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Abstract

Monocular (relative or metric) depth estimation is a crit-

ical task for various applications, such as autonomous vehi-

cles, augmented reality and image editing. In recent years,

with the increasing availability of mobile devices, accurate

and mobile-friendly depth models have gained importance.

Increasingly accurate models typically require more com-

putational resources, which inhibits the use of such mod-

els on mobile devices. The mobile use case is arguably the

most unrestricted one, which requires highly accurate yet

mobile-friendly architectures. Therefore, we try to answer

the following question: How can we improve a model with-

out adding further complexity (i.e. parameters)?

Towards this end, we systematically explore the design

space of a relative depth estimation model from various di-

mensions and we show, with key design choices and abla-

tion studies, even an existing architecture can reach highly

competitive performance to the state of the art, with a frac-

tion of the complexity. Our study spans an in-depth back-

bone model selection process, knowledge distillation, inter-

mediate predictions, model pruning and loss rebalancing.

We show that our model, using only DIW as the supervi-

sory dataset, achieves 0.1156 WHDR on DIW with 2.6M

parameters and reaches 37 FPS on a mobile GPU, without

pruning or hardware-specific optimization. A pruned ver-

sion of our model achieves 0.1208 WHDR on DIW with 1M

parameters and reaches 44 FPS on a mobile GPU.

1. Introduction

The acquisition of accurate depth information from a

scene is an integral part of computer vision, as it provides

crucial information of the present 3D structure. This in-

formation is imperative to various applications, such as

augmented reality, compositing, scene manipulation and

robotics. Accurate depth information has traditionally been

acquired using multi-camera/stereo setups, LIDARs and

Figure 1. Parameter count vs. DIW WHDR scores. Our mod-

els achieve highly competitive results, despite being significantly

smaller. Each color represents one method; duplicates of each

color represent different results using the same architecture (ex-

cept the ones denoted by ours). Refer to Table 7 for more details.

other specialized sensors. The use of such sensors in mo-

bile/edge devices may dramatically increase the cost or may

not be feasible due to other constraints. Depth estimation

using a single camera offers a simpler and a low-cost alter-

native to such traditional setups.

Learning-based methods which model the necessary

cues for depth estimation have been proposed in [6, 5,

24, 38, 18]. Parallel to these works, instead of predict-

ing metric depth, in-the-wild depth estimation scenarios

opted to predict relative depth estimates [47, 46, 3]. Self-

supervised methods were also shown to be viable alterna-

tives for monocular depth estimation [7, 8, 14].

The literature primarily focuses on higher accuracy, at

the cost of runtime performance and compute requirements,

which are not feasible for mobile/edge applications. To ad-

dress this, lightweight depth estimators have been proposed

[44], either by using small backbones or by systematically

designing efficient depth estimators. However, such designs

have generally been evaluated on restricted cases and not in-



the-wild scenarios, which mobile/edge devices operate in.

In this paper, we perform a systematic study and present

a detailed pipeline to generate a compact monocular rela-

tive depth estimation model. We evaluate and adapt, with

key design choices, existing advances in the field, such as

knowledge distillation [26], intermediate depth predictions

[8], loss rebalancing [20] and pruning [49]. The contribu-

tions of our paper are summarized as follows:

• We alter a knowledge distillation pipeline [26] and

show that a pixel-wise regression loss, with a suitable

teacher network, achieves higher accuracy.

• We augment a loss rebalancing pipeline [20] to work

effectively with intermediate prediction layers and

show that balancing the decay rate of loss terms and

emphasising distillation losses in early training stages

help achieve accuracy boosts.

• Our model, despite being 20x smaller than the state-of-

the-art and using only DIW as the supervisory dataset,

achieves 0.1156 WHDR on DIW and runs at 37 FPS on

a mobile GPU. A pruned version of our model, despite

being 50x smaller than the state-of-the-art, achieves

0.1208 WHDR and runs at 44 FPS on a mobile GPU.

2. Related Work

2.1. Monocular Depth Estimation

Monocular depth estimation is inherently an ill-posed

problem as there is no unique solution (i.e. The same

scenes can be projected to the 2D space using non-unique

depth maps). Despite this, several cues can be used to

restrict the solution space. Using the combination of lo-

cal predictions [37], semantic-guided predictions [23], non-

parametric sampling [15], retrieval [17] and super-pixel op-

timization [25] methods are examples of such approaches.

