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Abstract

As the “Mobile AI” revolution continues to grow, so does

the need to understand the behaviour of edge-deployed deep

neural networks. In particular, MobileNets [9, 22] are the

go-to family of deep convolutional neural networks (CNN)

for mobile. However, they often have significant accuracy

degradation under post-training quantization. While stud-

ies have introduced quantization-aware training and other

methods to tackle this challenge, there is limited under-

standing into why MobileNets (and potentially depthwise-

separable CNNs (DWSCNN) in general) quantize so poorly

compared to other CNN architectures. Motivated to gain

deeper insights into this phenomenon, we take a different

strategy and study the multi-scale distributional dynamics

of MobileNet-V1, a set of smaller DWSCNNs, and regular

CNNs. Specifically, we investigate the impact of quantiza-

tion on the weight and activation distributional dynamics

as information propagates from layer to layer, as well as

overall changes in distributional dynamics at the network

level. This fine-grained analysis revealed significant dy-

namic range fluctuations and a “distributional mismatch”

between channelwise and layerwise distributions in DWSC-

NNs that lead to increasing quantized degradation and dis-

tributional shift during information propagation. Further-

more, analysis of the activation quantization errors show

that there is greater quantization error accumulation in

DWSCNN compared to regular CNNs. The hope is that such

insights can lead to innovative strategies for reducing such

distributional dynamics changes and improve post-training

quantization for mobile.

1. Introduction

The past decade has seen an enormous boom in deep

learning research, particularly in the fields of NLP and com-

puter vision. As a result, deep learning algorithms such as

convolutional neural network (CNN) models have become

Figure 1. Layerwise average precison (see Eq. 2) of trained weights in

the DWS-Convnets. Low average precision at depthwise-conv layers indi-

cate a mismatch between each individual channel’s dynamic range and the

entire tensor’s range. The resulting distributional dynamics lead to signifi-

cantly higher accumulation of quantization errors. We see a similar pattern

in the batchnorm-folded weights and activations of DWSCNNs.

more accessible than ever. Mobile devices have become

a primary platform on which CNNs have rapidly prolifer-

ated. “AI on-the-edge,” has driven an increasing demand

for deploying fast, power-efficient CNNs that can maintain

highly accurate performance while operating in a resource-

constrained environment. Consequently, various avenues of

research have looked at making CNNs efficient enough to

“fit” on mobile devices. Methods such as efficient CNN

architecture design [9, 22, 8, 2, 10, 32, 29], weight prun-

ing [5, 16, 28, 17, 15], and quantization [12, 5, 20, 21] are

all aimed at reducing the storage, computation, and memory

requirements of CNN algorithms. Among these methods,

depthwise separable convolutional networks (DWSCNN)

such as in MobileNets [9, 22, 8] and fixed point inte-

ger/quantized inference have become ubiquitous tools for

designing efficient “Mobile AI” algorithms.

As Mobile AI continues to proliferate, so does the

need to better understand the behaviour of the models



Figure 2. Comparing layerwise QMSE of Regular-ConvNets (left), DWS-ConvNets (center), and MobileNets-V1 (right). We are able to see how depthwise

separable convolutional networks accumulate much more QMSE on average when traversing through a quantized DWSCNN. Note: Some outliers were

removed from the Regular-ConvNet and DWS-ConvNet plots as they were on a much larger scale and obscure the rest of the results. See supplementary

materials for diagrams of all layerwise QMSE results. The solid line represents the average values across 5 quantization trials and the shaded region is the

standard deviation.

we deploy. Despite the success of MobileNets, there has

been a well-documented phenomenon wherein simple post-

training static quantization completely destroys their accu-

racy. While several works have designed solutions to ad-

dress this, there is still limited data in the literature demon-

strating why MobileNets quantize so poorly compared to

other CNN architectures. Furthermore, we wonder if this

problem is inherent to all DWSCNN architectures.

