
Fast and Accurate Camera Scene Detection on Smartphones

Angeline Pouget Sidharth Ramesh Maximilian Giang Ramithan Chandrapalan

Toni Tanner Moritz Prussing Radu Timofte Andrey Ignatov

ETH Zurich, Switzerland

Abstract

AI-powered automatic camera scene detection mode is

nowadays available in nearly any modern smartphone,

though the problem of accurate scene prediction has not yet

been addressed by the research community. This paper for

the first time carefully defines this problem and proposes a

novel Camera Scene Detection Dataset (CamSDD) contain-

ing more than 11K manually crawled images belonging to

30 different scene categories. We propose an efficient and

NPU-friendly CNN model for this task that demonstrates a

top-3 accuracy of 99.5% on this dataset and achieves more

than 200 FPS on the recent mobile SoCs. An additional

in-the-wild evaluation of the obtained solution is performed

to analyze its performance and limitation in the real-world

scenarios. The dataset and pre-trained models used in this

paper are available on the project website.

1. Introduction

Camera scene detection is one of the most popular com-

puter vision problems related to mobile devices. Nokia N90

released in 2005 was the world’s first smartphone with a

manual camera scene selection option containing five cate-

gories (close-up, portrait, landscape, sport, night) and dif-

ferent lighting conditions (sunny, cloudy, incandescent, flu-

orescent) [36]. Notably, it was also able to select the most

appropriate scene automatically, though only basic algo-

rithms were used for this and the result was not always flaw-

less. Since then, this became a standard functionality for

the majority of camera phones: it is applied to accurately

adjust the photo processing parameters and camera settings

such as exposure time, ISO sensitivity or white balancing to

get the best image quality for various different scenes. For

instance, certain situations require a high shutter speed to

avoid the picture being blurry. A good example of this are

∗ Andrey Ignatov (andrey@vision.ee.ethz.ch) and Radu Timofte

(radu.timofte@vision.ee.ethz.ch) are the main contacts. The dataset

and the models presented in this paper are available on the project website:

https://people.ee.ethz.ch/˜ihnatova/camsdd.html

pictures of animals, sport events or even kids. A modified

tone mapping function is often needed for portrait photos to

get a natural skin color, while special ISO sensitivity levels

are necessary for low-light and night photography. An ap-

propriate white balancing method should be used for indoor

photos with artificial lighting so that the resulting images

have correct colors. Finally, macro and portrait photos are

often shot using bokeh mode [17] that should be enabled au-

tomatically for these scenes. Therefore, the importance of

the camera scene detection task cannot be underestimated

as it drastically affects the resulting image quality.

Using the automatic scene detection mode in smartphone

cameras is very easy and convenient for the end user, but

this poses the problem of making accurate predictions. The

first scene classification methods were based on different

heuristics and very simple machine learning-based algo-

rithms as even the high-end mobile devices had at best a

single-core 600 MHz Arm CPU at that time. The situation

changed later when portable devices started to get powerful

GPUs, NPUs and DSPs suitable for large and accurate deep

learning models [21, 19]. Since then, various AI-powered

scene detection algorithms appeared in the majority of mo-

bile devices from Huawei [9], Samsung [24], Xiaomi [43],

Asus [1] and other vendors. However, since no available

public datasets and models were available for this task, each

manufacturer was designing its own solution that was often

capable to recognize only a very limited number of classes.

To address the above problem, in this paper we present a

novel large-scale CamSDD dataset containing more than 11

thousand images and consisting of the 30 most important

scene categories selected by analyzing the existing com-

mercial solutions. We propose several efficient MobileNet-

based models for the considered task that are able to achieve

a top-1 / top-3 accuracy of more than 94% and 99%, respec-

tively, and can run at over 200 FPS on modern smartphones.

Finally, we perform a thorough performance evaluation of

the proposed solution on smartphones in-the-wild and test

its predictions for numerous real-world scenes.

The rest of the paper is arranged as follows. Section 2

reviews the existing works related to image classification

1

https://people.ee.ethz.ch/~ihnatova/camsdd.html


Portrait Group Portrait Kids Dog Cat Macro

Gourmet Beach Mountains Waterfall Snow Landscape

Underwater Architecture Sunrise & Sunset Blue Sky Overcast Greenery

Autumn Plants Flowers Night Shot Stage Fireworks Candlelight

Neon Lights Indoor Backlight Document QR Code Monitor Screen

Figure 1. Visualization of the 30 Camera Scene Detection Dataset (CamSDD) categories.

and efficient deep learning-based models for mobile de-

vices. Section 3 introduces the CamSDD dataset and pro-

vides the description of the 30 camera scene detection cate-

gories. Section 4 presents the proposed model architecture

and the training details. Section 5 shows and analyzes quan-

titative results, in-the-wild performance and the runtime of

the designed solution on several popular mobile platforms.

Finally, Section 6 concludes the paper.

