the cosine sim-

ilarity CSIM computed between features of the pre-trained

FOM adv FOM w/o adv MN

msVGG ↓ 85.6 87.5 87.9

LPIPS ↓ 0.226 0.233 0.236

NME ↓ 0.51 0.53 0.54

CSIM ↑ 0.83 0.81 0.82

Table 3. Ablation study for FOM on VoxCeleb2-28. MN: FOM

without first order approximation nor adversarial fine-tuning.

face embedding network ArcFace [13] is one of the most

effective metric to assess quality of talking heads models,

we therefore report it. Finally, we quantify facial landmarks

mismatch by running a landmark detector on true and gener-

ated videos and computing the Mean Square Error between

each pair of landmarks. This metric is classically referred

to as the Normalized Mean Error (NME) of head pose [4].

5.2. Quality evaluation: ablation studies

For evaluation, we assembled a set of 28 videos of di-

verse persons in terms of gender, age, skin color from the

validation set of VoxCeleb2 [10], and a similar set of 50

videos from the validation split of the DFDC dataset [14].

We begin our analysis of the FOM by computing the

quality of reconstruction without first order motion approx-

imation and without adversarial training in Table 3. While

it is clear that the adversarial fine-tuning boosts the perfor-

mance, we experiment without it in the remaining of our

ablation study around this model to reduce training time

for each model. Removing the first order approximation

only slightly degrades the LPIPS but not the msVGG per-

ceptual metric. Interestingly, the CSIM metric which is the

one supposed to best reflect the identify preservation, is

slightly increased by dropping this component. A second

observation is that the fidelity of facial landmarks to the

target video is negatively affected by this removal. Since

the drop of performance induced by discarding first order

motion approximation leads to important bandwidth sav-

ings and limited loss in performance, we conduct our ex-

periments without it. We refer to this approach as the Mo-

tion Net approach. Next, we explore the replacement of

the self-supervised landmarks of the Motion Net approach

by off-the-shelf landmarks from a state-of-the art detector.

Results appear in Table 4. Note that the results presented

in this table are obtained by our re-implementation of the

MotionNet approach, and are slightly better than these of

Table 3 obtained with the original code. We compare in

Table 4 different variants of the Motion Net approach, us-

ing 20 input landmarks, 68 input landmarks, self-supervised

landmarks with dense architectures and with mobile archi-

tectures. All these dense architecture employ a latent space

of 256 × 64 × 64, and were trained on VoxCeleb. Using

standard facial landmarks instead of unsupervised motion

landmarks degrades the scores of perceptual metrics, but



Sources Targets MN-10 MN-20 MN-10+20 M-SP-10 M-SP-10+20 M-SP-20 H264 9kb/s
Figure 4. Qualitative results using Motion based variants on mobile architectures, using a 32×32×256 latent space. Each model generates

the face given the fixed source frame and the landmarks of the target frame. All models run in real-time on an iPhone 8.

LPIPS ↓ NME ↓ CSIM ↑

Dense MN-10 U 0.221 0.59 0.83

Dense MN-20 L 0.242 0.50 0.80

Dense MN-68 L 0.240 0.49 0.81

Mob MN-10 U 0.225 0.52 0.79

Mob MN-20 L 0.244 0.48 0.78

Mob MN-10 U + 20 L 0.218 0.46 0.80

Mob M-SPADE-10 U 0.217 0.47 0.81

Mob M-SPADE-20 L 0.242 0.44 0.79

Mob M-SPADE-10 U + 20 L 0.215 0.46 0.81

Table 4. Evaluation results for Motion Net approaches without ad-

versarial fine-tuning on the VoxCeleb2-28 video subset. Mob :

Mobile models. Dense models (64 × 64 latent space) are trained

on VoxCeleb. Mobile models (32 × 32) are trained on the DFDC

aligned dataset. U: unsupervised landmarks; L: facial landmarks.

improve NME. Using 68 landmarks is only very slightly

improving the quality over 20. With mobile architectures,

we reduce the latent space to 256× 32× 32. In addition to

using 10 motion landmarks or 20 landmarks alone, combin-

ing these two sets helps boost all quality metrics. Finally,

we observe that adding the SPADE blocks preserves the per-

ceptual quality and brings a large improvement in NME.