To investigate this, we do our best to recreate

MobileNets-V1 training procedure described in [9], with

some modifications for the CIFAR-10 experiments. Fur-

thermore, based on findings in [30], it is possible that

choices such as the random weight initialization method and

potentially even the use of BatchNorm with/without scal-

ing (ie. the γ parameter described in [11]) could have sig-

nificant impact on the trained layerwise distributions to be

quantized. Thus, we perform a systematic, iterative series of

experiments to isolate the impact of these factors on quan-

tized MobileNets-V1 performance. This experiment is then

repeated on a set of smaller DWSCNN architectures (that

we will refer to as DWS-ConvNets) to investigate if this

problem is inherent to depthwise-separable convolutional

networks in general. For a baseline comparison, we also

train a corresponding set of Regular-ConvNets. Our sys-

tematic ablation study is coupled with fine-grained, layer-

wise analysis similar to those described in [30, 29].

We find that significantly fluctuating dynamic ranges

from layer-to-layer and a “distributional mismatch” be-

tween channelwise and layerwise distributions leads to in-

creasing quantized degradation. Consequently, our fine-

grained analysis shows that the quantized mean squared

error (QMSE), quantized cross-entropy (QCE), and quan-

tized KL-Divergence (QKL-Div) (defined in Sec. 4) of each

layer’s activations accumulate much more during forward

propagation of quantized DWSCNNs and lead to noticeably

larger degradation compared to regular CNNs. Thus, indi-

cating that there is greater error propagation and shifting

distributional dynamics as information propagates through

each layer. Furthermore, DWSCNNs appear to have much

larger variation in quantization behaviour depending on the

method of random weight initialization used. These ob-

served phenomena would explain why channelwise quan-

tization [14] and methods such as [21, 18, 24] that decrease

distributional mismatch can provide impressive improve-

ments on MobileNets quantization.

Utilizing fine-grained analysis enables a detailed view

of the multi-scale distributional dynamics of our CNN ar-

chitectures. Thus, facilitating better understanding of how

CNN design choices affect the final trained distributions of

weights and activations and the complex interactions be-

tween each layer’s feature mappings and quantization noise.

Tracking the layerwise QMSE captures the spatial-channel

structure of accumulating quantized activation errors and

helps us understand how these errors propagate through the

network. Meanwhile, QCE/QKL-Div quantifies the degree

of distributional shift and change in distribution dynamics

of a network’s representations when quantization noise is

introduced. Analyzed together, we can gain a deeper un-

derstanding of the complex system dynamics involved in

CNN quantization. We hope that these insights can lead to

further innovative strategies for reducing and compensating

for such distributional dynamics changes and improve post-

training quantization for mobile deployment.

2. Motivations and Related Work

2.1. Efficient CNN Architectures via Depthwise
Separable Convolutions

Efficient CNN architecture design is now a well-

established field with several works [9, 22, 32, 2, 10]

proposing various design patterns for factorizing convo-

lution layers and reducing the computational load of in-

ference. A primary tool for reducing the number of pa-

rameters and multiply-accumulate (MAC) operations in a

CNN is depthwise-separable (DWS) convolution. Archi-

tectures such as MobileNets [9, 22, 8], ShuffleNets [32]

and FBNets [27] make heavy use of DWS convolution

to achieve state-of-the-art accuracy for low-power/efficient



CNNs. Depthwise separable convolution factorizes regu-

lar or “dense” convolution into a K × K depthwise con-

volution (that is, each convolutional kernel of size K is

only applied to a single input channel) for low-dimensional

feature extraction and a “pointwise” convolution (a dense

convolution with 1 × 1 kernels) for mixing channel infor-

mation. As mentioned in [9], this leads to between 8 to

9 times reduction in MACs for a 3 × 3 DWS convolution

compared to its regular/dense counterpart. Furthermore,

with publicly available ImageNet-trained checkpoints of the

MobileNets “model family,” their efficient, generalized fea-

tures can be leveraged for various application-specific tasks

via transfer learning. In this way they can be used “off-

the-shelf” for finetuning with much less training overhead

compared to training accurate models from scratch. How-

ever, even though MobileNets can already run incredibly

fast with floating point (fp32) operations on a mobile CPU,

further storage and power reductions can be gained if they

are converted for 8-bit fixed point integer (quint8) operation

and run on low-power, parallelized hardware such as a dig-

ital signal processor (DSP). Consequently, creating robust

models that maintain accuracy during quantized inference

has been a growing area of research with particular interest

in improving the robustness of compact models like Mo-

bileNets.