Seminal work of Eigen et al. [6] showed a two-stage

CNN can learn to infer depth without explicit feature craft-

ing, paving the way for end-to-end solutions for depth es-

timation. Laina et al. [18] utilized an altered version of

ResNet-50 and showed accuracy improvements. Lee et al.

[19] showed frequency-domain aggregation of depth map

candidates can produce accurate depth maps. Hu et al. [13]

showed a feature fusion scheme can improve predictions.

Intermediate depth predictions [8], loss rebalancing [20],

semantics-driven depth predictions [43], depth estimation

with uncertainty [33], attention [48] and geometric con-

straints [50] have also proven to be viable improvements.

Such advances have been made possible thanks to large

datasets with dense depth ground-truths, such as NYUv2

[30], KITTI [5], Mannequin Challenge (MC) [21] and oth-

ers. Metric depth annotations are, however, quite laborious

to obtain, suffer from scale incompabilities and can fail to

generalize to unconstrained settings. These problems are

partially alleviated by self-supervision, where minimizing a

form of reconstruction error using unlabeled monocular se-

quences is shown to be a viable alternative [7, 8, 14]. A par-

allel line of work focuses on relative depth estimation, es-

pecially for in-the-wild scenarios, by using ordinal ground-

truths between pairs of pixels. It was shown that relative

depth ground-truth can be used to infer dense or relative

depth maps successfully [3]. Several relative depth datasets

are proposed [46, 47] to facilitate research in this area.

2.2. Lightweight Models

The advances in depth estimation generally come at the

cost of increased computational budgets. For mobile/edge

applications, it is imperative to have an accurate model that

can perform in real-time in resource-constrained environ-

ments. A natural starting point is to replace the backbones

of existing models with lightweight alternatives, such as

MobileNet [36], GhostNet [9] and Fbnet [45]. Addition-

ally, knowledge distillation [26], reduced precision training

and network pruning [49] are common approaches to re-

duce model size. Several other studies focused on produc-

ing efficient depth estimators from scratch, such as feature-

pyramid based models [32], low-latency decoder designs

[44] and reinforcement-learning based pruning models [42].

A similar work to ours is reported in [2]. Authors com-

pare several lightweight depth estimation models by using

a knowledge-distillation based training and perform cross-

dataset experiments to assess generalization. Our study dif-

fers in several aspects: (1) we present a detailed evaluation

and design process for architecture selection, (2) show that

a combination of knowledge distillation, (3) intermediate

prediction layers and (4) loss rebalancing can achieve com-

petitive results using relative depth ground-truth.

3. Methodology

In this section, we outline our design choices and sys-

tematic study to produce an efficient depth estimator.

3.1. Model Design

One of the most critical parts of a machine-learning pro-

cess is the design of the architecture. We base our model

design on U-Net [35] and systematically improve the de-

sign by selecting encoder and decoder topologies.

First, we evaluate several encoders while keeping the de-

coder fixed (except matching the required filter numbers of

the encoder) as the one in [44]. We evaluate ShuffleNetv2

[27], MNasNet [39], MobileNetv2 [36], MobileNetv3 [12],

EfficientNet [40] variants, MixNet [41], GhostNet [9] and

FastDepth [44]. Second, we focus on the decoder design.

For the various encoders mentioned above, we compare

NNConv5 [44] and an FbNet-based [45] decoder layers.



Our final architecture is based on a MobileNetv2 encoder

and an FbNet-based decoder. We observe MobileNetv2

to have a good trade-off between efficiency and accuracy,

whereas the FbNet based decoder is smaller and more ac-

curate than the alternatives. We also update the decoder by

replacing its last layer with a simple upsampling layer and

include five skip connections from encoder to decoder. Our

final network architecture is shown in Figure 2.

3.2. Motivation and Baselines

3.2.1 Motivation

Model performance. First, we need to consider the use of

mobile depth estimators; they need to work well in arguably

the most in-the-wild setting. Increasing the model complex-

ity for a mobile device is generally not an option. Therefore,

we need to answer the first question; How can we improve

a model’s performance without adding additional complex-

ity? We try to answer this question in Section 3.3

Ground-truth. Second, we need to consider the nature

of ground-truth; one may assume metric depth annotations

are required for in-the-wild settings. However, depending

on the use case, metric depth may not be necessary. In ap-

plications such as image relighting and visual effects, we

may not need to know the metric depth for each pixel, but

knowing their ordering relative to other pixels can be suf-

ficient. Therefore, we need to answer the second question;

What type of ground-truth annotations do we want?