2. Literature Review

2.1. Datasets

Choosing the appropriate database is crucial when devel-

oping any camera scene detection solution. Though there

already exist several large image classification datasets,

they all have significant limitations when it comes to the

considered problem. The popular CIFAR-10 [28] database

presents a large number of training examples for object

recognition task, though offers only 10 classes and uses tiny

32×32 pixel images. In [6], the extended CINIC-10 dataset

was presented that combines the CIFAR-10 and the Ima-

geNet [8] databases and uses the same number of classes

and image resolutions. In contrast to these two datasets, the

Microsoft Coco [30] object recognition and scene under-

standing database labels the images by using per-instance

object segmentation. ADE20K from [53] is another dataset

providing pixel-wise image annotations with 3 to 6 times

larger number of object classes compared to the COCO. As

our focus is not to process the contextual information but to

categorize individual images as precisely as possible, these

two datasets are unfortunately not perfectly suitable for the

camera scene detection task.

The SUN dataset [47, 35] combines attribute, object de-

tection and semantic scene labeling, and is mainly limited

to scenes in which humans interact. The Places dataset [52]

offers an even larger and more diverse set of images for

the scene recognition task and enables near-human seman-

tic classification performance, though it does not contain

the vast majority of important camera scene categories such

as overcast or portrait photos. With around 1 million im-

ages per category, the LSUN [51] database exceeds the size

of all previously mentioned datasets — this was made pos-

sible by using semi-automated labeling. Unfortunately, it

contains only 10 scene and 20 object categories, the major-

ity of which are also not suitable for our task.

2.2. Image Classification Architectures

Since our target is to create an image classifier that runs

on smartphones, the model should meet the efficiency con-

straints imposed by mobile devices. MobileNets [11] were

2



ID Category Description ID Category Description

1 Portrait Normal portrait photos with a single adult or child 16 Blue Sky Photos with a blue sky (at least 50%)

2 Group Portrait Group portrait photos with at least 2 people 17 Overcast / Cloudy Sky Photos with a cloudy sky (at least 50%)

3 Kids / Infants Photos of kids or infants (less than 5-7 years old) 18 Greenery / Green Plants Photos containing trees, grass and general vegetation

4 Dog Photos containing a dog 19 Autumn Plants Photos with colored autumn leaves

5 Cat Photos containing a cat 20 Flower Photos of flowers

6 Macro / Close-up Photos taken at very close distance (< 0.3m) 21 Night Shot Photos taken at night

7 Food / Gourmet Photos with food 22 Stage / Concert Photos of concert / performance stages

8 Beach Photos of the beach (with sand and / or water) 23 Fireworks Photos of fireworks

9 Mountains Photos containing mountains 24 Candlelight The main illumination comes from candles or fire

10 Waterfalls Photos containing waterfalls 25 Neon Lights / Signs Photos of neon signs or lights

11 Snow Winter photos with snow 26 Indoor Indoor photos with mediocre or artificial lighting

12 Landscape Landscape photos (w/o snow, beach, mountains, sunset) 27 Backlight / Contre-jour Photos taken against a bright light source / silhouettes

13 Underwater Photos taken underwater with a smartphone 28 Text / Document Photos of documents or text

14 Architecture Photos containing buildings 29 QR Code Photos with QR codes

15 Sunrise / Sunset Photo containing sunrise or sunset 30 Monitor Screen Photos of computer, TV or smartphone screens

Table 1. The description of the 30 camera scene detection categories from the CamSDD dataset.

among the first models proposing both good accuracy and

latency on mobile. MobileNetV2 [37] aims to provide a

simple network architecture suitable for mobile applications

while being very memory efficient. It uses an inverted resid-

ual block with a linear bottleneck that allows to achieve both

good accuracy and low memory footprint. The performance

of this solution was further improved in [10], where the new

MobileNetV3 architecture was obtained with the neural ar-

chitecture search (NAS). This model was optimized to pro-

vide a good accuracy / latency trade-off, and is using hard-

swish activations and a new lightweight decoder.

EfficientNet [40] is another architecture suitable for mo-

bile use cases. It proposes a simple but highly efficient scal-

ing method for convolutional networks by using the “com-

pound coefficient” allowing to scale-up the baseline CNN

to any target resource constraint. Despite the many advan-

tages of this architecture and its top scores on the ImageNet

dataset [34], its performance highly depends on the consid-

ered problem, and besides that it is not yet fully compatible

with the Android Neural Networks API (NNAPI) [3].

Similarly to the MobileNetV3, the MnasNet [39] archi-

tecture was also constructed using the neural architecture

search approach with additional latency-driven optimiza-

tions. It introduces a factorized hierarchical search space to

enable layer diversity while still finding a balance between

flexibility and search space size. A similar approach was

used in [48], where the authors introduced the Randomly

Wired Neural Networks which architecture was also opti-

mized using NAS, and the obtained models were able to

outperform many standard hand-designed architectures. A

different network optimization option was proposed in [45]:

instead of focusing on depthwise separable convolutions,

the PeleeNet model is using only conventional convolu-

tional layers while showing better accuracy and smaller

model size compared to the MobileNet-V2. Though this

nework demonstrated better runtime on NVIDIA GPUs, no

evidence for faster inference on mobile devices was, how-

ever, provided.