2.2. Fixed­point Quantization For Efficient Mobile
Inference

In conjunction with efficient CNN architecture design,

low bit-width (16 bits and below, though most commonly

8 bits), fixed point quantization has enabled highly par-

allelized processors such as DSPs to run fast, low-power

inference entirely with integer arithmetic. These methods

[12, 19, 4] project the neural network weights and acti-

vations of each layer onto a low-dimensional, discretized

space while minimizing loss of information. However, the

noise induced by quantization error has complex interac-

tions with the weights and activations of each layer and its

impact on CNN output behaviour can be difficult to quan-

tify. Thus, it can often be hard to predict which CNN archi-

tectures will quantize well (ie. are “quantization friendly”)

and are suitable for deployment.

Given the problem of quantization robustness, various

research works [12, 13, 21] explore methods to increase the

robustness of models to quantization noise. Methods such

as quantization-aware training (QAT) [12] and trained quan-

tization thresholds (TQT) [13] make use of simulated quan-

tization and the straight-through estimator (STE) to train the

network to adapt to quantization noise. Note that since these

methods simulate quantization, the training is bit-width spe-

cific and a network must be retrained if one were to adapt a

model for a different bit-width. Furthermore, quantization

training can require hyperparameter tuning of its own, thus

extending the design cycle. Oftentimes, the choice of how

to optimize a model for quantization is based on available

tools and trial-and-error. While many of the devised “quan-

tization fixes” have shown remarkable results [21, 20, 13],

they aren’t necessarily guaranteed to transfer across appli-

cations. For example, image reconstruction and other con-

tinuous value prediction/regression tasks may have a much

lower error tolerance than classification. Thus, we seek to

use a systematic approach which can help delineate the var-

ious factors affecting quantization robustness. In this way,

we can make more informed choices on how to improve the

quantized behaviour of our CNN models.

[23, 18] perform a layerwise analysis of the signal-

to-quantization-noise-ratio (SQNR) in a CNN. They use

SQNR to estimate the amount of useful information passing

from layer to layer in a quantized CNN and seek to maxi-

mize it. [23] analyzes layerwise SQNR to identify architec-

tural choices that were hurting the quantized performance

of MobileNets-V1. Similarly, we would like to use layer-

wise analysis to better understand the poor quantization of

MobileNets and other DWSCNN models.

In a newer area of “robust quantization” works, the au-

thors of [1, 24] seek to train models that are generally robust

to quantization noise (using L1 gradient regularization and

a kurtosis-based weight regularizer (KURE) respectively)

such that they can be easily quantized at varying bit-widths

using simple post-training quantization methods. These

kinds of models are trained to be robust to a broad range of

perturbations that may be induced by various uniform quan-

tization settings such that they can be smoothly deployed

to quantized inference environments without further, poten-

tially costly, quantization-based optimizations. Drawing on

the ideas of [23, 1, 24] we hope to gain better insight on

how different parametrizations of CNN can be constructed

that tend towards learning quantization-robust solutions. In

our work, we will focus on 8-bit uniform quantization de-

scribed in [12] as it has become the most common method

adopted in industry for mobile devices.

3. Experiments

Since we want to explore quantization results of both

“official” MobileNets architecture and DWSCNNs in gen-

eral, we run multiple trainings with the CIFAR-10 dataset.

In this study, the detailed multi-scale distribution dynamics

analysis on the variety of quantized network architectures

was conducted on CIFAR-10 as its smaller size allows for

a broader ablation study given resource constraints. Thus,

we can quickly do a systematic comparison across multi-

ple DWS convolution based architectures. Due to the much

smaller 32× 32 images of CIFAR-10, we could not use the

exact same MobileNets-V1 architecture as reported in [9].