Ordinal ground truths, where point-pair relations for one

or several points per image are given, are suitable annota-

tions for such scenarios. Relative depth annotations are eas-

ier to generate, do not suffer from scale incompatibilities

and are more robust to outliers [4]. Moreover, relative depth

models can learn strong priors, which can then be projected

to any scale in metric depth scenarios. In light of these, we

opt to use relative ground-truth annotations.

3.2.2 Baselines

We select datasets that best reflect the in-the-wild case; Red-

Web [46], DIW [3] and Mannequin Challenge [21]. The

first two have relative ground-truths, which are suitable for

our use case. We base our study on performance on DIW,

due to several reasons; i) it represents in-the-wild the best

due to its size and variance, ii) it is arguably the most suit-

able datasets for relative depth and iii) its evaluation met-

rics are the widely used standard for in-the-wild scenarios.

Evaluating our improvements requires a baseline, and to-

wards this end, we train our model on each dataset and also

sequentially on all of them to serve as a baseline. Next, we

formulate the losses used to train our model.

Mannequin Challenge. For training our model on Man-

nequin Challenge dataset, we use the losses formulated in

the original paper [21]. The final loss function consists of

three loss terms, which is defined as

Lsi = Lmse + a1Lgrad + a2Lsm (1)

where the first term Lmse is the scale-invariant mean

squared error, the second term Lgrad is multi-scale gradi-

ent term that encourages smoother gradient changes and

sharper depth discontinuities in the predictions, the third

term Lsm is the multi-scale edge-aware smoothness term

that encourages smooth interpolation of depth values in tex-

tureless regions and a1/a2 are loss weights.

DIW. Training on DIW is based on the ranking loss [3],

which is defined as

ψk(I, ik, jk, rk, z) =











rk = 1, log(1 + exp(zjk − zik))

rk = −1, log(1 + exp(zik − zjk))

rk = 0, (zik − zjk)
2

(2)

where ik, jk and rk represent first point, second point and

their ground-truth relations for the query k in training image

I and z is the predicted depth map. Ground-truth relations

are encoded as 1,−1, 0 for ordinal relations closer, further

and equal, respectively.

RedWeb. Training on RedWeb is done with an improved

ranking loss [46], which is defined as1

ψk =

{

lk 6= 0, log(1 + exp((−zik + zjk)lk))

lk = 0, (zik − zjk)
2

(3)

where ψ is parametrized by input image I , z is the estimated

depth map, and ij , jk, lk represent first point, second point

and their ordinal relations, respectively.

3.3. Towards a Better Depth Estimator

Now that we have finalized our model design in Section

3.1 and obtained baselines in Section 3.2, we explore ways

to improve our model’s accuracy, without adding additional

parameters or compute requirements.

Intermediate Predictions. First, we integrate interme-

diate prediction layers to our model [8, 51], which produce

multiple outputs during training. One key difference here

is that we remove the intermediate prediction layers after

training, and thus preserve the model complexity. The use

of intermediate predictions in decoder layers acts as a reg-

ularizer and it forces the encoder to learn better represen-

tations. We train our network on the combined loss of last

and intermediate prediction layers, which is defined as

Laux =
N
∑

i=1

λiLi (4)

1Readers are referred to original papers for further details.
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Figure 2. Our architecture and training pipeline. The decoder layers based on FBNet [45] are shown in detail in bottom right. We train our

model on DIW (Laux−rk in Eq. (5)) and also distill knowledge [26] from a high-capacity model [4] (Lpa and Laux−RMSE in Eq. (5)).

During training, we train with intermediate prediction layers which are removed during inference. Our multiple loss terms are balanced

during training in real-time [20].

where Li is the loss2, λi is the weight term and i∈N rep-

resents the (intermediate and final) predictions3. Our fi-

nal model has two intermediate prediction layers based on

FbNet-like upsampling layers that are used in our decoder.

We integrate two intermediate prediction layers after second

and third decoder layers and use loss weights 0.5, 0.25, 0.25
for the final and intermediate predictions, respectively.

Knowledge Distillation. Second, we use a knowl-

edge distillation mechanism to exploit knowledge learned

by larger models. Knowledge distillation is data-efficient

method to transfer the knowledge of a large model to a com-

pact model, and leads to accuracy improvements without

adding further complexity to the model.