2.3. Deep Transfer Learning

Network-based deep transfer learning [38] is an impor-

tant tool in machine learning that tackles the problem of

insufficient training data. The term denotes the reuse of a

partial network that has been trained on data which is not

part of, but similar in structure to the training data. This par-

tial network serves as a feature extractor and its layers are

usually frozen after the initial training. It has been shown

that the features computed in higher layers of the network

depend greatly on the specific dataset and problem which is

why they are usually omitted for transfer learning [50]. In

some cases, it can be advantageous to fine-tune the upper-

most layers of this transferred network by unfreezing their

weights during training. On top of the feature extractor, one

or several fully connected, trainable layers are added that

are task-specific. Their weights are initialized randomly and

updated with the use of the training data. Hence this part of

the network aims to replace the non-transferred part of the

model backbone architecture.

2.4. Running CNNs on Mobile Devices

When it comes to the deployment of AI-based solutions

on mobile devices, one needs to take care of the particu-

larities of mobile NPUs and DSPs to design an efficient

model. An extensive overview of smartphone AI acceler-

ation hardware and its performance is provided in [21, 19].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and a limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [5, 17, 29, 31, 33], 16-bit /

3



Figure 2. An overview of the MobileNet-V1 based model.

8-bit [5, 26, 25, 49] and low-bit [4, 42, 22, 32] quantization,

device- or NPU-specific adaptations, platform-aware neural

architecture search [10, 39, 46, 44], etc.

3. Camera Scene Detection Dataset (CamSDD)

When solving the camera scene detection problem, one

of the most critical challenges is to get high-quality diverse

data for training the model. Since no public datasets ex-

isted for this task, a new large-scale Camera Scene Detec-

tion Dataset (CamSDD) containing more than 11K images

and consisting of 30 different categories was collected first.

The photos were crawled from Flickr1 using the same setup

as in [14]. All photos were inspected manually to remove

monochrome and heavily edited pictures, images with dis-

torted colors and watermarks, photos that are impossible for

smartphone cameras (e.g., professional underwater or night

shots), etc. The dataset was designed to contain diverse im-

ages, therefore each scene category contains photos taken

in different places, from different viewpoints and angles:

e.g., the “cat” category does not only contain cat faces but

also normal full-body pictures shot from different positions.

This diversity is essential for training a model that is gener-

alizable to different environments and shooting conditions.

Each image from the CamSDD dataset belongs to only one

scene category. The dataset was designed to be balanced,

thus each category contains on average around 350 pho-

tos. After the images were collected, they were resized to

576×384 px resolution as using larger photos will not bring

1https://www.flickr.com/

Activation function Top-1 Accuracy, % Top-3 Accuracy, %

Sigmoid 94.17 98.67

ReLu 93.33 98.17

Tanh 92.17 98.83

SeLu 92.00 98.17

Table 2. The accuracy of the MobileNet-V2 based model with dif-

ferent activation functions in the last fully-connected layer.

any information that is vital for the considered classification

problem. The description of all 30 categories is provided

in Table 1, sample images from each category are demon-

strated in Fig. 1. In the next sections, we will demonstrate

that the size and the quality of the CamSDD dataset is suf-

ficient to train a precise scene classification model.

4. Method Description

This section provides a detailed overview and descrip-

tion of the designed solution and its main components.

4.1. Feature Extraction

Our proposed model architectures are built on the

MobileNet-V1 [11] and MobileNet-V2 [37] backbones. In

general, MobileNets are based on depthwise separable con-

volutions except for the first layer which is fully convolu-

tional. All layers are followed by batch normalization and

use ReLU nonlinearity. There are two major reasons why

these models are best suited to solve the challenge at hand.

First, the MobileNet architectures are specifically tailored

for mobile and resource-constrained environments. Due to

the above mentioned depthwise convolutions, they perform

a smaller number of operations and use less RAM while

still retaining high accuracy on many image classification

tasks. Due to these advantages, they are commonly used

for a wide variety of applications, therefore NN HAL and

NNAPI drivers of all vendors contain numerous low-level

optimizations for the MobileNet architectures, which re-

sults in very efficient execution and small inference time

on all mobile platforms.

We use all convolutional layers of these models with

weights learned on the ImageNet dataset and omit only the

fully-connected layers at the end. This has been shown

to work best in contrast to replacing some of the convo-

lutional layers as well. Intuitively, this observation makes

sense since our main objective is to correctly predict the

scene pictured in an image. This is also the main goal of

the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) [23], an annual software contest run by the Im-

ageNet project, though different image categories are used

in this challenge. Due to this similarity in aims, the features

of the input data that the MobileNets need to make an ac-

curate final prediction, and the features that are crucial for

our model are nearly the same, and thus retraining it on our

data did not lead to better results on this task.