The main architectural differences are as follows:



Figure 3. Simple ToyNet Macroarchitecture. For our ablation study we define a simple macroarchitecture (ie. input/output channels of each layer, stride,

kernel size). We then ablate through a few hyperparameter settings that might affect the final layerwise distributions. Shape of weight tensors for regular

convolution is in square brackets. For DWS-ConvNets, we replace regular convolution with DWS convolution while preserving input/output dimensions.

Network Architecture FP32 Acc (%) QUINT8 Acc (%) QMSE QCE QKL-Div Percent Acc Decrease

MobileNet No Gamma HeNorm 78.63 65.92 +/- 5.76 0.0266 +/- 0.011 1.08 +/- 0.45 0.76 +/- 0.43 16.16 +/- 7.32

MobileNet No Gamma GlorotUni 78.73 71.88 +/- 1.79 0.0186 +/- 0.0029 0.77 +/- 0.065 0.45 +/- 0.065 8.70 +/- 2.28

MobileNet With Gamma HeNorm 78.65 66.11 +/- 4.51 0.0278 +/- 0.0076 1.17 +/- 0.40 0.84 +/- 0.37 15.95 +/- 5.74

MobileNet With Gamma GlorotUni 78.46 65.87 +/- 2.36 0.0273 +/- 0.0046 1.05 +/- 0.13 0.72 +/- 0.13 16.05 +/- 3.01

DWS Conv No Gamma HeNorm 79.48 65.89 +/- 8.29 0.0236 +/- 0.012 1.03 +/- 0.33 0.60 +/- 0.33 17.10 +/- 10.43

DWS Conv No Gamma GlorotUni 78.63 68.93 +/- 2.90 0.0187 +/- 0.0036 0.88 +/- 0.11 0.48 +/- 0.11 12.34 +/- 3.69

DWS Conv With Gamma HeNorm 80.16 70.72 +/- 2.91 0.0187 +/- 0.0040 0.84 +/- 0.095 0.45 +/- 0.095 11.78 +/- 3.63

DWS Conv With Gamma GlorotUni 78.17 45.43 +/- 20.53 0.0592 +/- 0.037 2.51 +/- 1.34 2.04 +/- 1.34 41.88 +/- 26.26

Regular Conv No Gamma HeNorm 87.27 78.29 +/- 2.67 0.0170 +/- 0.0045 0.66 +/- 0.13 0.46 +/- 0.13 10.29 +/- 3.06

Regular Conv No Gamma GlorotUni 86.63 83.32 +/- 0.75 0.00764 +/- 0.0016 0.37 +/- 0.044 0.18 +/- 0.044 3.83 +/- 0.87

Regular Conv With Gamma HeNorm 88.01 80.26 +/- 0.77 0.0152 +/- 0.0013 0.55 +/- 0.022 0.38 +/- 0.022 8.80 +/- 0.88

Regular Conv With Gamma GlorotUni 86.58 81.15 +/- 2.17 0.0113 +/- 0.0044 0.46 +/- 0.11 0.26 +/- 0.11 6.27 +/- 2.51

Table 1. Detailed quantization results for CIFAR-10 networks. Quantization results reported as mean and standard deviation across five

quantization trials. The output QMSE, QCE and QKL-Div of DWS convolution based networks are noticeably higher than regular CNNs.

• We do not downsample with stride = 2 at the first

DWS-Conv block with output channels 128

• We do not downsample with stride = 2 at the first

DWS-Conv block with output channels 1024

• Thus, the input tensor shape to Global Average Pooling

layer is 4× 4× 1024 rather than 1× 1× 1024

In addition to directly comparing regular convolution

vs. depthwise separable convolution, we also performed

additional experiments with ResNet-34 using the same set

of experiment conditions (ie. training hyperparameters,

weight initializer choices, use of BatchNorm γ-scaling).