Our knowledge distillation mechanism follows the work

of Liu et al. [26], where we use as teacher the EncDecRes-

Net architecture trained on RedWeb, DIW and Y3D datasets

[4]. The original knowledge distillation approach formu-

lates three losses to transfer the knowledge to the student; a

pixel-wise loss operating on binned depth classes (between

student and teacher networks), pair-wise loss operating on

feature representations of teacher and student network, and

a holistic loss that also trains a discriminator such that the

student (i.e. generator) outputs accurate depth maps.

Our implementation differs from the original in several

aspects; i) we change the classification-based formulation

with simple RMSE for pixel-wise loss, ii) remove holis-

tic loss and iii) use a different teacher network. We se-

2
Li is the ranking loss (Equation (2)) in second term of Equation (5)

and RMSE in in the first term of Equation (5).
3In our equations, the summation operator over batches is omitted for

brevity.

lect our teacher based on its performance on DIW. We use

RMSE for pixel-wise loss since no scale issues are ex-

pected (teacher is trained on DIW) and RMSE is one of the

strongest supervision available in this scenario. We remove

holistic loss since we observe our model reaches its capacity

rather quickly, and generator/discriminator pair fail to con-

verge in this time frame. Finally, we heuristically select the

feature layers for pair-wise loss and set our student model

as the model explained in previous sections, with the addi-

tional intermediate prediction layers. Our model is trained

with the loss defined as

Lkd = λ1LauxRMSE (S(I), τ(I)) + λ2Lauxrk(S(I), Y (I))

+λ3Lpa(S(I)ℓ, τ(I)ℓ)

(5)

where S and τ are student and teacher networks, I is the

training sample, Y (.) is the ground-truth label, Lpa is the

pairwise loss operating on feature representations ℓ, and λ
values are loss weights. We enforce pixelwise (RMSE)

and ranking loss (rk) to every prediction, and enforce pair-

wise loss between penultimate (decoder) layers of S and τ .

Loss Rebalancing. As can be seen in Equations (4) and

(5), there are multiple loss terms driving the model training,

which results in another layer of parameter tuning. This is a

laborious task as loss values have different value scales and

decay rates, which requires periodic scaling of loss weights

to facilitate adequate contribution for each loss term.

We alleviate this problem by using automatic loss bal-

ancing algorithm proposed in [20]. Authors of the origi-

nal paper formulate an algorithm that i) performs an initial



training stage and records the loss values, ii) scales the val-

ues to have a level playing field across loss terms and iii)

periodically updates the weights by taking into account the

rate of decrease for each loss. The algorithm is a scalable

one as it also allows emphasising hard or easy losses first,

which are defined so based on the way they decay.

We integrate the said loss rebalancing algorithm with key

differences; i) we do not include separate weights for aux-

iliary layers and keep them wrapped (i.e. Laux shown in

Equation (4) has fixed λ values), ii) we omit the loss weight

initialization/scaling stage and set all weights equal to each

other iii) emphasize hard losses first and then easy losses

during our training. We do not include separate weights

for auxiliary layers because doing so means giving more

weights to intermediate losses, which can lead to insuffi-

cient supervision for the deeper layers of the decoder. We

omit the initial loss weight scaling because we observe

that different loss terms have significantly different value

scales, and levelling these value scales earlier in the train-

ing is likely to degrade the performance. Moreover, we see

that focusing on the hard losses first emphasise distillation

losses in early training, which essentially is a form of pre-

training. We hypothesize this setting is likely to be more

beneficial. Essentially, instead of manually choosing λ1, λ2
and λ3 of Equation (5), loss rebalancing adaptively chooses

and changes them during training.

Final Words. The final training pipeline is shown in

Figure 2. We also prune our model using NetAdapt [49]; we

remove the intermediate prediction layers, prune the model

and finetune on DIW using the same training pipeline.

4. Experiments

4.1. Experimental Setup

We use PyTorch [31] for training and convert the mod-

els to TFLite for performance evaluation [1]. We load

ImageNet-pretrained weights for our encoder and initialize

the weights using [10] for the decoder.

NYUv2 Depth. [30] includes 48K RGB-D images with

a size of 640x480 and the majority of images are in indoor

settings. Similar to [44], the model is trained with a batch

size of 8 and a starting learning rate of 0.01, which decays

by an order of magnitude every 10 epochs. We train for a

total of 30 epochs and optimize with SGD, with a momen-

tum of 0.9 and a weight decay of 0.0001. The training is

performed with ℓ1 loss. We use scaling, rotation, color jit-

ter/normalization and random flipping as training augmen-

tations. Augmented data is then resized and center-cropped

to 224x224. We use RMSE and δ1 metrics for evaluation.