4

https://www.flickr.com/


Backbone Model Size, Top-1 Top-3

Architecture MB Accuracy, % Accuracy, %

MobileNet-V1 208 92.67 99.50

MobileNet-V2 73 94.17 98.67

MobileNet-V1 Quantized 52 91.50 99.00

MobileNet-V2 Quantized 19 94.17 98.67

EfficientNet-B0 261 91.33 98.67

MobileNet-V3 Small 202 89.50 98.50

MobileNet-V3 Large 262 88.50 99.00

Inception-ResNet-V2 359 86.00 97.00

Inception-V3 284 85.50 96.33

Xception 472 86.33 98.17

NASNetMobile 220 66.00 84.67

Table 3. Top-1 and Top-3 classification accuracy of the proposed

floating point and quantized MobileNet-V1/V2 based models. The

results of the other architectures are provided for the reference.

4.2. Fully connected layers

MobileNet-V1 Backbone. On top of the the last convolu-

tional layer of the MobileNet-V1, we placed a fully con-

nected layer with 1024 units and a dropout of 0.7 to avoid

overfitting. The activation in this layer is the Sigmoid func-

tion which has worked best in comparison to other activa-

tion functions. The final output layer of the network uses

the Softmax activation to predict the probability of the input

image belonging to any of the 30 classes. An overview of

the overall model structure is presented in Fig. 2.

MobileNet-V2 Backbone. A fully connected layer with 256

units and the ReLU activation function was placed on top

of the last convolutional layer of the MobileNet-V2. It is

followed by another fully connected layer with 1024 units

that uses ReLU as well. The last fully connected layer has

512 units with a dropout rate of 0.7 to avoid overfitting. The

activation in this last layer is the Sigmoid function demon-

strating the best top-1 accuracy compared to other activation

MobileNet-V1 MobileNet-V2

Mobile SoC FP16, fps INT8, fps FP16, fps INT8, fps

Dimensity 1000+ 220 222 224 233

Dimensity 800 155 203 159 209

Helio P90 43 52 48 46

Snapdragon 888 136 72∗ 126 76∗

Snapdragon 855 100 113 85 143

Snapdragon 845 75 65 79 88

Exynos 2100 88 85 68 101

Exynos 990 49 71 48 79

Exynos 9820 59 52 56 56

Kirin 990 5G 50 81∗ 132 86∗

Kirin 980 33 74∗ 42 78∗

Table 4. The speed of the proposed solutions on several popular

mobile SoCs. The runtime was measured with the AI Benchmark

app using the fastest acceleration option for each device. ∗ These

results were obtained on CPU (4 threads) as the device was unable

to parse the corresponding quantized TensorFlow Lite models.

functions such as SeLU, ReLU, or Tanh as shown in Table 2.

The final output layer of the network again uses the Softmax

activation to predict the actual scene category.

4.3. Training Details

The models were implemented in TensorFlow [2] and

trained with a batch size of 20 using the Adam opti-

mizer [27]. The initial rate was set to 10−4 with an ex-

ponential decay of 0.1 every 3 epochs. In general, the per-

formance of the model saturated after less than 15 epochs

of training. In case of the MobileNet-V2 based network, its

convolutional layers were unfreezed after the initial train-

ing, and the entire model was additionally fine-tuned for

few epochs with a learning rate of 10−5.

Figure 3. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download

5

https://ai-benchmark.com/download


Figure 4. Sample predictions obtained with the proposed MobileNet based models in-the-wild using real smartphone camera data.

5. Experiments

This section provides quantitative and qualitative results

of the designed solutions as well as their runtime on several

popular mobile platforms.

5.1. Quantitative Results

Table 3 presents the results obtained on the test subset of

the CamSDD dataset. All models except for the one based

on MobileNet-V2 are using the same fully connected fea-

ture processing block on top of them as the MobileNet-V1

model. As one can see, the first two networks were able

to achieve a top-3 accuracy of more than 98%, thus being

able to identify the correct scene with a very high preci-

sion. This already suggests that the proposed setup and

data works efficiently for the considered scene classification

task, and the models are able to learn the underlying catego-

rization function. The architecture based on MobileNet-V1

features achieved a top-1 accuracy of 92.67% and a top-

3 accuracy of 99.50%, outperforming all other solution by

at least 0.50% in the latter term. The MobileNet-V2 based

network demonstrated a considerably higher top-1 accuracy

of 94.17% while also showing a drop of 0.83% in the top-3

score, which might first seem to be counterintuitive. How-

ever, this can be explained by the fact that MobileNet-V2

features are known to be more accurate but at the same

time less general than the ones produced by MobileNet-

V1: while for standard scenes this results in higher pre-

dictive accuracy, these features might not be that efficient

for complex and challenging conditions that the model has

not seen during the training. Ideally, the best results might

be achieved by combining the features and / or predictions

from both models, though this is not the focus of this pa-

per targeted at a single-backbone architecture, and can be

explored in the future works. Interestingly, neither of the

considered larger and allegedly more precise (in terms of

the accuracy on the ImageNet) models performed good on

this task, partially because of the same reason as in case of

MobileNet-V2: less general features almost always result in

6



Figure 5. Model predictions for different object types (left), illumination conditions (middle) and viewpoints (right).

less accurate predictions on real unseen data. Therefore, in

our case we are able to get the best numerical performance

with the smallest and fastest models which is ideal for a

mobile-focused task.

