
APES: Audiovisual Person Search in Untrimmed Video
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Abstract

Humans are arguably one of the most important sub-

jects in video streams, many real-world applications such

as video summarization or video editing workflows often

require the automatic search and retrieval of a person

of interest. Despite tremendous efforts in the person re-

identification and retrieval domains, few works have de-

veloped audiovisual search strategies. In this paper, we

present the Audiovisual Person Search dataset (APES), a

new dataset composed of untrimmed videos whose au-

dio (voices) and visual (faces) streams are densely anno-

tated. APES contains over 1.9K identities labeled along

36 hours of video, making it the largest dataset available

for untrimmed audiovisual person search. A key property

of APES is that it includes dense temporal annotations that

link faces to speech segments of the same identity. To show-

case the potential of our new dataset, we propose an audio-

visual baseline and benchmark for person retrieval. Our

study shows that modeling audiovisual cues benefits the

recognition of people’s identities.

1. Introduction
Can we find every moment when our favorite actor ap-

pears or talks in a movie? Humans can do such search

relying on a high-level understanding of the actor’s facial

appearance while also analyzing their voice [3]. The com-

puter vision community has embraced this problem primar-

ily from a visual perspective by advancing face identifica-

tion [26, 24, 28]. However, the ability to search for people

using audiovisual patterns remains limited. In this work,

we address the lack of large-scale audiovisual datasets to

benchmark the video person retrieval task. Beyond find-

ing actors, several video domain applications could benefit

from our dataset, from accelerating the creation of highlight

moments to summarizing arbitrary video data via speaker

diarization.

Contrary to image collections, video data casts addi-

tional challenges for face and person retrieval tasks [11].

Such challenges include drastic changes in appearance,

facial expressions, pose, or illumination as a video pro-

gresses. These challenges have fostered research in video

person search. Some works have focused on person re-

identification in surveillance videos [10, 9, 32]. In this

setup, the goal is to track a person among a set of videos

recorded from various cameras, where the global appear-

ance (e.g. clothing) of the target person remains constant.

Another setup is the cast search problem, where models

take a portrait image as a query to retrieve all person tracks

that match the query’s identity [14]. The community has

achieved relevant progress, but the lack of large scale audio-

visual information still prevents the development of richer

multi-modal search models.

Motivated by PIN cognitive models [3], Nagrani et al.

[19] have developed self-supervised models that learn joint

face-voice embeddings. Their key idea is to use supervision

across modalities to learn representations where individ-

ual faces match their corresponding voices via contrastive

learning [12]. However, many videos in the wild might

contain multiple visible individuals that remain, mostly,

silent. This situation introduces a significant amount of

noise to the supervision signal [25]. Liu et al. [17] have

also explored audiovisual information for person retrieval

in videos. To this end, their work introduces the iQIYI-VID

dataset, which contains videos from social media platforms

depicting, in large proportion, Asian celebrities. Despite

its large-scale, the dataset contains only short clips, with

most of them being five seconds long or shorter. We argue

that having long videos is crucial to high-level reasoning of

context to model real-life expressions of people’s faces and

voices. Additionally, we require densely annotated ground-

truth labels to enable direct links between speech and visual

identities.

In this paper, we introduce APES (Audiovisual PErson

Search), a novel dataset, and benchmark for audiovisual

person retrieval in long untrimmed videos. Our work aims

to mitigate existing limitations from two angles. First, we

densely annotate untrimmed videos with person identities

and match those identities to faces and voices. Second, we

establish audiovisual baselines and benchmarks to facilitate
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Figure 1. Audiovisual PErson Search (APES). We introduce APES, a novel video dataset for multimodal person retrieval. The dataset

includes annotations of identities for faces and voice segments extracted from untrimmed videos. We establish three new person search

tasks. (i) Seen aims to retrieve all timestamps when a target person is on-screen. (ii) Seen & Heard, which focuses on finding all instances

when a person is visible and talks.

future research with the new dataset. Our dataset includes a

broad set of 15-minutes videos from movies labeled among

a long-tailed distribution of identities. The dataset sam-

ples account for many challenging re-identification scenar-

ios such as small faces, poor illumination, or short speech

segments. In terms of baselines, we develop a two-stream

model that predicts people’s identities using audiovisual

cues. We include benchmarks for two alternative tasks.