For ResNet-34, the CIFAR-10 specific architectural mod-

ifications, quantization results, and layerwise plots can be

found in supplementary materials. We refer readers to [9, 7]

for original architecture details. We tried to preserve some

of the overall topologies of MobileNets-V1 (eg. downsam-

pling after the first convolution layer, downsampling when

output channels increase etc.) while creating an architecture

that could get reasonable results. We tried our best to recre-

ate the training process of MobileNets. All experiments

were conducted using Tensorflow 1.15. The optimizer, hy-

perparameters, data augmentations etc. are as follows:

• RMSProp. Momentum and decay = 0.9, epsilon = 1.0

• Training batch size = 128

• Logging and quantization batch size = 800

• Number of epochs = 200

• Initial learning rate 0.045. Scaled by 0.97 each epoch.

• Data augmentation: random rotation, width and height

shift, zoom, random horizontal and vertical flip

While the macroarchitecture and the above listed hyper-

parameters were fixed, we also tried comparing the effect

of weight initializaton method (Glorot Uniform [3] vs He

Normal [6]) and use of BatchNorm scaling (ie. we com-

pared applying BatchNorm with and without γ parameter).

In [30], the authors show that BatchNorm and weight ini-

tialization methods can have a significant effect on quanti-

zation results and so we wanted to observe the effects they

may have had on MobileNets-V1. Some hyperparameter

choices were slightly adapted for CIFAR-10 such as num-

ber of training epochs, learning rate decay schedule etc. We

decided to train for longer and decay the learning rate a lit-

tle bit slower based on similar training setups for CIFAR-

10 experiments such as in [31, 7]. For the DWS-ConvNets

and Regular-ConvNets, we use the architecture described

in Figure 3. Dropout is used in between all dense layers

with a keep-probability of 0.5. Once trained, we follow

the model analysis described in [30, 29] and observe the

statistics of the trained weights, activations, and BatchNorm

folded (BN-Fold) weights1 of each layer (see Eq. 1). Thus,

1Where γ is batchnorm scaling parameter, w and wfold are weights

and BN-Fold weights respectively, EMA(σ2

B) is variance statistics of the

given layer collected during training, ǫ is a small constant for numerical

stability



Network Architecture FP32 Acc (%) QUINT8 Acc (%) QMSE QCE QKL-Div Percent Acc Decrease

MobileNet-V1-1.0-224 71.04 3.00 +/- 0.22 7.95E-4 +/- 8.7E-6 7.46 +/- 0.13 6.47 +/- 0.13 95.78 +/- 0.31

VGG-19 71.00 64.9 +/- 0.31 9.70E-5 +/- 4.1E-6 1.50 +/- 0.019 0.433 +/- 0.019 8.58 +/- 0.43

Table 2. Detailed quantization results for VGG-19 and MobileNet-V1-1.0-224 trained on ImageNet. Quantization results reported as mean

and standard deviation across three quantization trials. While the scale of QMSE is different from CIFAR-10 due to the softmax distribution

being computed over 1000 classes, we observe similar trends of greater accumulated error and distributional shift in MobileNet.

the logging and quantization batch size refers to the batch

size used for computing the activation stats.

wfold =
γw

√

EMA(σ2

B) + ǫ
(1)

Additionally, we also define QMSE, QCE, and QKL-

Div as the mean squared error, cross-entropy, and KL-

Divergence between the fp32 model/hidden-layer outputs

and the dequantized quint8 model/hidden-layer outputs re-

spectively. QMSE quantifies the average distance/error

whereas QCE and QKL-Div are able to capture differences

in the output distribution shapes. Thus, by analyzing these

hidden layer output and model output statistics, we can ob-

serve the accumulated quantization errors as well as the

shifting distribution dynamics at different scales. Note, the

QCE/QKL-Div of hidden layers is computed based on the

distribution of activations aggregated over an entire batch

whereas the QCE/QKL-Div of the model output is com-

puted as the mean cross-entropy/KL-divergence between

the softmax output of the fp32 model and quint8 model (ie.

the same mean cross-entropy loss computation that would

be performed for classification training). We use natural log

for all entropy calculations so as to match and compare with

the cross-entropy loss observed during training. Thus, for

the layerwise quantization error analysis, QCE/QKL-Div il-

lustrate the distributional dynamics of each layer’s represen-

tations under quantization and how they might change dur-

ing quantized information propagation through each layer.