NYUv2 dataset is used in Section 3.1, where the model de-

signs are compared for various encoder/decoder pairs.

Mannequin Challenge. includes 2695 monocular se-

quences (∼150K frames) with a size of 640x480. Despite

its size, since the dataset primarily includes people, its scene

distribution is still restricted. The model is trained with a

batch size of 16 and a starting learning rate of 0.0004, using

the loss function shown in Equation (1). Training is done

for 12 epochs with Adam [16] optimiser, where we halve

the learning rate every 4th epoch. We use three scales for

Lsm in Equation (1) and use rotation, color and depth nor-

malization and random flipping as data augmentations. The

data is finally resized and then random-cropped to 224x224.

We use Scale-Invariant RMSE as the evaluation metric [21].

MC dataset is used in Section 3.2 to create our baselines.

RedWeb. includes 3600 images with dense and relative

depth annotations for every pixel in the image [46]. Despite

its large scene variance, its size is a limiting factor. The

model is trained using a batch size of 4 and a starting learn-

ing rate of 0.0004, with the loss function shown in Equation

(3). Training is done for 250 epochs with Adam optimizer,

where learning rate is halved every 50th epoch. We sample

3000 points for each image randomly and augment the data

with rotation, color jitter, color normalization and random

flips. The data is resized and random-cropped to 224x224.

RedWeb is used in Section 3.2 to create our baselines.

DIW. includes 495K images with relative depth anno-

tations, where a point-pair is sampled per image. DIW is

the largest among all others, both in size and distribution.

We train using a batch size of 4 and a starting learning rate

of 0.0001, with the loss function shown in Equation (2)4.

Training is performed for 5 epochs and Adam optimizer is

used, where we halve the learning rate every epoch. The

images are resized to 224x448 resolution and then fed to

the network. We use WHDR as the evaluation metric [3].

DIW is used in Section 3.2 to create our baselines, as well

as in Section 3.3 to train our final depth estimator5.

4.2. Model Design

Results for encoder architectures are shown in Table 1,

where EfficientNet-based encoders have the best accuracy.

In overall, however, MobileNetv2 has the best complexity-

accuracy trade-off, therefore it is the best choice available.

Results for decoder architecture comparisons are shown

in Table 2. There is a consistent trend regardless of the

encoders; FBNet-based decoders outperform NNConv5 de-

coders while having significantly fewer parameters. See-

ing that MNet v2 + FBNet model gives the best parame-

ter/accuracy trade-off, we further remove its last layer of the

decoder and replace it with a simple upsampling operation

(last row, Table 2) and see that it outperforms the original

architecture (penultimate row, Table 2). Our architecture,

therefore, is chosen as MNet v2 + FBNetx112 and will be

the one used in the following sections.

4We add other losses to DIW training in Section 3.3.
5RMSE, WHDR and SI-RMSE are measured on NYUv2, DIW and

MC datasets, respectively in Tables 3 to 6.



Model RMSE ↓ δ1 ↑ Parameters (M)

ShuffleNet v2 [27] 0.615 0.749 2.0

MNasNet [39] 0.608 0.758 4.0

MobileNet v2 [36] 0.583 0.775 3.1

MobileNet v3 [12] 0.607 0.749 5.1

EfficientNet ES [42] 0.572 0.782 5.0

EfficientNet B0 [42] 0.581 0.778 4.9

GhostNet [9] 0.618 0.750 5.4

MixNet M [41] 0.589 0.767 4.5

MixNet S [41] 0.589 0.766 3.6

FastDepth [44] 0.599 0.775 3.9

Table 1. Different encoder architectures’ performance on NYUv2,

where decoder is fixed to NNConv5 [44].

Model RMSE ↓ δ1 ↑ Parameters (M)

EfNet ES [42] + NNConv5 [44] 0.572 0.782 5.0

EfNet ES [42] + FBNet [45] 0.534 0.802 4.7

MixNet M [41] + NNConv5 [44] 0.589 0.766 4.5

MixNet M [41] + FBNet [45] 0.582 0.773 3.6

GhostNet [9] + NNConv5 [44] 0.618 0.750 5.4

GhostNet [9] + FBNet [45] 0.596 0.756 4.3

MNet v2 [36] + NNConv5 [44] 0.583 0.775 3.1

MNet v2 [36] + FBNet [45] 0.567 0.782 2.6

MNet v2 [36] + FBNet [45] x112 0.564 0.790 2.6

Table 2. Different decoder architectures’ performance on NYUv2.