Table 3 additionally reports the accuracy of the quantized

MobileNet-V1/V2 based models. INT8 quantization was

performed using TensorFlow’s built-in post-training quanti-

zation tools [41]. The accuracy of the MobileNet-V2 based

network remained the same after applying this procedure,

while the first model experienced a significant performance

drop of 1.17% and 0.5% for top-1 and top-3 scores, respec-

tively. Nevertheless, these results are better than the ones

obtained with the other larger floating-point solutions, thus

this model can be practically useful in situations when ei-

ther high classification speed is needed, or for NPUs / hard-

ware not supporting floating-point inference. The differ-

ence between the speed of the floating-point and quantized

networks will be examined in the next section.

5.2. Runtime on Mobile Devices

To test the speed of the developed solutions on real mo-

bile devices, we used the publicly available AI Benchmark

application [19, 21] that allows to load any custom Tensor-

Flow Lite model and run it on any Android device with all

supported acceleration options. This tool contains the lat-

est versions of Android NNAPI, TFLite GPU, Hexagon NN,

Samsung Eden and MediaTek Neuron delegates, therefore

supporting all current mobile platforms and providing the

users with the ability to execute neural networks on smart-

phone NPUs, APUs, DSPs, GPUs and CPUs. To reproduce

the runtime results reported in this paper, one can follow the

next steps:

1. Download AI Benchmark from the official website2 or

from the Google Play3 and run its standard tests.

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

2https://ai-benchmark.com/download
3https://play.google.com/store/apps/details?id=

org.benchmark.demo

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 3. This setup was

used to test the runtime of the considered four models on

11 popular smartphone chipsets providing AI acceleration

with their NPUs, DSPs and GPUs. The results of these

measurements are reported in Table 4. For MediaTek de-

vices, all models were accelerated on their AI Processing

Units (APUs) using Android NNAPI. In case of Qualcomm

chipsets, floating-point networks were accelerated with the

TFLite GPU delegate demonstrating the lowest latency,

while quantized networks were executed with Qualcomm’s

Hexagon NN TFLite delegate that performs all computa-

tions on Hexagon DSPs. On the Exynos chipsets we used

either the Samsung Eden delegate or NNAPI depending on

which option resulted in better runtimes, and for Huawei

SoCs NNAPI was used for all four networks. Unfortunately,

the Kirin 990/980 and the Snapdragon 888 chipsets were

unable to run quantized TFLite models due to the lack of

support for several INT8 operators, thus we had to run these

networks on their CPUs with the XNNPACK delegate.

We were able to achieve real-time performance with

more than 33 classified images per second on all consid-

ered platforms. Overall, the MobileNet-V2 based model

turned out to be a bit faster on average than the model us-

ing MobileNet-V1 features. Quantized models have also

demonstrated slightly better runtime, though the difference

was not dramatic in the majority of cases, lying below 25-

30%. For MobileNet-V2 network, more than 100 FPS was

obtained on six different platforms, the highest throughput

was achieved on the Dimensity 1000+ (APU 3.0), Dimen-

sity 800 (APU 3.0), Snapdragon 855 (Hexagon 690 DSP),

Kirin 990 5G (Da Vinci NPU) and Snapdragon 888 (Adreno

660 GPU) SoCs, respectively. These results also demon-

strate the efficiency of dedicated mobile AI processors for

image classification tasks: they can achieve enormous pro-

cessing rates while maintaining low power consumption.

7

https://ai-benchmark.com/download
https://play.google.com/store/apps/details?id=org.benchmark.demo
https://play.google.com/store/apps/details?id=org.benchmark.demo


Figure 6. Sample predictions for mountain and waterfall images.

We can especially distinguish the 6-core APU found in

the Dimensity 1000+ platform that has significantly outper-

formed all other NPUs and DSPs with more than 200 FPS

for all four MobileNet models.

5.3. In­the­wild Testing and Limitations

While the proposed models demonstrated high accuracy

on the CamSDD dataset, their real performance on live cam-

era data is the most important for this task. For this, we

developed an Android application that is using the obtained

TensorFlow Lite models to perform real-time classification

of the image frames coming from camera stream. The gen-

eral design of the application is similar to [7]. Two popular

smartphones were used for testing: the Samsung Galaxy J5

and the Samsung Galaxy S9. We checked the predictions

of the developed models on hundreds of different scenery,

and present in this section the most important observations.

Since the Samsung Galaxy J5 is equipped with a low-end

camera whose quality is considerably worse compared to

the majority of modern smartphones, including the S9 one,

this was our main target device as the conditions in this case

are the most challenging. Therefore, if not stated otherwise,

the presented screenshots refer to the Galaxy J5.

The overall accuracy of the presented solution is very

satisfactory when testing it on real camera data. As one can

Figure 7. The predictions of the same scene obtained using the

MobileNet-V1 (left) and MobileNet-V2 (right) based models.

see in Fig. 4, it is able to correctly predict the standard scene

categories such as Architecture, Flower, Portrait, Candle-

light, etc., with a very high confidence. In general, we ob-

tained robust results when facing the following challenges.

