A. Appendix
A.1. Plots From Main CIFAR-10 Ablation Study

Due to space constraints, we ommitted plots of the lay-
erwise weights data from the main paper since the BN-
Folded weights were the ones being quantized. However,
we can see that even prior to BN-Folding, the weights dis-
tributions of MobileNets are poorly behaved. BN-Folding
further aggravates this issue. By analyzing the change
in range/average precision of weights distributions be-
fore/after BN-Folding we can see how certain layers needed
greater scaling to properly normalize their representations.
This implies a greater misalignment in the learned distribu-
tions of that layer. Consequently, we observe even larger
BN-Folding-induced distributional shifts in the ImageNet-
trained MobileNets models (see Figure 8).

We also ommitted the layerwise activation plots as we
felt that they followed very similar trends to the BN-Folded
weights. Those plots can be seen below in Figures 1, 2.

Finally, the layerwise QMSE plots in the main paper had
some outliers ommitted as those networks’ QMSE spiked
so high that we could not display the general behaviour of
the other networks. The full layerwise QMSE plots with
all networks included are in Figure 7. Incidentally, these
outlier networks also suffered from the greatest quantization
degradation.

A.2. ResNet-34 CIFAR-10 Experiment Details

In addition to the Regular-Conv and DWS-Conv net-
works, we also wanted to analyze the multiscale distribu-
tional dynamics of a more complex CNN block. Thus, we
trained a ResNet-34 based architecture with some modifi-
cations for the CIFAR-10 image resolution. Those changes
are as follows:

* We do not downsample with MaxPooling after the very
first conv layer

* We do not downsample with stride = 2 at the first resid-
ual block with output channels 128

* We do not downsample with stride = 2 at the first resid-
ual block with output channels 512

¢ Thus, the input tensor shape to Global Average Pooling
layeris 4 x 4 x 1024 rather than 1 x 1 x 1024

The rest of the training details are the same as those men-
tioned in the Experiments section of the main paper. Full
results from all of the CIFAR-10 trained networks are in
Table 1. Interestingly, the ResNet-34 quantization results
are fairly similar to the Regular-Conv Networks. We had
originally hypothesized that the skip connection may enable
the convolution layers to learn more compact distributions
and have less quantization degradation. However, as seen

from the quantization results and the plots in Figures 3—
6 this was not necessarily the case. It would appear that
while ResNet-34 does indeed learn compact weight distri-
butions (see weights/BN-Fold weights ranges in Figure 3),
the introduction of a skip connection has led to more fluctu-
ations in average precision and possibly offset any potential
gains from the smaller dynamic ranges. However, further
analysis is required to properly understand this. Overall, it
is currently unclear how the introduction of skip connec-
tions might affect the quantization dynamics of the system.
It would be interesting to see how a ResNet and Regular-
ConvNet of equivalent layer-depths behave once trained
and quantized. Additionally, comparing bottleneck residual
block with inverted bottleneck residual (ie. MobileNet-V?2)
block should yield further insights on the interplay between
reduced range, increased distributional mismatches, and the
complex quantization dynamics these systems yield.

A.3. Layerwise Plots From ImageNet Analysis

Here, we’ve included all of the ommitted layerwise plots
from the fine-grained, multiscale analysis of the ImageNet
trained networks. As mentioned in the main paper, it was
hard to compare the layerwise QMSE and Activations data.
The differences in preprocessing for the two networks led
to widely different scales/ranges. Worth noting is the over-
all trends in these distributions. QMSE increases and then
decreases in VGG-19 while for MobileNet-V1 it stays gen-
erally high (compared to our CIFAR-10 networks which
were preprocessed the same way. Eg. Normalized to
the range [-1, 1]) and spikes near the end (see Figure 9).
Furthermore, we still observe similar trends in fluctuat-
ing ranges/average precisions from the layerwise activa-
tions plots in Figure 10. Thus, further supporting our hy-
pothesis that depthwise-separable convolutional networks
tend towards learning mismatched distributions, regardless
of training data.

