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Abstract

As the “Mobile AI” revolution continues to grow, so does
the need to understand the behaviour of edge-deployed deep
neural networks. In particular, MobileNets [9, 22] are the
go-to family of deep convolutional neural networks (CNN)
for mobile. However, they often have significant accuracy
degradation under post-training quantization. While stud-
ies have introduced quantization-aware training and other
methods to tackle this challenge, there is limited under-
standing into why MobileNets (and potentially depthwise-
separable CNNs (DWSCNN) in general) quantize so poorly
compared to other CNN architectures. Motivated to gain
deeper insights into this phenomenon, we take a different
strategy and study the multi-scale distributional dynamics
of MobileNet-V1, a set of smaller DWSCNNs, and regular
CNNs. Specifically, we investigate the impact of quantiza-
tion on the weight and activation distributional dynamics
as information propagates from layer to layer, as well as
overall changes in distributional dynamics at the network
level. This fine-grained analysis revealed significant dy-
namic range fluctuations and a “distributional mismatch”
between channelwise and layerwise distributions in DWSC-
NNs that lead to increasing quantized degradation and dis-
tributional shift during information propagation. Further-
more, analysis of the activation quantization errors show
that there is greater quantization error accumulation in
DWSCNN compared to regular CNNs. The hope is that such
insights can lead to innovative strategies for reducing such
distributional dynamics changes and improve post-training
quantization for mobile.

1. Introduction

The past decade has seen an enormous boom in deep
learning research, particularly in the fields of NLP and com-
puter vision. As a result, deep learning algorithms such as
convolutional neural network (CNN) models have become
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Figure 1. Layerwise average precison (see Eq. 2) of trained weights in
the DWS-Convnets. Low average precision at depthwise-conv layers indi-
cate a mismatch between each individual channel’s dynamic range and the
entire tensor’s range. The resulting distributional dynamics lead to signifi-
cantly higher accumulation of quantization errors. We see a similar pattern
in the batchnorm-folded weights and activations of DWSCNNS.

more accessible than ever. Mobile devices have become
a primary platform on which CNNs have rapidly prolifer-
ated. “Al on-the-edge,” has driven an increasing demand
for deploying fast, power-efficient CNNs that can maintain
highly accurate performance while operating in a resource-
constrained environment. Consequently, various avenues of
research have looked at making CNNs efficient enough to
“fit” on mobile devices. Methods such as efficient CNN
architecture design [9, 22, 8, 2, 10, 32, 29], weight prun-
ing [5, 16, 28, 17, 15], and quantization [12, 5, 20, 21] are
all aimed at reducing the storage, computation, and memory
requirements of CNN algorithms. Among these methods,
depthwise separable convolutional networks (DWSCNN)
such as in MobileNets [9, 22, 8] and fixed point inte-
ger/quantized inference have become ubiquitous tools for
designing efficient “Mobile AI” algorithms.

As Mobile Al continues to proliferate, so does the
need to better understand the behaviour of the models
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Figure 2. Comparing layerwise QMSE of Regular-ConvNets (left), DWS-ConvNets (center), and MobileNets-V1 (right). We are able to see how depthwise
separable convolutional networks accumulate much more QMSE on average when traversing through a quantized DWSCNN. Note: Some outliers were
removed from the Regular-ConvNet and DWS-ConvNet plots as they were on a much larger scale and obscure the rest of the results. See supplementary
materials for diagrams of all layerwise QMSE results. The solid line represents the average values across 5 quantization trials and the shaded region is the

standard deviation.

we deploy. Despite the success of MobileNets, there has
been a well-documented phenomenon wherein simple post-
training static quantization completely destroys their accu-
racy. While several works have designed solutions to ad-
dress this, there is still limited data in the literature demon-
strating why MobileNets quantize so poorly compared to
other CNN architectures. Furthermore, we wonder if this
problem is inherent to all DWSCNN architectures.