First, the model was robust towards intra-class variation,

i.e., the variation between the images belonging to the same

class. For instance, in Fig. 5 one can see correct predictions

for two flower types that greatly vary in shape and color.

Secondly, it can handle large illumination changes (Fig. 5,

middle) and was also robust towards view-point variations

(Fig. 5, right): as can be seen on these images, the cat and

the screen were detected flawlessly regardless of the camera

position and lighting. Furthermore, under normal illumina-

tion conditions we were able to get correct predictions for

the majority of complex classes like Waterfall or Mountain

that contain many elements from other categories such as

blue / cloudy sky, snow, lake and / or greenery. For in-

stance, in Fig. 6 one can see the waterfall flowing on the

slope of a hill, and the image itself has many similarities

to the class Mountain. This makes it particularly difficult

to make correct predictions. However, our model was able

to do so as we trained it with a variety of complex scenery,

e.g., for the above class we used images containing differ-

ent weather conditions, mountains with and without snow

as well as photos with and without lakes, greenery, etc.

8



Figure 8. Incorrect predictions for classes Mountain and Waterfall

for images with over- and under-exposed regions.

Though we did not observe any major issues under good

lighting conditions, some problems might appear when pho-

tos have large over- or under-exposed regions. Fig. 8

demonstrates the classification results obtained on the im-

age with an over-exposed sky area: instead of being blue,

the top left corner of the photo is completely white since

the Galaxy J7 camera cannot handle HDR scenes due to the

limited sensor bit-width. Though the model was still able

to recognize waterfall in this case, this was only the second

top prediction, and the general object class was detected as

Snow. An opposite example is shown on the right photo:

as half of the image was almost completely dark, the net-

work suggested that this is the Night Shot scene. In gen-

eral, the standard ambient light installed nowadays in any

smartphone can be used to deal with this problem. Another

possible solution would be a control loop that is based on

the selected scene. For example, if the Night Shot scene is

predicted, the camera adjusts its ISO level to brighten up the

image, and thus a better prediction could be made.

Two other minor problems are related to our camera app

implementation. As we do not rotate the image based on

gyroscope data, its position is not correct when the smart-

phone is in landscape mode, and thus the predictions might

also be distorted as shown in Fig. 9. Finally, when point-

ing the camera at scenery or objects that are not present in

our training set, the resulting probabilities for all classes are

close to zero, and thus the output is almost random. This

problem can be easily fixed by adding a threshold for the

probabilities obtained before the Softmax layer: no predic-

tions are returned if this threshold is not reached for any

scene category.

During our field testing we used both the MobileNet-V1

and MobileNet-V2 based models. Overall, their predictions

are very close for the majority of scenes. The biggest dif-

ference between them is that the latter network produces

slightly more accurate results for standard object categories

such as Dog, Screen, Flower, etc., while the MobileNet-V1

Figure 9. Model predictions for the same mountain scene in por-

trait (left) and landscape (right) modes.

is able to identify more challenging scenery like Cloudy Sky

a bit more precisely, which aligns well with our previous

observations. Otherwise, one can select one of these two

models solely based on the ops / layer support, runtime and

size requirements.

Lastly, the camera quality might also impact the accu-

racy of the obtained predictions. For instance, when trying

to capture close-up images, we could not always achieve

good results with the Galaxy J5. On the other hand, the

Galaxy S9 performed very well as shown in Fig. 10: it can

shoot photos at closer distances and has large aperture op-

tics resulting in greatly improved image quality compared

to the Galaxy J5. Therefore, the model also performed bet-

ter on the Galaxy S9 device.

5.4. MAI 2021 Camera Scene Detection Challenge

The considered CamSDD dataset was also used in the

MAI 2021 Real-Time Camera Scene Detection Challenge,

where the goal was to develop fast and accurate quantized

Figure 10. Model predictions for the same Macro scene obtained

on the Samsung Galaxy J5 (left) and the Samsung Galaxy S9

(right) smartphones.

9



scene classification models for mobile devices. A detailed

description of the solutions obtained in this challenge is pro-

vided in [16]. This competition was a part of a larger Mobile

AI 2021 Workshop4 targeted at efficient models for different

mobile-related tasks such as learned smartphone ISP on mo-

bile NPUs [13], real image denoising on mobile GPUs [12],

quantized image super-resolution on Edge SoC NPUs [20],

real-time video super-resolution on mobile GPUs [18], and

fast single-image depth estimation on mobile devices [15].

6. Conclusion

This paper defines the problem of efficient camera scene

detection for mobile devices with deep learning. We pro-

posed a novel large-scale CamSDD dataset for this task that

is composed of 30 most vital scene categories for mobile

cameras. An efficient MobileNet-based solution was devel-

oped for this problem that demonstrated a top-1/top-3 accu-

racy of more than 94% and 98%, respectively, and achieved

more than 200 FPS on the latest mobile NPUs. A thorough

in-the-wild testing of the proposed solution revealed its high

performance and robustness to various challenging scenes,

shooting conditions and environments. Finally, we made

the dataset and the designed models publicly available to

establish an efficient baseline solution for this task. The

problem of accurate camera scene detection will also be ad-

dressed in the next Mobile AI challenges to further boost the

precision and efficiency of the scene classification models.