Dense models (on server) Mobile

Bilayer SegFace FOM MS20L

msVGG* ↓ 68.6 84.4 58.7 57.9

LPIPS* ↓ 0.200 0.304 0.153 0.167

NME* ↓ 0.55 0.55 0.50 0.44

CSIM* ↑ 0.85 0.76 0.87 0.84

kbits/s ↓ 9.7 18 4.0 8.8

Table 5. Comparison of Bilayer, SegFace (48 × 48), FOM adv,

in terms of quality / bandwidth (kbits/s with 25 fps) trade-offs on

VoxCeleb2-28. * : Metrics were computed using ground truth

backgrounds. We also include our best mobile model, Motion-

SPADE-20L (MS20L) in the comparison.

5.3. Quantitative comparative evaluation

We compare the quality/bandwidth trade-off of different

dense face animation approaches in Table 5. As the Bi-

layer and Segface approaches do not generate backgrounds,

we pasted original backgrounds to provide a fair evaluation.

We observe that FOM leads to better LPIPS and CSIM met-

rics. Interestingly, our mobile results have better NME and

msVGG scores than the original FOM dense approach.

5.4. Qualitative evaluation and human study

Fig. 4 illustrates the quality performance reached on Mo-

bile. The last line displays a challenging case for the motion

based approach. We note that the quality of results degrades



Source images

Target images

SegFace results with #param: 126M

Bilayer results with #param: 144M

FOM adv results with #param: 47M

Mobile MotionSpade-20L results with #param:3M
Figure 5. Comparison of different results using SegFace (48×48),

Bilayer, and FOM adv. Each model generates faces using fixed

source frames and facial information (e.g. landmarks) of driving

frames. We pasted ground truth backgrounds for a fair evaluation

of dense models, rows 3 to 5. The last row showcases the results

using our Mobile Motion-SPADE that runs at 18 FPS on an iPhone

8, whereas other models run on server, have at least 10× more pa-

rameters and are not necessarily compatible with low-bandwidth

video calling. The alignment procedure may differ between the

models, leading to different head centering.

in presence of large head rotation. Still, Motion-SPADE

results are visually close to the targets, particularly it ren-

ders lips and teeth better. The H264 compression results

are displayed given a bandwidth of 9 kbit/s, to be compared

to the ones of the Motion-SPADE 20 model that runs the

fastest on mobile. This illustrates that at this bandwidth,

video transmission is hardly possible using standard codecs,

whereas our mobile approach would make the video call

Dense models

human identity human expression

model score score

Bilayer 3.70±0.046 3.62±0.046

SegFace 3.11±0.047 3.00±0.051

FOM adv 3.99±0.042 4.00±0.041

Overall human ratings of Mobile models

MN-10 MN-20 MN-10+20

no SPADE 3.44±0.034 3.40±0.034 3.46±0.034

with SPADE 3.50±0.034 3.46±0.035 3.45±0.034

Table 6. Quality assessment of models on DFDC-50 - Human

study. Average scores (Higher is better) with confidence intervals.

possible. Fig. 5 compares results obtained using SegFace,

Bilayer, and FOM with adversarial finetuning. We observe

skin tones/lightning differences between targets and Seg-

Face results and distortions of personal traits. The Bilayer,

and FOM models are qualitatively better. In the last col-

umn, we observe a promising comparison with a Mobile

Motion-SPADE model, given its real-time performance and

possible orthogonal improvements using adversarial train-

ing. Table 6 provides a quality assessment of different mod-

els by human raters. Participants rated images produced by

the different models by comparing them in terms of identity

and expression preservation, on a scale from 1 to 5. In a

first round of evaluations, we display side by side the main

dense models results, and in the second round, Motion Net

and Motion-SPADE results using six different mobile archi-

tectures. We collect in each case 500 pairwise evaluations,

each from five different participants. For dense models re-

sults, human scores seem to agree with metrics, ranking

FOM first. Mobile models results differences are more sub-

tle, but the Hybrid Motion-SPADE-10 landmarks model is

preferred. The addition of SPADE blocks brings significant

improvement in most cases.

6. Conclusions

We designed a novel low bandwidth face video com-

pression approach, the first one that is able to run in real

time on mobile. Our hybrid architecture takes advantage

of high fidelity to the target image thanks to the warping

principle, and enhances the quality of important attributes

with SPADE blocks. Only exploiting polygons induced seg-

ments allows our approach to improve quality without high

transmission cost. The bandwidth required to send a video

using this approach is lower than the one required for send-

ing audio. There are a number of interesting research di-

rections to improve the quality of the generations, beyond

using adversarial losses, e.g. generating large head rotation

movements, hands.
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