To investigate this, we do our best to recreate
MobileNets-V1 training procedure described in [9], with
some modifications for the CIFAR-10 experiments. Fur-
thermore, based on findings in [30], it is possible that
choices such as the random weight initialization method and
potentially even the use of BatchNorm with/without scal-
ing (ie. the ~ parameter described in [ 1]) could have sig-
nificant impact on the trained layerwise distributions to be
quantized. Thus, we perform a systematic, iterative series of
experiments to isolate the impact of these factors on quan-
tized MobileNets-V1 performance. This experiment is then
repeated on a set of smaller DWSCNN architectures (that
we will refer to as DWS-ConvNets) to investigate if this
problem is inherent to depthwise-separable convolutional
networks in general. For a baseline comparison, we also
train a corresponding set of Regular-ConvNets. Our sys-
tematic ablation study is coupled with fine-grained, layer-
wise analysis similar to those described in [30, 29].

We find that significantly fluctuating dynamic ranges
from layer-to-layer and a “distributional mismatch” be-
tween channelwise and layerwise distributions leads to in-
creasing quantized degradation. Consequently, our fine-
grained analysis shows that the quantized mean squared
error (QMSE), quantized cross-entropy (QCE), and quan-
tized KL-Divergence (QKL-Div) (defined in Sec. 4) of each
layer’s activations accumulate much more during forward
propagation of quantized DWSCNN s and lead to noticeably
larger degradation compared to regular CNNs. Thus, indi-
cating that there is greater error propagation and shifting
distributional dynamics as information propagates through
each layer. Furthermore, DWSCNNs appear to have much

larger variation in quantization behaviour depending on the
method of random weight initialization used. These ob-
served phenomena would explain why channelwise quan-
tization [14] and methods such as [21, 18, 24] that decrease
distributional mismatch can provide impressive improve-
ments on MobileNets quantization.

Utilizing fine-grained analysis enables a detailed view
of the multi-scale distributional dynamics of our CNN ar-
chitectures. Thus, facilitating better understanding of how
CNN design choices affect the final trained distributions of
weights and activations and the complex interactions be-
tween each layer’s feature mappings and quantization noise.
Tracking the layerwise QMSE captures the spatial-channel
structure of accumulating quantized activation errors and
helps us understand how these errors propagate through the
network. Meanwhile, QCE/QKL-Div quantifies the degree
of distributional shift and change in distribution dynamics
of a network’s representations when quantization noise is
introduced. Analyzed together, we can gain a deeper un-
derstanding of the complex system dynamics involved in
CNN quantization. We hope that these insights can lead to
further innovative strategies for reducing and compensating
for such distributional dynamics changes and improve post-
training quantization for mobile deployment.

2. Motivations and Related Work

2.1. Efficient CNN Architectures via Depthwise
Separable Convolutions

Efficient CNN architecture design is now a well-
established field with several works [9, 22, 32, 2, 10]
proposing various design patterns for factorizing convo-
lution layers and reducing the computational load of in-
ference. A primary tool for reducing the number of pa-
rameters and multiply-accumulate (MAC) operations in a
CNN is depthwise-separable (DWS) convolution. Archi-
tectures such as MobileNets [9, 22, 8], ShuffleNets [32]
and FBNets [27] make heavy use of DWS convolution
to achieve state-of-the-art accuracy for low-power/efficient



CNNs. Depthwise separable convolution factorizes regu-
lar or “dense” convolution into a K x K depthwise con-
volution (that is, each convolutional kernel of size K is
only applied to a single input channel) for low-dimensional
feature extraction and a “pointwise” convolution (a dense
convolution with 1 x 1 kernels) for mixing channel infor-
mation. As mentioned in [9], this leads to between 8 to
9 times reduction in MACs for a 3 x 3 DWS convolution
compared to its regular/dense counterpart. Furthermore,
with publicly available ImageNet-trained checkpoints of the
MobileNets “model family,” their efficient, generalized fea-
tures can be leveraged for various application-specific tasks
via transfer learning. In this way they can be used “off-
the-shelf” for finetuning with much less training overhead
compared to training accurate models from scratch. How-
ever, even though MobileNets can already run incredibly
fast with floating point (fp32) operations on a mobile CPU,
further storage and power reductions can be gained if they
are converted for 8-bit fixed point integer (quint8) operation
and run on low-power, parallelized hardware such as a dig-
ital signal processor (DSP). Consequently, creating robust
models that maintain accuracy during quantized inference
has been a growing area of research with particular interest
in improving the robustness of compact models like Mo-
bileNets.