References

[1] Asus: AI Scene Detection ZenFone 5. https://www.

youtube.com/watch?v=GZjaInF-lrY. 1

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016. 5

[3] Android Neural Networks API. https://developer.

android.com/ndk/guides/neuralnetworks. 3

[4] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,

Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel

zero shot quantization framework. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13169–13178, 2020. 4

[5] Cheng-Ming Chiang, Yu Tseng, Yu-Syuan Xu, Hsien-Kai

Kuo, Yi-Min Tsai, Guan-Yu Chen, Koan-Sin Tan, Wei-Ting

Wang, Yu-Chieh Lin, Shou-Yao Roy Tseng, et al. Deploying

image deblurring across mobile devices: A perspective of

quality and latency. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 502–503, 2020. 3, 4

[6] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and

Amos J Storkey. Cinic-10 is not imagenet or cifar-10. arXiv

preprint arXiv:1810.03505, 2018. 2

4https://ai-benchmark.com/workshops/mai/2021/

[7] TensorFlow Lite Android Camera Demo. https :

/ / github . com / tensorflow / examples /

tree / master / lite / examples / image _

classification/android. 8

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 2

[9] Huawei: Have fun with the Master Ai scene recogni-

tion feature. http://web.archive.org/web/

20210511112959/https://consumer.huawei.

com/uk/support/faq/have-fun-with-the-

master-ai-scene-recognition-feature/. 1

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1314–1324, 2019. 3, 4

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2, 4

[12] Andrey Ignatov, Kim Byeoung-su, and Radu Timofte. Fast

camera image denoising on mobile gpus with deep learn-

ing, mobile ai 2021 challenge: Report. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2021. 10

[13] Andrey Ignatov, Jimmy Chiang, Hsien-Kai Kuo, Anastasia

Sycheva, and Radu Timofte. Learned smartphone isp on mo-

bile npus with deep learning, mobile ai 2021 challenge: Re-

port. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 0–0,

2021. 10

[14] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth

Vanhoey, and Luc Van Gool. Wespe: weakly supervised

photo enhancer for digital cameras. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 691–700, 2018. 4

[15] Andrey Ignatov, Grigory Malivenko, David Plowman,

Samarth Shukla, and Radu Timofte. Fast and accurate single-

image depth estimation on mobile devices, mobile ai 2021

challenge: Report. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2021. 10

[16] Andrey Ignatov, Grigory Malivenko, and Radu Timofte. Fast

and accurate quantized camera scene detection on smart-

phones, mobile ai 2021 challenge: Report. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 0–0, 2021. 10

[17] Andrey Ignatov, Jagruti Patel, and Radu Timofte. Rendering

natural camera bokeh effect with deep learning. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 418–419, 2020. 1, 3

[18] Andrey Ignatov, Andres Romero, Heewon Kim, and Radu

Timofte. Real-time video super-resolution on smartphones

with deep learning, mobile ai 2021 challenge: Report. In

10

https://www.youtube.com/watch?v=GZjaInF-lrY
https://www.youtube.com/watch?v=GZjaInF-lrY
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://ai-benchmark.com/workshops/mai/2021/
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
http://web.archive.org/web/20210511112959/https://consumer.huawei.com/uk/support/faq/have-fun-with-the-master-ai-scene-recognition-feature/
http://web.archive.org/web/20210511112959/https://consumer.huawei.com/uk/support/faq/have-fun-with-the-master-ai-scene-recognition-feature/
http://web.archive.org/web/20210511112959/https://consumer.huawei.com/uk/support/faq/have-fun-with-the-master-ai-scene-recognition-feature/
http://web.archive.org/web/20210511112959/https://consumer.huawei.com/uk/support/faq/have-fun-with-the-master-ai-scene-recognition-feature/


Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition Workshops, pages 0–0, 2021.

10

[19] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,

Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:

Running deep neural networks on android smartphones. In

Proceedings of the European conference on computer vision

(ECCV), pages 0–0, 2018. 1, 3, 7

[20] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Abdel

Younes. Real-time quantized image super-resolution on mo-

bile npus, mobile ai 2021 challenge: Report. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops, pages 0–0, 2021. 10

[21] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. In 2019 IEEE/CVF International Confer-

ence on Computer Vision Workshop (ICCVW), pages 3617–

3635. IEEE, 2019. 1, 3, 7

[22] Dmitry Ignatov and Andrey Ignatov. Controlling informa-

tion capacity of binary neural network. Pattern Recognition

Letters, 138:276–281, 2020. 4

[23] ImageNet Large Scale Visual Recognition Challenge

(ILSVRC). https : / / www . image - net . org /

challenges/LSVRC/. 4

[24] Samsung: What is Scene Optimizer? http://web.

archive.org/web/20210511113128/https://

www.samsung.com/global/galaxy/what-is/

scene-optimizer/. 1

[25] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018. 4

[26] Sambhav R Jain, Albert Gural, Michael Wu, and Chris H

Dick. Trained quantization thresholds for accurate and effi-

cient fixed-point inference of deep neural networks. arXiv

preprint arXiv:1903.08066, 2019. 4

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 2

[29] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.