To compute QCE/QKL-Div, we collect histograms of each

layer’s activations for the quint8 and fp32 model. The ap-

proximate discrete distributions are then used for computing

QCE and QKL-Div.

average precision =
1

K

K
∑

i=1

rangei

rangetensor
(2)

For layerwise statistics, we are primarily concerned with

the range and average precision2 of each layer (see Eq. 2,

also defined in [21]). For activations, we perform percentile

clipping to get the range. However, this percentile clipping

slightly differs from true percentile clipping. Instead, we

follow the method in Tensorflow Graph Transform tool [25]

2Where rangei is range of channeli of convolution weights,

rangetensor is range of convolution weight tensor, K is number of chan-

nels/filters

for min/max percentiles since we use it for creating quan-

tized inference graphs. We use min/max percentile of 5%

for both stats logging and activation quantization during in-

ference.

For quantization, we perform 5 trials with randomly

sampled training batches for calibrating activation ranges.

This is to measure the variation in quantized performance

caused by different calibration sets. For each trial, we

record the activation statistics of each layer3 to see how

these distributions change and how they might correlate

with quantization accuracy.

4. Results
In Table 1 we compare a few different testing metrics

for the trained models. In terms of accuracy, we look

at floating point accuracy, quantized accuracy, and rela-

tive/percent accuracy decrease (ie. change in accuracy over

fp32 accuracy). As described in Sec. 3, we also observe

the QMSE, QCE, and QKL-Div between the fp32 model

output and quint8 model output. We see that on average,

MobileNet-V1 and DWS-ConvNets experience much larger

degradation in performance under quantization compared

to the Regular CNNs. This is demonstrated by the much

larger average percent accuracy decrease (13.0 − 32.09 vs.

6.12− 9.22), mean QMSE (0.0186− 0.0592 vs. 0.00764−
0.0170), mean QCE (0.77 − 2.51 vs. 0.37 − 0.66), and

mean QKL-Div (0.45−2.04 vs. 0.18−0.46). Furthermore,

the depthwise-separable based CNNs seem to have much

larger variation in quantization behaviour depending on ran-

dom weight initialization method. In our ResNet-34 experi-

ments, we observed results similar to the Regular-Conv net-

works (see supplementary materials). This is rather inter-

esting since we had initially hypothesized that the residual

learning block might enable learning of more compact dis-

tributions. Thus, reducing quantization noise/errors.

We now move onto a fine-grained analysis of the dis-

tributional dynamics of each network type. Coupled with

the results observed in Table 1, we can gain a deeper un-

derstanding of how each layer’s distributions interact with

quantization and the resulting accumulation of quantization

errors (QMSE) and distributional shifts (QCE/QKL-Div).

5. Discussion

To analyze the layerwise distributions of the different

networks, we collected stats on the range and average pre-

3For activations, we can directly access range from the quantized graph



Figure 4. Layerwise QCE (top row) and QKL-Div (bottom row) for all trained networks. Regular CNN (left), DWS-ConvNet (center), and MobileNets-V1

(right). The drop in QKL-Div might explain why, despite significantly accumulatd QMSE, some networks are able to recover a relatively lower QMSE. The

solid line represents the average values across 5 quantization trials and the shaded region is the standard devation.

Figure 5. Layerwise BN-folded weights dynamic range (top row) and average precision (bottom row) for all trained networks. Regular CNN (left),

DWSCNN (center), and MobileNets-V1 (right). The fluctuating range and average precision help explain the quantization degradation of DWSCNNs.

cisions for the weights, BN-Folded weights, and activations

(see Figures 1, 5). For the sake of space, we have omitted

most of the plots related to the weights distributions since it

is the BN-Folded weights that will get quantized. However,

comparing the distributions of weights before and after BN-

Folding can reveal interesting insights on how each layer is

being scaled and the resulting distributional shift. We also

left out the layerwise activations plots as they follow sim-

ilar trends to the BN-Folded weights. Detailed results and

figures are included in supplementary materials. As men-



Figure 6. Layerwise quantization of VGG-19 and MobileNet-V1 on ImageNet. Layerwise QCE (left), Layerwise QKL-Div (right).