2.2. Fixed-point Quantization For Efficient Mobile
Inference

In conjunction with efficient CNN architecture design,
low bit-width (16 bits and below, though most commonly
8 bits), fixed point quantization has enabled highly par-
allelized processors such as DSPs to run fast, low-power
inference entirely with integer arithmetic. These methods
[12, 19, 4] project the neural network weights and acti-
vations of each layer onto a low-dimensional, discretized
space while minimizing loss of information. However, the
noise induced by quantization error has complex interac-
tions with the weights and activations of each layer and its
impact on CNN output behaviour can be difficult to quan-
tify. Thus, it can often be hard to predict which CNN archi-
tectures will quantize well (ie. are “quantization friendly”)
and are suitable for deployment.

Given the problem of quantization robustness, various
research works [12, 13, 21] explore methods to increase the
robustness of models to quantization noise. Methods such
as quantization-aware training (QAT) [12] and trained quan-
tization thresholds (TQT) [13] make use of simulated quan-
tization and the straight-through estimator (STE) to train the
network to adapt to quantization noise. Note that since these
methods simulate quantization, the training is bit-width spe-
cific and a network must be retrained if one were to adapt a
model for a different bit-width. Furthermore, quantization
training can require hyperparameter tuning of its own, thus

extending the design cycle. Oftentimes, the choice of how
to optimize a model for quantization is based on available
tools and trial-and-error. While many of the devised “quan-
tization fixes” have shown remarkable results [21, 20, 13],
they aren’t necessarily guaranteed to transfer across appli-
cations. For example, image reconstruction and other con-
tinuous value prediction/regression tasks may have a much
lower error tolerance than classification. Thus, we seek to
use a systematic approach which can help delineate the var-
ious factors affecting quantization robustness. In this way,
we can make more informed choices on how to improve the
quantized behaviour of our CNN models.

[23, 18] perform a layerwise analysis of the signal-
to-quantization-noise-ratio (SQNR) in a CNN. They use
SQNR to estimate the amount of useful information passing
from layer to layer in a quantized CNN and seek to maxi-
mize it. [23] analyzes layerwise SQNR to identify architec-
tural choices that were hurting the quantized performance
of MobileNets-V1. Similarly, we would like to use layer-
wise analysis to better understand the poor quantization of
MobileNets and other DWSCNN models.

In a newer area of “robust quantization” works, the au-
thors of [1, 24] seek to train models that are generally robust
to quantization noise (using L; gradient regularization and
a kurtosis-based weight regularizer (KURE) respectively)
such that they can be easily quantized at varying bit-widths
using simple post-training quantization methods. These
kinds of models are trained to be robust to a broad range of
perturbations that may be induced by various uniform quan-
tization settings such that they can be smoothly deployed
to quantized inference environments without further, poten-
tially costly, quantization-based optimizations. Drawing on
the ideas of [23, |, 24] we hope to gain better insight on
how different parametrizations of CNN can be constructed
that tend towards learning quantization-robust solutions. In
our work, we will focus on 8-bit uniform quantization de-
scribed in [12] as it has become the most common method
adopted in industry for mobile devices.