Learning filter basis for convolutional neural network com-

pression. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 5623–5632, 2019. 3

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 2

[31] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 3296–3305, 2019. 3

[32] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of

the European conference on computer vision (ECCV), pages

722–737, 2018. 4

[33] Anton Obukhov, Maxim Rakhuba, Stamatios Georgoulis,

Menelaos Kanakis, Dengxin Dai, and Luc Van Gool. T-basis:

a compact representation for neural networks. In Interna-

tional Conference on Machine Learning, pages 7392–7404.

PMLR, 2020. 3

[34] Image Classification on ImageNet Benchmark.

https://paperswithcode.com/sota/image-

classification-on-imagenet. 3

[35] Genevieve Patterson and James Hays. Sun attribute database:

Discovering, annotating, and recognizing scene attributes.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2751–2758. IEEE, 2012. 2

[36] Nokia N90 Camera Review. https://web.archive.

org / web / 20210509105712 / https : / / www .

gsmarena.com/nokia_n90-review-45.php. 1

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 3, 4

[38] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang,

Chao Yang, and Chunfang Liu. A survey on deep transfer

learning. In International conference on artificial neural net-

works, pages 270–279. Springer, 2018. 3

[39] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019. 3, 4

[40] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 3

[41] TensorFlow: Post training quantization. https://www.

tensorflow . org / lite / performance / post _

training_quantization. 7

[42] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki

Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,

Thomas Kemp, and Akira Nakamura. Mixed precision dnns:

All you need is a good parametrization. arXiv preprint

arXiv:1905.11452, 2019. 4

[43] Xiaomi Redmi 7A update brings AI Scene De-

tection. http : / / web . archive . org /

web / 20210511113950 / https : / / www .

themobileindian.com/news/xiaomi- redmi-

7a - update - brings - ai - scene - detection -

portrait-mode-27681. 1

[44] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-

dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,

Kan Chen, et al. Fbnetv2: Differentiable neural architecture

search for spatial and channel dimensions. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12965–12974, 2020. 4

11

https://www.image-net.org/challenges/LSVRC/
https://www.image-net.org/challenges/LSVRC/
http://web.archive.org/web/20210511113128/https://www.samsung.com/global/galaxy/what-is/scene-optimizer/
http://web.archive.org/web/20210511113128/https://www.samsung.com/global/galaxy/what-is/scene-optimizer/
http://web.archive.org/web/20210511113128/https://www.samsung.com/global/galaxy/what-is/scene-optimizer/
http://web.archive.org/web/20210511113128/https://www.samsung.com/global/galaxy/what-is/scene-optimizer/
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://web.archive.org/web/20210509105712/https://www.gsmarena.com/nokia_n90-review-45.php
https://web.archive.org/web/20210509105712/https://www.gsmarena.com/nokia_n90-review-45.php
https://web.archive.org/web/20210509105712/https://www.gsmarena.com/nokia_n90-review-45.php
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
http://web.archive.org/web/20210511113950/https://www.themobileindian.com/news/xiaomi-redmi-7a-update-brings-ai-scene-detection-portrait-mode-27681
http://web.archive.org/web/20210511113950/https://www.themobileindian.com/news/xiaomi-redmi-7a-update-brings-ai-scene-detection-portrait-mode-27681
http://web.archive.org/web/20210511113950/https://www.themobileindian.com/news/xiaomi-redmi-7a-update-brings-ai-scene-detection-portrait-mode-27681
http://web.archive.org/web/20210511113950/https://www.themobileindian.com/news/xiaomi-redmi-7a-update-brings-ai-scene-detection-portrait-mode-27681
http://web.archive.org/web/20210511113950/https://www.themobileindian.com/news/xiaomi-redmi-7a-update-brings-ai-scene-detection-portrait-mode-27681


[45] Robert J Wang, Xiang Li, and Charles X Ling. Pelee: A real-

time object detection system on mobile devices. Advances

in Neural Information Processing Systems, 31:1963–1972,

2018. 3

[46] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 10734–10742, 2019. 4

[47] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,

and Antonio Torralba. Sun database: Large-scale scene

recognition from abbey to zoo. In 2010 IEEE computer so-

ciety conference on computer vision and pattern recognition,

pages 3485–3492. IEEE, 2010. 2

[48] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-

ing He. Exploring randomly wired neural networks for im-

age recognition. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1284–1293, 2019. 3

[49] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,

Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-

tization networks. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

7308–7316, 2019. 4

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

Advances in neural information processing systems, pages

3320–3328, 2014. 3

[51] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. Lsun: Construction of a

large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015. 2

[52] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-

ralba, and Aude Oliva. Learning deep features for scene

recognition using places database. In Advances in neural

information processing systems, pages 487–495, 2014. 2

[53] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 633–641,

2017. 2

12