Figure 7. Layerwise weights/BN-Folded weights range of VGG-19 (left) and MobileNet-V1 (center) on ImageNet. Layerwise average precision of

weights/BN-Folded weights of VGG-19 and MobileNet-V1 on ImageNet (right). Note the vastly different scales for weights ranges.

tioned in [29], the average precision gives a measure of how

well the layerwise quantization encodings represent the in-

formation in an individual channel. If the precision is low,

it is possible that the quantization noise may “wash out” the

information of the given individual channel. Thus, range

and average precision capture information about the distri-

butions at both a layerwise and channelwise scale. Together,

they give a picture of the magnitude of quantization noise,

and the potential interactions of information in individual

channels with the quantization noise.

We can see in the plots that the DWS convolution based

architectures have significantly fluctuating ranges and av-

erage precisions. The sharply fluctuating plots illustrate

the poorly behaved distributions of weights and activations

that DWSCNNs tend to learn. Most notably, at depth-

wise convolution layers (even-numbered layers in the plots),

the dynamic range peaks while average precision simulta-

neously drops. Suggesting that features extracted by the

depthwise convolution will have significantly more quan-

tization noise compared to their regular convolution coun-

terparts. Low average precision suggests that the channel-

wise connection sparsity of depthwise-separable convolu-

tions could be a detriment to quantized behaviour, possibly

leading to learned distributions with low inter-channel cor-

relation. Thus, causing tensorwise quantization to be a non-

representative mapping of the weights and activations into

discretized space.

Besides examining the layerwise distributions, we can

directly look at our layerwise quantization noise statistics to

better understand how the observed distributional dynamics

manifest in the quantized behaviour. In Figures 2, 4 we can

observe the interactions between each hidden layer’s output

activations and the noise induced by uniform 8-bit quanti-

zation. It is immediately apparent that QMSE accumulates

significantly more in the DWS-ConvNets and MobileNets-

v1.4 While QMSE captures the 2D-structure of the accumu-

lated quantization error, QCE and QKL-Div describe the

distributional shift induced by quantization and that accu-

mulation during information propagation. From an infor-

mation theoretic perspective, we could interpret them to-

gether as the amount of information in the hidden repre-

sentations and how well the 8-bit encoding is represent-

ing that information. Considering the DWS-ConvNet and

Regular-ConvNet plots, the peaking QCE that coincides

with a drop in QKL-Div could be interpreted as maximal

information being transmitted by later layers (entropy of

the distribution) and a fairly representative mapping of the

hidden distribution from continuous fp32 space to discrete

4As noted in Figure 2, some outliers were removed from the QMSE

plots. Full layerwise QMSE plots in supplementary material



quint8 space. This drop in QKL-Div might explain why

despite relatively high peaks in QMSE, most of the DWS

networks can “recover” and return to a lower QMSE at

the output. The drop in QKL-Div would imply that the

overall distribution of activations is preserved and conse-

quently the relevant information is still passed onto the fol-

lowing layers. By contrast, the quantization noise statis-

tics in MobileNet-v1 demonstrate a steadier level of distri-

butional shift likely due to the deeper architecture. How-

ever, MobileNets still suffers from fluctuating layer dynam-

ics and distributional mismatch leading to an overall larger

accumulation of QMSE. Thus, it is not able to quantize as

well as the Regular-ConvNets.