Seen, which aims at retrieving all segments when a query

face appears on-screen; Seen & Heard, which focuses on

finding instances where the target person is on-screen and

talking. Figure 1 showcases APES annotations and tasks.

Contributions. This paper’s primary goal is to push the

envelope of audiovisual person retrieval by introducing a

new video dataset annotated with face and voice identities.

To this end, our work brings two contributions.1

• We annotate a dataset of 144 untrimmed videos from

movies. We associate more than 30K face tracks with

26K voice segments and label about 1.9K identities.

Section 3 details our data collection procedure and

showcases the characteristics of our novel dataset.

• We establish an audiovisual baseline for person search

in Section 4. Our study showcases the benefits of mod-

eling audiovisual information jointly for video person

retrieval in the wild.

2. Related Work
There is a large corpus of related work on face [28, 26,

24] and voice [30, 4] retrieval. This section focuses on re-

lated work on datasets for video person retrieval and audio-

visual learning for identity retrieval.

1The dataset, and the code to reproduce baselines and benchmarks will

be released soon.

Video Person Retrieval Datasets. After many milestones

achieved on image-based face retrieval, the computer vision

community shifted attention into video use cases. There are

many datasets and tasks related to person and face retrieval

in videos. Three popular tasks have been established, in-

cluding person re-identification, speaker recognition, and

recently person search. Table 1 summarizes datasets for

these tasks and compares them with the APES dataset.

The first group includes datasets designed for person

re-identification [32, 31, 29]. These datasets usually con-

tain many identities; however, most are composed only of

cropped tracks without any visual context or audio infor-

mation. Moreover, person re-identification datasets focus

on surveillance scenarios, where the task is to find a target

subject across an array of cameras placed in a limited area.

The second group includes speaker recognition datasets

[4, 21]. Datasets such as VoxCeleb2 [4] have pushed the

scale up to 150K face clips. A drawback of this group of

datasets is that clips are only a few seconds long and tend to

contain a single face. The third group includes datasets for

person retrieval. CSM [14], for instance, introduces the task

of cast search, which consists of retrieving all the tracklets

that match the identity of a portrait query. iQIYI-Video [17]

scales the total number of tracklets, clips, and identities.

Both datasets provide a step towards visual-based person

retrieval but exhibit limitations for multimodal (faces and

voices) modeling. On the one hand, CSM does not provide

audio streams or video context; on the other hand, iQIYI-

Video contains short clips and does not associate voices

with person identities. Our APES dataset mitigates these

limitations by annotating long videos with people’s faces,

voices, and their corresponding identities.

The third group is the closest to our setup, it comprises

datasets for audiovisual person search. While the Big Bang

Theory datatset [2] allows to study the same tasks as APES,
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Dataset Source Task # Instances # Tracklets # Identities

PSD [29] Images Re-identification 96K - 8432

Market [32] Images Re-identification 32K - 1501

MARS [31] Person Tracks Re-identification 1M 20K 1261

VoxCeleb [21] Short Clips Speaker Recognition - 22.5K 1251

VoxCeleb2 [4] Short Clips Speaker Recognition - 150K 6112

iQIYI-VID [17] Short Clips Visual Search 70M 600K 5000

CSM [14] Person Tracks Visual Search 11M 127K 1218

Big Bang Theory [2] Untrimmed Videos Audiovisual Search - 3.7K 8

Buffy [8] Untrimmed Videos Audiovisual Search 49k 1k 12

Sherlock [22] Untrimmed Videos Audiovisual Search - 6.5K 33

APES Untrimmed Videos Audiovisual Search 3.1M 30.8K 1913

Table 1. Video person identity retrieval datasets overview. APES is the largest dataset for audiovisual person search. In comparison to

available audiovisual search datasets, it contains two orders of magnitude more identities at 1.9K. Additionally, the 30K manually curated

face tracks contain a much larger diversity in audiovisual patterns than similar datasets, as its original movie set is composed of far more

diverse videos across multiple genres and including diverse demographics. Finally, the 3.1 Million individual instances allow for modern

machine learning methods techniques to be used on the APES dataset.

it is limited to only 8 identities (which are observed mostly

indoors). Additionally speech events are approximately lo-

calized using the show’s transcripts. APES contains dense

manual annotations for speech events and identity pairs.