3. Experiments

Since we want to explore quantization results of both
“official” MobileNets architecture and DWSCNNS in gen-
eral, we run multiple trainings with the CIFAR-10 dataset.
In this study, the detailed multi-scale distribution dynamics
analysis on the variety of quantized network architectures
was conducted on CIFAR-10 as its smaller size allows for
a broader ablation study given resource constraints. Thus,
we can quickly do a systematic comparison across multi-
ple DWS convolution based architectures. Due to the much
smaller 32 x 32 images of CIFAR-10, we could not use the
exact same MobileNets-V1 architecture as reported in [9].
The main architectural differences are as follows:
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Figure 3. Simple ToyNet Macroarchitecture. For our ablation study we define a simple macroarchitecture (ie. input/output channels of each layer, stride,
kernel size). We then ablate through a few hyperparameter settings that might affect the final layerwise distributions. Shape of weight tensors for regular
convolution is in square brackets. For DWS-ConvNets, we replace regular convolution with DWS convolution while preserving input/output dimensions.

Network Architecture FP32 Acc (%) | QUINTS Acc (%) QMSE QCE QKL-Div Percent Acc Decrease
MobileNet No Gamma HeNorm 78.63 65.92 +/-5.76 0.0266 +/- 0.011 1.08 +/- 0.45 | 0.76 +/- 0.43 16.16 +/- 7.32
MobileNet No Gamma GlorotUni 78.73 71.88 +/- 1.79 0.0186 +/- 0.0029 | 0.77 +/- 0.065 | 0.45 +/- 0.065 8.70 +/- 2.28
MobileNet With Gamma HeNorm 78.65 66.11 +/- 4.51 0.0278 +/- 0.0076 1.17 +/-0.40 | 0.84 +/- 0.37 15.95 +/-5.74
MobileNet With Gamma GlorotUni 78.46 65.87 +/- 2.36 0.0273 +/- 0.0046 1.05+/-0.13 | 0.72 +/-0.13 16.05 +/- 3.01
DWS Conv No Gamma HeNorm 79.48 65.89 +/- 8.29 0.0236 +/- 0.012 1.03 +/-0.33 | 0.60 +/- 0.33 17.10 +/- 10.43
DWS Conv No Gamma GlorotUni 78.63 68.93 +/- 2.90 0.0187 +/- 0.0036 | 0.88 +/-0.11 0.48 +/- 0.11 12.34 +/- 3.69
DWS Conv With Gamma HeNorm 80.16 70.72 +/- 291 0.0187 +/- 0.0040 | 0.84 +/- 0.095 | 0.45 +/- 0.095 11.78 +/- 3.63
DWS Conv With Gamma GlorotUni 78.17 45.43 +/- 20.53 0.0592 +/- 0.037 2.51+4/-1.34 | 2.04+/-1.34 41.88 +/- 26.26
Regular Conv No Gamma HeNorm 87.27 78.29 +/- 2.67 0.0170 +/- 0.0045 | 0.66 +/- 0.13 | 0.46 +/-0.13 10.29 +/- 3.06
Regular Conv No Gamma GlorotUni 86.63 83.32 +/-0.75 0.00764 +/- 0.0016 | 0.37 +/- 0.044 | 0.18 +/- 0.044 3.83 +/- 0.87
Regular Conv With Gamma HeNorm 88.01 80.26 +/- 0.77 0.0152 +/- 0.0013 | 0.55 +/- 0.022 | 0.38 +/- 0.022 8.80 +/- 0.88
Regular Conv With Gamma GlorotUni 86.58 81.15 +/-2.17 0.0113 +/- 0.0044 | 0.46 +/- 0.11 0.26 +/- 0.11 6.27 +/- 2.51

Table 1. Detailed quantization results for CIFAR-10 networks. Quantization results reported as mean and standard deviation across five
quantization trials. The output QMSE, QCE and QKL-Div of DWS convolution based networks are noticeably higher than regular CNNs.

e We do not downsample with stride = 2 at the first
DWS-Conv block with output channels 128

* We do not downsample with stride = 2 at the first
DWS-Conv block with output channels 1024

¢ Thus, the input tensor shape to Global Average Pooling
layeris 4 x 4 x 1024 rather than 1 x 1 x 1024