Our model is shown in the last row, which has the best perfor-

mance/accuracy trade-off.

4.3. Baselines

Our baseline results are shown in Table 3. For NYUv2

and MC, best results are obtained when we train on them,

as expected. The second row shows that we achieve 0.1484

WHDR in DIW, if we train on DIW exclusively. When

we train on MC, RedWeb and DIW sequentially, we get

significant improvements and achieve 0.1316 WHDR. This

shows that the distribution of DIW is large and can make

use of other datasets with comparably limited data distribu-

tion. Our baseline is shown in the last row of Table 3, which

is an improved version of the vanilla training on DIW.

4.3.1 Ablation Study

We now study the contributions of our design choices; inter-

mediate predictions, knowledge distillation and loss rebal-

ancing. In this section, we perform training only on DIW,

but evaluate on all three datasets (MC, RedWeb, DIW).

Intermediate Predictions. We first study the effect of

having intermediate prediction layers in our model. We con-

Training Dataset RMSE ↓ WHDR ↓ SI-RMSE ↓

NYUv2 0.564 0.3294 0.3809

DIW 1.332 0.1484 0.4662

RedWeb 1.326 0.2046 0.3973

MC 1.274 0.2401 0.1097

RedWeb → DIW 1.319 0.1386 0.4999

MC → DIW 1.326 0.1376 0.3973

MC → RedWeb → DIW 1.313 0.1316 0.4551

Table 3. Our model trained on various datasets. → indicates se-

quential training. The last row shows our baseline.

duct experiments in two training settings to assess interme-

diate predictions’ usefulness; we train on all three datasets

sequentially and also train on DIW with knowledge dis-

tillation. For both settings, we show results with one and

two intermediate prediction layers, where loss weights are

λ1 = 0.5, λ2 = 0.5 and λ1 = 0.5, λ2 = λ3 = 0.25 for

one and two intermediate prediction layers, respectively6.

Results are shown in Table 4.

Results show intermediate prediction layers achieve bet-

ter results across different datasets. Adding one intermedi-

ate prediction layer has a degrading effect, but when we add

two intermediate prediction layers we get improvements.

In sequential training on all our datasets, we get slight

loss in WHDR, but achieve improvements in SI-RMSE and

RMSE. When trained on DIW with knowledge distillation,

we get modest improvements with intermediate prediction

on SI-RMSE and WHDR, but lose some accuracy in NYU.

In overall, intermediate predictions help achieve better ac-

curacy, especially when we train on DIW with knowledge

distillation, without additional model complexity.

Knowledge distillation We now study the effect of

knowledge distillation7 pipeline; we analyse the contribu-

tion of each loss we introduce to the training, and compare

our results to the baseline we created in Section 3.2. We set

equal loss weights λ1 = λ2 = 1.0 for pixelwise and pair-

wise losses (refer to Equation (5)) throughout our experi-

ments and set intermediate prediction layer loss weights as

λ1 = 0.5, λ2 = λ3 = 0.25 (refer to Equation (4)). We also

experiment with the holistic loss term defined in the origi-

nal paper; we use hinge loss for adversarial training and set

the loss weight as 0.05. We update the discriminator every

two iterations to inhibit the learning process of the discrim-

inator. Results are shown in Table 5.

Results show that knowledge distillation introduces sig-

nificant improvements over our baseline, despite using only

DIW as the supervisory dataset. Moreover, including only

the pixel-wise loss improves our results, which suggests that

6We experiment with different numbers of intermediate prediction lay-

ers and loss weights, but we do not include all the experiments for brevity.
7In Tables 5 to 7, KD stands for supervision from the teacher.



Model and Training Data RMSE ↓ WHDR ↓ SI-RMSE ↓

No IP (MC → RedWeb → DIW) 1.313 0.1316 0.4551

1 IP (MC → RedWeb → DIW) 1.312 0.1331 0.4179

2 IP (MC → RedWeb → DIW) 1.308 0.1337 0.4441

No IP (DIW + knowledge distillation) 1.294 0.1202 0.4396

1 IP (DIW + knowledge distillation) 1.298 0.1214 0.4467

2 IP (DIW + knowledge distillation) 1.303 0.1198 0.4213

Table 4. Contributions of intermediate predictions (IP). Number of

intermediate predictions are shown in model details.