Worth noting is that the diversity of a large-scale dataset
like ImageNet also seems to have increased mismatch of
distributions for VGG-19 (see in Figure 10 as well as Im-
ageNet results in the main paper). Though the distribu-
tions of VGG-19 are better behaved in general, we see
that regular-conv networks might also benefit from better-
aligned distributional dynamics and the quantized accuracy
drop could be related to the drop in precision plus spike in
range we observe for both the weights and activations near
the “middle” of VGG-19.
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Figure 1. Layerwise weights range (top row) and average precision (bottom row) for all trained networks. Regular CNN (left), DWSCNN (center), and
MobileNets-V1 (right).
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Figure 2. Layerwise activation range (top row) and average precision (bottom row) for all trained networks. Regular CNN (left), DWSCNN (center), and
MobileNets-V1 (right). The solid line represents the average values across 5 quantization trials and the shaded region is the standard devation. We can see
from the shaded regions that the choice of calibration dataset can lead to non-trivial variations in quantization parameters. Note: DWS-Conv-With-Gamma-
GlorotUni has been ommitted from activation range plots due to its extreme outlier activation range of 200 at the first Dense layer (layer 18). This network
also had the worst quantization behaviour out of all experiments.
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Figure 3. Layerwise weights range (left) and average precision (right) for ResNet-34 networks. Note, the spikes observed on the layerwise range plots at
layers 10, 19, and 32 correspond to the 1 X 1 linear projection convolution.
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Figure 4. Layerwise BN-folded weights dynamic range (left) and average precision (right) for ResNet-34 networks.
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Figure 5. Layerwise activation range (left) and average precision (right) for ResNet-34.



Network Architecture FP32 Acc (%) | QUINTS Acc (%) QMSE QCE QKL-Div Percent Acc Decrease
MobileNet No Gamma HeNorm 78.63 65.92 +/-5.76 0.0266 +/- 0.011 1.08 +/- 0.45 | 0.76 +/- 0.43 16.16 +/- 7.32
MobileNet No Gamma GlorotUni 78.73 71.88 +/- 1.79 0.0186 +/- 0.0029 | 0.77 +/- 0.065 | 0.45 +/- 0.065 8.70 +/- 2.28
MobileNet With Gamma HeNorm 78.65 66.11 +/- 4.51 0.0278 +/- 0.0076 1.17 +/-0.40 | 0.84 +/- 0.37 15.95 +/-5.74
MobileNet With Gamma GlorotUni 78.46 65.87 +/- 2.36 0.0273 +/- 0.0046 1.05+/-0.13 | 0.72 +/-0.13 16.05 +/- 3.01
DWS Conv No Gamma HeNorm 79.48 65.89 +/- 8.29 0.0236 +/- 0.012 1.03 +/-0.33 | 0.60 +/- 0.33 17.10 +/- 10.43
DWS Conv No Gamma GlorotUni 78.63 68.93 +/- 2.90 0.0187 +/- 0.0036 | 0.88 +/-0.11 0.48 +/- 0.11 12.34 +/- 3.69
DWS Conv With Gamma HeNorm 80.16 70.72 +/- 291 0.0187 +/- 0.0040 | 0.84 +/- 0.095 | 0.45 +/- 0.095 11.78 +/- 3.63
DWS Conv With Gamma GlorotUni 78.17 45.43 +/- 20.53 0.0592 +/- 0.037 2.51+4/-1.34 | 2.04+/-1.34 41.88 +/- 26.26
Regular Conv No Gamma HeNorm 87.27 78.29 +/- 2.67 0.0170 +/- 0.0045 | 0.66 +/- 0.13 | 0.46 +/- 0.13 10.29 +/- 3.06
Regular Conv No Gamma GlorotUni 86.63 83.32 +/- 0.75 0.00764 +/- 0.0016 | 0.37 +/- 0.044 | 0.18 +/- 0.044 3.83 +/-0.87
Regular Conv With Gamma HeNorm 88.01 80.26 +/- 0.77 0.0152 +/- 0.0013 | 0.55 +/- 0.022 | 0.38 +/- 0.022 8.80 +/- 0.88
Regular Conv With Gamma GlorotUni 86.58 81.15 +/-2.17 0.0113 +/-0.0044 | 0.46 +/- 0.11 0.26 +/- 0.11 6.27 +/- 2.51
ResNet34 No Gamma HeNorm 84.93 80.91 +/- 0.73 0.0123 +/- 0.0012 | 0.45 +/- 0.039 | 0.30 +/- 0.038 4.73 +/- 0.86
ResNet34 No Gamma GlorotUni 84.34 77.04 +/-2.42 0.0181 +/- 0.0048 | 0.65+/-0.15 | 0.48 +/-0.15 8.66 +/- 2.87
ResNet34 With Gamma HeNorm 85.35 83.79 +/- 0.65 0.00820 +/- 0.0021 | 0.35 +/- 0.056 | 0.20 +/- 0.056 1.83 +/- 0.76
ResNet34 With Gamma GlorotUni 85.67 78.95 +/- 1.88 0.0166 +/- 0.0031 0.60 +/-0.12 | 0.44 +/-0.12 7.84 +/-2.20