In addition to directly comparing regular convolution
vs. depthwise separable convolution, we also performed
additional experiments with ResNet-34 using the same set
of experiment conditions (ie. training hyperparameters,
weight initializer choices, use of BatchNorm ~-scaling).
For ResNet-34, the CIFAR-10 specific architectural mod-
ifications, quantization results, and layerwise plots can be
found in supplementary materials. We refer readers to [9, 7]
for original architecture details. We tried to preserve some
of the overall topologies of MobileNets-V1 (eg. downsam-
pling after the first convolution layer, downsampling when
output channels increase etc.) while creating an architecture
that could get reasonable results. We tried our best to recre-
ate the training process of MobileNets. All experiments
were conducted using Tensorflow 1.15. The optimizer, hy-
perparameters, data augmentations etc. are as follows:

* RMSProp. Momentum and decay = 0.9, epsilon = 1.0
* Training batch size = 128

* Logging and quantization batch size = 800

* Number of epochs =200

e Initial learning rate 0.045. Scaled by 0.97 each epoch.

* Data augmentation: random rotation, width and height
shift, zoom, random horizontal and vertical flip

While the macroarchitecture and the above listed hyper-
parameters were fixed, we also tried comparing the effect
of weight initializaton method (Glorot Uniform [3] vs He
Normal [6]) and use of BatchNorm scaling (ie. we com-
pared applying BatchNorm with and without y parameter).
In [30], the authors show that BatchNorm and weight ini-
tialization methods can have a significant effect on quanti-
zation results and so we wanted to observe the effects they
may have had on MobileNets-V1. Some hyperparameter
choices were slightly adapted for CIFAR-10 such as num-
ber of training epochs, learning rate decay schedule etc. We
decided to train for longer and decay the learning rate a lit-
tle bit slower based on similar training setups for CIFAR-
10 experiments such as in [31, 7]. For the DWS-ConvNets
and Regular-ConvNets, we use the architecture described
in Figure 3. Dropout is used in between all dense layers
with a keep-probability of 0.5. Once trained, we follow
the model analysis described in [30, 29] and observe the
statistics of the trained weights, activations, and BatchNorm
folded (BN-Fold) weights' of each layer (see Eq. 1). Thus,

"Where ~ is batchnorm scaling parameter, w and w fold are weights
and BN-Fold weights respectively, &M A(a%) is variance statistics of the
given layer collected during training, € is a small constant for numerical
stability




Network Architecture | FP32 Acc (%) | QUINTS Acc (%) QMSE QCE QKL-Div Percent Acc Decrease
MobileNet-V1-1.0-224 71.04 3.00 +/- 0.22 7.95E-4 +/- 8.7TE-6 | 7.46 +/-0.13 6.47 +/- 0.13 95.78 +/- 0.31
VGG-19 71.00 64.9 +/- 0.31 9.70E-5 +/- 4.1E-6 | 1.50 +/- 0.019 | 0.433 +/- 0.019 8.58 +/-0.43

Table 2. Detailed quantization results for VGG-19 and MobileNet-V1-1.0-224 trained on ImageNet. Quantization results reported as mean
and standard deviation across three quantization trials. While the scale of QMSE is different from CIFAR-10 due to the softmax distribution
being computed over 1000 classes, we observe similar trends of greater accumulated error and distributional shift in MobileNet.

the logging and quantization batch size refers to the batch
size used for computing the activation stats.