Model and Training Data RMSE ↓ WHDR ↓ SI-RMSE ↓

Baseline (MC → RedWeb → DIW ) 1.313 0.1316 0.4551

PI-only (No dataset supervision) 1.299 0.1253 0.4491

Ranking + PI (DIW) 1.298 0.1202 0.4374

Ranking + PI + PA (DIW + KD) 1.294 0.1202 0.4396

Ranking + PI + PA + GAN (DIW + KD) 1.294 0.1204 0.4319

Ranking + PI + PA + 2 IP (DIW + KD) 1.303 0.1198 0.4213

Table 5. Contributions of knowledge distillation approach. PI, PA

and GAN are pixelwise, pairwise and holistic losses [26].

although the teacher network is trained on relative depth an-

notations, using metric supervision (via RMSE) from the

teacher is a viable way to distill knowledge, both in terms

of relative and metric depth accuracy. Pairwise loss does

introduce slight improvements, however, holistic loss fails

to introduce any improvements. This is due to the fact that

our model overfits after five epochs, and the discriminator

fails to converge in this limited training duration. The final

model with two intermediate predictions produces the best

scores, validating our design process.

Loss rebalancing We study the effect of loss balancing;

we analyse initial loss weight scaling, emphasizing easy or

hard losses first and wrapping auxiliary layers (i.e. not au-

tomatically rebalancing λ values in Equation (4), but fixing

them instead). We perform loss rebalancing five times every

epoch and base our experiments on the best model of pre-

vious section. We compare our approach with another loss

balancing method [28]. Results are shown in Table 6.

Results show that loss rebalancing introduces further im-

provements. MTAdam [28] decreases our accuracy across

the board. Loss weight initialization degrades our results

severely, suggesting that balancing only the loss decay rate

is better than balancing the loss value scales as well as the

decay rate. Wrapping intermediate predictions as one loss

term is the sensible choice; the alternative is to empha-

size intermediate prediction losses, which means only early

parts of the decoder will get the required supervisory sig-

nal. Lastly, we see learning hard losses and then easy losses

works better than the alternative; when we focus on hard

losses first, we emphasize pixelwise and pairwise losses ini-

tially, and then the ranking loss. Effectively, we perform the

knowledge transfer first and then train our model with DIW

Model and Training Data RMSE ↓ WHDR ↓ SI-RMSE ↓

Baseline (MC → RedWeb → DIW ) 1.313 0.1316 0.4551

Ours (no loss rebalancing) (DIW + KD) 1.303 0.1198 0.4213

Ours + MTAdam [28] (DIW + KD) 1.316 0.1328 0.4704

Ours + WI + easy → hard (DIW + KD) 1.688 0.1332 0.5876

Ours + no WI + easy → hard, FIP (DIW + KD) 1.300 0.1226 0.4286

Ours + no WI + hard → easy, FIP (DIW + KD) 1.300 0.1156 0.4292

Table 6. Contributions of multi-loss rebalancing approach. WI and

FIP stand for loss weight initialization and fixed intermediate pre-

diction weights, respectively. Arrows show which losses the algo-

rithm considers the first (i.e. hard losses and then easy losses).

ground-truth annotations. The rate of loss weight change is

large for pairwise loss (0.33 to 0.1), pixelwise loss’ weights

are stable (0.33 to 0.285) but ranking loss gains attention in

the later stages of the training (0.33 to 0.9).

4.4. Final Results

We compare our model against state-of-the-art methods

on DIW. We exclusively report WHDR scores as it is the

primary evaluation metric for depth in-the-wild scenarios,

as explained in Section 3.2.1. Ours is our best model (i.e.

last row of Table 6). Results are shown in Table 7.

Results show our approach has the best WHDR value

where DIW is the only supervisory dataset. Models exceed-

ing our results train on multiple datasets, which makes our

model the most data efficient. Moreover, we train on a reso-

lution of 224x448, whereas others train on larger resolutions

([4, 29, 46, 34] train on 384x384)8. A strong contender is

[34], where a lightweight model trained on 256x256 res-

olution achieves 0.1344 WHDR. This is an impressive re-

sult despite not being trained on DIW, however this model

is trained on ten other datasets and ours is better by 0.2

WHDR despite being smaller. All the successful methods

use ResNet [11] architecture; our method outperforms them

in cases where DIW is the only supervisory dataset, with a

significantly less complex model. We also report the results

of the pruned versions of our model (last three rows of Ta-

ble 7). Our pruned model is still the best where DIW is the

only supervisory dataset, with only 1M parameters.