Table 1. Detailed quantization results for each network trained on CIFAR-10. Quantization results are reported as mean and standard devi-
ation across five different quantization trials. The output QMSE, QCE and QKL-Div of depthwise-separable convolution based networks
are noticeably higher than regular CNNs in most cases
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Figure 6. Layerwise QMSE (top) QCE (center) and QKL-Div (bottom)
for ResNet-34. The solid line represents the average values across 5 quan-
tization trials and the shaded region is the standard devation. Note, one
outlier removed due to large QMSE scale.
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Figure 7. Layerwise QMSE for all trained networks. Regular-ConvNets

(top), DWS-ConvNets (center), and MobileNets-V1 (bottom). The sig-
nificant spike for DWS_Conv_With_Gamma_GlorotUni explain the major
degradation in quantized performance. Note the difference in y-axis scales
for Regular-ConvNets and DWS-ConvNets. The solid line represents the
average values across 5 quantization trials and the shaded region is the
standard deviation.
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Figure 8. Layerwise weights range (top) and BN-Folded weights range

(bottom). Observing the BN-Folding induced distributional shift can also

yield interesting insights on the scaling required at each layer. Note the

very different y-axis scales.
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Figure 9. Layerwise QMSE for VGG-19 (top) and MobileNet-V1 (bot-

tom) trained on ImageNet. Note the difference in y-axis scales.



Activations Ranges Per Layer
35000 |
. <4 VGG19_ImageNet
.
30000 A
25000 4 i 1
s b
20000 4 ®
[ b
o kY
c k1
& 15000 - §
-
. o
10000
.
5000 |
‘--.
] e,
o4 ®. ..o
1 a 5 6 7 B 9 10 11 12 13 14 15 16 17 18
Layer
Activations Ranges Per Layer
807 -4+ MobileNetV1_ImageNet
70
60 -
»
50 !
S ¢
g f
< a4
. *
30
20
10
123456 7 8 9101112131415 1617 18 1920 21 22 23 24 25 26 27
Layer
Activations Precisions Per Layer
VG619 mageniet Layer
12 s L T R A
0.40 4 ¢+ MobileNetV1l_ImageNet
- VGG19_ImageNet
»
0.35 1 & v‘i
R g \ i
4 \ /\ i
0.30 4 / f \ i =)
¢ 1
\
%0.25- ¥ 3\
5 AN
[:4 1
0.20 4 pa 4 b
1
1
0.15 4 i
0.10 1
0.05 4
é lb 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 Zb le 2‘2 2‘3 2'4 2‘5 2‘6 2‘7
MobileNetV1_ImageNet Layer
Figure 10.

Layerwise activation ranges for VGG-19 (top) and
MobileNet-V1 (center) trained on ImageNet. Layerwise activation pre-

cisions for VGG-19 vs. MobileNet-V1 trained on ImageNet (bottom).