yw
EMA(c%) +e

Additionally, we also define QMSE, QCE, and QKL-
Div as the mean squared error, cross-entropy, and KL-
Divergence between the fp32 model/hidden-layer outputs
and the dequantized quint8 model/hidden-layer outputs re-
spectively. QMSE quantifies the average distance/error
whereas QCE and QKL-Div are able to capture differences
in the output distribution shapes. Thus, by analyzing these
hidden layer output and model output statistics, we can ob-
serve the accumulated quantization errors as well as the
shifting distribution dynamics at different scales. Note, the
QCE/QKL-Div of hidden layers is computed based on the
distribution of activations aggregated over an entire batch
whereas the QCE/QKL-Div of the model output is com-
puted as the mean cross-entropy/KL-divergence between
the softmax output of the fp32 model and quint8 model (ie.
the same mean cross-entropy loss computation that would
be performed for classification training). We use natural log
for all entropy calculations so as to match and compare with
the cross-entropy loss observed during training. Thus, for
the layerwise quantization error analysis, QCE/QKL-Div il-
lustrate the distributional dynamics of each layer’s represen-
tations under quantization and how they might change dur-
ing quantized information propagation through each layer.
To compute QCE/QKL-Div, we collect histograms of each
layer’s activations for the quint8 and fp32 model. The ap-
proximate discrete distributions are then used for computing
QCE and QKL-Div.

D

Wold =

range;

rangétensor

2

. 1

average-precision = - ;

For layerwise statistics, we are primarily concerned with
the range and average precision® of each layer (see Eq. 2,
also defined in [21]). For activations, we perform percentile
clipping to get the range. However, this percentile clipping
slightly differs from true percentile clipping. Instead, we
follow the method in Tensorflow Graph Transform tool [25]

Where range; is range of channel; of convolution weights,
rangetensor 1s range of convolution weight tensor, K is number of chan-
nels/filters

for min/max percentiles since we use it for creating quan-
tized inference graphs. We use min/max percentile of 5%
for both stats logging and activation quantization during in-
ference.

For quantization, we perform 5 trials with randomly
sampled training batches for calibrating activation ranges.
This is to measure the variation in quantized performance
caused by different calibration sets. For each trial, we
record the activation statistics of each layer’® to see how
these distributions change and how they might correlate
with quantization accuracy.

4. Results

In Table 1 we compare a few different testing metrics
for the trained models. In terms of accuracy, we look
at floating point accuracy, quantized accuracy, and rela-
tive/percent accuracy decrease (ie. change in accuracy over
fp32 accuracy). As described in Sec. 3, we also observe
the QMSE, QCE, and QKL-Div between the fp32 model
output and quint8 model output. We see that on average,
MobileNet-V1 and DWS-ConvNets experience much larger
degradation in performance under quantization compared
to the Regular CNNs. This is demonstrated by the much
larger average percent accuracy decrease (13.0 — 32.09 vs.
6.12 —9.22), mean QMSE (0.0186 — 0.0592 vs. 0.00764 —
0.0170), mean QCE (0.77 — 2.51 vs. 0.37 — 0.66), and
mean QKL-Div (0.45 —2.04 vs. 0.18 —0.46). Furthermore,
the depthwise-separable based CNNs seem to have much
larger variation in quantization behaviour depending on ran-
dom weight initialization method. In our ResNet-34 experi-
ments, we observed results similar to the Regular-Conv net-
works (see supplementary materials). This is rather inter-
esting since we had initially hypothesized that the residual
learning block might enable learning of more compact dis-
tributions. Thus, reducing quantization noise/errors.

We now move onto a fine-grained analysis of the dis-
tributional dynamics of each network type. Coupled with
the results observed in Table 1, we can gain a deeper un-
derstanding of how each layer’s distributions interact with
quantization and the resulting accumulation of quantization
errors (QMSE) and distributional shifts (QCE/QKL-Div).

5. Discussion

To analyze the layerwise distributions of the different
networks, we collected stats on the range and average pre-

3For activations, we can directly access range from the quantized graph
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Figure 4. Layerwise QCE (top row) and QKL-Div (bottom row) for all trained networks. Regular CNN (left), DWS-ConvNet (center), and MobileNets-V1
(right). The drop in QKL-Div might explain why, despite significantly accumulatd QMSE, some networks are able to recover a relatively lower QMSE. The

solid line represents the average values across 5 quantization trials and the shaded region is the standard devation.
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Figure 5. Layerwise BN-folded weights dynamic range (top row) and average precision (bottom row) for all trained networks. Regular CNN (left),

DWSCNN (center), and MobileNets-V1 (right). The fluctuating range and average precision help explain the quantization degradation of DWSCNNSs.