Qualitative results are shown in Figure 3. Compared to

larger models trained on multiple datasets including metric

depth annotations, our results are competitive despite being

trained only on ordinal pairs. Runtime results are shown

in Table 8. [3] 9 performs bad, especially on CPU, due

to its non-mobile friendly architecture. [34] performs well,

but can not achieve real-time on CPU. Compared with two

other lightweight models, our model is significantly faster

and reaches real-time on CPU and GPU with better WHDR.

Metric depth performance. We also report metric

depth results despite training only on ordinal pairs. Two

8 [3] trains on 240x320. No such information is available for [22].
9We use an unofficial implementation of [3], available at https://

github.com/Turmac/DIW_TF_Implementation.



   Input                    [3]      [4]                   Ours                Ours-pv1           Ours-pv2           Ours-pv3

Figure 3. Zero-shot qualitative results on COCO dataset. From left to right; input, [3] (trained on NYUv2+DIW), [4] (trained on Red-

Web+DIW+Y3D), ours, ours-prunedv1, ours-prunedv2 and ours-prunedv3. Ours are trained on DIW with knowledge distillation.

Method Training Data WHDR ↓ Parameter Count

Chen et al. [3] DIW 0.2214 5.3M

Chen et al. [3] NYU + DIW 0.1439 5.3M

Li [22] MegaDepth 0.2297 5.3M

Xian et al. [46] DIW 0.1498 53.1M

Xian et al. [46] RW + DIW 0.1137 53.1M

Ranftl et al. [34] RW + DL + MV + MD + WS 0.1246 105.3M

Ranftl et al. [34] RW + DL + MV + MD + WS † 0.1344 21.3M

Mertan et al. [29] DIW 0.1250 53.1M

Mertan et al. [29] RW + DIW 0.1101 53.1M

Chen et al. [4] RW + DIW + Y3D 0.1059 53.1M

Our baseline MC-RW-DIW 0.1316 2.6M

Ours DIW (+ KD) 0.1156 2.6M

Ours-pruned v1 DIW (+ KD) 0.1190 1.9M

Ours-pruned v2 DIW (+ KD) 0.1196 1.5M

Ours-pruned v3 DIW (+ KD) 0.1208 1M

Table 7. Comparison with the state-of-the-art baselines on DIW

test set. Several methods use the same architecture, therefore pa-

rameter counts for methods with no released weights are assumed

to be the same. Row denoted with † trains on 10 datasets.

methods in Table 7 report metric results on NYU with mod-

els trained only on ordinal pairs and none report SI-RMSE

on MC. [3] trains on NYU+DIW and [46] trains on NYU

and report 1.10 and 1.07 RMSE on NYU, respectively. Ours

achieves 1.30 RMSE (last row of Table 6), which is worse

than the others. However, [46] trains on NYU and thus

”specialize” in indoor scenarios, and [3] trains on signifi-

cantly more data. Improved performance on metric depth

using only relative annotations is a future venue we are

planning to explore, but is not within the scope of this study.

5. Conclusion

Monocular relative depth estimation is an important

task in various applications, specifically in mobile settings.

Device Model CPU GPU NNAPI

Samsung Galaxy S10+

[34] 274 99 332

[3] 3361 390 1790

Ours 116 74 108

Ours -pruned v1 113 72 105

Ours -pruned v2 104 69 103

Ours -pruned v3 101 67 101

Samsung Galaxy S21

[34] 215 53 141

[3] 3101 215 375

Ours 54 27 43

Ours -pruned v1 47 26 25

Ours -pruned v2 43 25 35

Ours -pruned v3 39 23 33

Table 8. Average runtime performances of our model and other

lightweight methods [34, 3]. Runtime values are in ms and mea-

sured with same input resolution (256x256).

Therefore, it is imperative to design a model that is effi-

cient and accurate in in-the-wild scenarios. To this end, we

explore the design space of a lightweight relative depth esti-

mator for mobile devices. Following a carefully performed

model design process, we present a pipeline where we im-

prove our model with a combination of knowledge distilla-

tion, intermediate predictions and loss rebalancing.

Our model achieves real-time performance on both mo-

bile CPU and GPU and reaches 0.1156 WHDR on DIW, the

best result among models that use only DIW as the super-

visory dataset, with a fraction of model complexity. Our

model, trained only on relative depth annotations, without

pruning or hardware optimizations, has 2.6M parameters

and runs with 37 FPS on a mobile GPU. A significantly

pruned version achieves 0.1208 WHDR on DIW with 1M

parameters and runs with 44 FPS on a mobile GPU.
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