Based on these insights, we believe there are a few ap-

proaches that could be explored to improve quantization

by either reducing accumulation of errors or improving the

alignment of layerwise and channelwise distributions. Min-

imizing layerwise QMSE in addition to quantized output er-

rors could be beneficial at lower bit-widths (eg. 4-bit, 2-bit

quantization) where the backpropagation of STE’s biased

gradient estimate from the output layer can lead to increas-

ingly inaccurate gradient estimates. The QMSE loss can

act as a closer, more accurate gradient feedback, especially

for earlier layers. With respect to minimizing misalignment

of distributions, finetuning with weight normalization or a

regularizer that better aligns the weight distributions could

help reduce quantization distributional shifts and make the

layer/tensorwise quantization mapping more representative

of the information in each individual channel.

6. ImageNet Analysis

To study the distributional dynamics on more complex

deep neural network architectures and on a much larger

dataset, we conduct a similar analysis on VGG-19 and

MobileNet-V1 trained on ImageNet.5 We follow the same

quantization procedures as described in Section 3. How-

ever, due to time and compute constraints, we limited the

number of quantization trials conducted to 3. We also in-

crease the size of the quantization/activation logging set to

2000. For layerwise quantization and activation stats, we

iterate through 2000 images with batches of 50 images and

compute the mean due to RAM constraints.

Table 2 shows the quantized output results. As expected,

the quantized accuracy drop for MobileNet is catastrophic.

However, the relative degradation of VGG-19 (8.58% rela-

tive accuracy decrease) stays fairly consistent with CIFAR-

10 results. Upon comparing the range and average pre-

cision of the BN-Folded weights6 of the two networks

(see Figure 7) we see that the issue of mismatched dis-

5We leveraged ImageNet-trained fp32 checkpoints of VGG-19 and

MobileNetV1-1.0-224 from [26].
6The VGG-19 checkpoint does not use BatchNorm. Thus we compared

VGG-19 weights to MobileNet BN-Folded weights.

tributions combined with large, spiking dynamic ranges is

even more pronounced in MobileNet trained on ImageNet.

As DWS convolution decouples the convolutional channels

from each other, we believe the diversity of ImageNet data

significantly aggravates the misalignment of channelwise

distributions vs. layerwise distributions and as a result leads

to a significant loss of information. While VGG-19 also has

a decrease in average weight precision near the “middle” of

the network, its dynamic ranges are about an order of mag-

nitude smaller and the average precision is still generally

better.

We see in Figure 6 that the higher layerwise QKL-Div for

MobileNets indicate much greater quantized distributional

shift. Due to differences in preprocessing,7 the layerwise

QMSE and layerwise activations data are on completely

different scales (VGG-19 has much larger ranges). Thus,

making it hard to compare these values.8 However, sim-

ilar to CIFAR-10 results, MobileNet trained on ImageNet

had much larger output QMSE, QCE, and QKL-Div. In-

terestingly, this shows how large dynamic activations range

do not automatically translate to poor quantization perfor-

mance. Instead, accumulated errors, distributional shifts

and the multi-scale distributional dynamics of each layer

should be observed together as a whole to better understand

the quantization dynamics at play.

7. Conclusion

We perform a systematic ablation study with fine-

grained analysis to understand why DWSCNNs seem to

quantize more poorly than regular CNNs on average. We

find that this appears to be inherent to depthwise separa-

ble convolutions owing to the fact that depthwise convo-

lutions tend to learn representations with greatly fluctuat-

ing dynamic ranges and significant intra-layer distributional

mismatch. Analyzing CNN quantization through the lens of

multi-scale distributional dynamics, we observe that depth-

wise convolution based CNNs suffer from larger accumula-

tion of quantization errors and distributional shift. We be-

lieve these insights point to potential new ways to mitigate

such distributional dynamics changes and improve robust-

ness of post-training quantization for efficient depthwise-

convolution based CNNs. As MobileNet-V2 also quantizes

poorly, future work involves extending our analysis to the

inverted bottleneck residual blocks described in [22]. Fur-

thermore, we would also like to try setting certain layers of

a quantized network to floating point operation and observ-

ing the correlation of layerwise QMSE/QCE/QKL-Div with

quantized output behaviour.

7MobileNet scales images to the range [−1, 1] whereas VGG only

zero-centers each RGB channel without scaling
8The activations and QMSE plots are included in supplementary mate-

rials
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