cisions for the weights, BN-Folded weights, and activations
(see Figures 1, 5). For the sake of space, we have omitted
most of the plots related to the weights distributions since it
is the BN-Folded weights that will get quantized. However,
comparing the distributions of weights before and after BN-

Folding can reveal interesting insights on how each layer is
being scaled and the resulting distributional shift. We also
left out the layerwise activations plots as they follow sim-
ilar trends to the BN-Folded weights. Detailed results and
figures are included in supplementary materials. As men-
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tioned in [29], the average precision gives a measure of how
well the layerwise quantization encodings represent the in-
formation in an individual channel. If the precision is low,
it is possible that the quantization noise may “wash out” the
information of the given individual channel. Thus, range
and average precision capture information about the distri-
butions at both a layerwise and channelwise scale. Together,
they give a picture of the magnitude of quantization noise,
and the potential interactions of information in individual
channels with the quantization noise.

We can see in the plots that the DWS convolution based
architectures have significantly fluctuating ranges and av-
erage precisions. The sharply fluctuating plots illustrate
the poorly behaved distributions of weights and activations
that DWSCNNs tend to learn. Most notably, at depth-
wise convolution layers (even-numbered layers in the plots),
the dynamic range peaks while average precision simulta-
neously drops. Suggesting that features extracted by the
depthwise convolution will have significantly more quan-
tization noise compared to their regular convolution coun-
terparts. Low average precision suggests that the channel-
wise connection sparsity of depthwise-separable convolu-
tions could be a detriment to quantized behaviour, possibly
leading to learned distributions with low inter-channel cor-
relation. Thus, causing tensorwise quantization to be a non-

representative mapping of the weights and activations into
discretized space.

Besides examining the layerwise distributions, we can
directly look at our layerwise quantization noise statistics to
better understand how the observed distributional dynamics
manifest in the quantized behaviour. In Figures 2, 4 we can
observe the interactions between each hidden layer’s output
activations and the noise induced by uniform 8-bit quanti-
zation. It is immediately apparent that QMSE accumulates
significantly more in the DWS-ConvNets and MobileNets-
v1.* While QMSE captures the 2D-structure of the accumu-
lated quantization error, QCE and QKL-Div describe the
distributional shift induced by quantization and that accu-
mulation during information propagation. From an infor-
mation theoretic perspective, we could interpret them to-
gether as the amount of information in the hidden repre-
sentations and how well the 8-bit encoding is represent-
ing that information. Considering the DWS-ConvNet and
Regular-ConvNet plots, the peaking QCE that coincides
with a drop in QKL-Div could be interpreted as maximal
information being transmitted by later layers (entropy of
the distribution) and a fairly representative mapping of the
hidden distribution from continuous fp32 space to discrete

4As noted in Figure 2, some outliers were removed from the QMSE
plots. Full layerwise QMSE plots in supplementary material



quint8 space. This drop in QKL-Div might explain why
despite relatively high peaks in QMSE, most of the DWS
networks can “recover” and return to a lower QMSE at
the output. The drop in QKL-Div would imply that the
overall distribution of activations is preserved and conse-
quently the relevant information is still passed onto the fol-
lowing layers. By contrast, the quantization noise statis-
tics in MobileNet-v1 demonstrate a steadier level of distri-
butional shift likely due to the deeper architecture. How-
ever, MobileNets still suffers from fluctuating layer dynam-
ics and distributional mismatch leading to an overall larger
accumulation of QMSE. Thus, it is not able to quantize as
well as the Regular-ConvNets.

Based on these insights, we believe there are a few ap-
proaches that could be explored to improve quantization
by either reducing accumulation of errors or improving the
alignment of layerwise and channelwise distributions. Min-
imizing layerwise QMSE in addition to quantized output er-
rors could be beneficial at lower bit-widths (eg. 4-bit, 2-bit
quantization) where the backpropagation of STE’s biased
gradient estimate from the output layer can lead to increas-
ingly inaccurate gradient estimates. The QMSE loss can
act as a closer, more accurate gradient feedback, especially
for earlier layers. With respect to minimizing misalignment
of distributions, finetuning with weight normalization or a
regularizer that better aligns the weight distributions could
help reduce quantization distributional shifts and make the
layer/tensorwise quantization mapping more representative
of the information in each individual channel.

6. ImageNet Analysis

To study the distributional dynamics on more complex
deep neural network architectures and on a much larger
dataset, we conduct a similar analysis on VGG-19 and
MobileNet-V1 trained on ImageNet.> We follow the same
quantization procedures as described in Section 3. How-
ever, due to time and compute constraints, we limited the
number of quantization trials conducted to 3. We also in-
crease the size of the quantization/activation logging set to
2000. For layerwise quantization and activation stats, we
iterate through 2000 images with batches of 50 images and
compute the mean due to RAM constraints.

Table 2 shows the quantized output results. As expected,
the quantized accuracy drop for MobileNet is catastrophic.
However, the relative degradation of VGG-19 (8.58% rela-
tive accuracy decrease) stays fairly consistent with CIFAR-
10 results. Upon comparing the range and average pre-
cision of the BN-Folded weights® of the two networks
(see Figure 7) we see that the issue of mismatched dis-

SWe leveraged ImageNet-trained fp32 checkpoints of VGG-19 and
MobileNetV1-1.0-224 from [26].

9The VGG-19 checkpoint does not use BatchNorm. Thus we compared
VGG-19 weights to MobileNet BN-Folded weights.

tributions combined with large, spiking dynamic ranges is
even more pronounced in MobileNet trained on ImageNet.
As DWS convolution decouples the convolutional channels
from each other, we believe the diversity of ImageNet data
significantly aggravates the misalignment of channelwise
distributions vs. layerwise distributions and as a result leads
to a significant loss of information. While VGG-19 also has
a decrease in average weight precision near the “middle” of
the network, its dynamic ranges are about an order of mag-
nitude smaller and the average precision is still generally
better.

We see in Figure 6 that the higher layerwise QKL-Div for
MobileNets indicate much greater quantized distributional
shift. Due to differences in preprocessing,’ the layerwise
QMSE and layerwise activations data are on completely
different scales (VGG-19 has much larger ranges). Thus,
making it hard to compare these values.® However, sim-
ilar to CIFAR-10 results, MobileNet trained on ImageNet
had much larger output QMSE, QCE, and QKL-Div. In-
terestingly, this shows how large dynamic activations range
do not automatically translate to poor quantization perfor-
mance. Instead, accumulated errors, distributional shifts
and the multi-scale distributional dynamics of each layer
should be observed together as a whole to better understand
the quantization dynamics at play.

7. Conclusion

We perform a systematic ablation study with fine-
grained analysis to understand why DWSCNNs seem to
quantize more poorly than regular CNNs on average. We
find that this appears to be inherent to depthwise separa-
ble convolutions owing to the fact that depthwise convo-
lutions tend to learn representations with greatly fluctuat-
ing dynamic ranges and significant intra-layer distributional
mismatch. Analyzing CNN quantization through the lens of
multi-scale distributional dynamics, we observe that depth-
wise convolution based CNNs suffer from larger accumula-
tion of quantization errors and distributional shift. We be-
lieve these insights point to potential new ways to mitigate
such distributional dynamics changes and improve robust-
ness of post-training quantization for efficient depthwise-
convolution based CNNs. As MobileNet-V2 also quantizes
poorly, future work involves extending our analysis to the
inverted bottleneck residual blocks described in [22]. Fur-
thermore, we would also like to try setting certain layers of
a quantized network to floating point operation and observ-
ing the correlation of layerwise QMSE/QCE/QKL-Div with
quantized output behaviour.

"MobileNet scales images to the range [—1,1] whereas VGG only
zero-centers each RGB channel without scaling

8The activations and QMSE plots are included in supplementary mate-
rials
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