Sherlock [22] also allows for audiovisual identity search

but contains only 33 identities, and its cast is composed of

mostly white European adults. The Sherlock dataset also

discards short segments of speech (shorter than 2 secs), this

is a key limitation as our analysis shows that these short

segments constitute a big portion of utterances in natural

conversations. Finally, Buffy [8] is also very small in terms

of number of identities and its data lacks diversity as it was

collected from only two episodes of the series.

Audiovisual Learning for Identity Retrieval. Audiovi-

sual learning has been widely explored in the realm of mul-

tiple video tasks [23, 5, 25, 1], but only a few have focused

their efforts on learning embeddings for person identity re-

trieval [20, 19]. Nagrani et al. [20] have proposed a cross-

modal strategy that can ’see voices’ and ’hear faces’. It does

so by learning to match a voice to one out of multiple can-

didate faces using a multi-way classification loss. More re-

cently, the work in [19] introduces a cross-modal approach

that leverages synchronization between faces and speech.

This approach assumes there is one-to-one correspondence

in the audiovisual signals to form queries, positive, and neg-

ative sets and train a model via contrastive learning [12].

Although the method proposed in [19] does not require

manually annotated data, it assumes all face crops contain

a person talking, an assumption that often breaks for videos

in the wild. Our baseline model seizes inspiration from the

success of these previous approaches in cross-modal and au-

diovisual learning. It leverages the newly annotated APES

dataset, and its design includes a two-stream audiovisual

network that jointly learns audiovisual characteristics of in-

dividuals.

3. APES: Audiovisual PErson Search Dataset

This section introduces the Audiovisual PErson Search

(APES) dataset, which aims at fostering the study of mul-

timodal person retrieval in videos. This new dataset con-

sists of more than 36 hours of untrimmed videos annotated

with 1913 unique identities. APES’ videos pose many chal-

lenges, including small faces, unconventional viewpoints,

as well as short segments of speech intermixed with envi-

ronmental sound and soundtracks. Figure 2 shows a few

APES samples. We plan to release the dataset with its full

annotation set and the baseline models to foster the research

of audiovisual models for person retrieval. Here, we de-

scribe our data collection procedure and statistics of APES.

3.1. Data Collection

Video source. We aim for a collection of videos showing

faces and voices in unconstrained scenarios. While there

has been a surge of video datasets in the last few years

[15, 18, 27, 6], most of them focus on action recognition on

trimmed videos. As a result, it is hard to find a large video

corpus with multiple instances where individuals are seen

on-screen and speaking. This trend limits the availability of

relevant data for audiovisual person search.

Instead of gathering user-generated videos, the AVA

dataset [11] is made from movies. AVA list of movies in-

cludes productions filmed around the world in different lan-

guages and across multiple genres. It contains a diverse and

extensive number of dialogue and action scenes. Another
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Figure 2. The APES dataset. We illustrate a few examples from our novel APES dataset. As it can be seen, it casts many challenges for

automatic audiovisual person identification and search. For instance, the appearance of each identity changes significantly across different

scenes in a movie. Similarly, APES poses challenges to identify voices across time, as the environment and background sounds are always

changing. In many cases, even detecting the persons’ faces can be challenging due to illumination and partial occlusions.

Figure 3. APES global statistics. Left: Distribution of number of tracklets and identities per video, the length of the tracklets roughly

follows a long tail distribution, but there is not much difference in the number of identities per video. Center: Distribution of annotation

length of only seen identities, and seen & heard identities, it is important to note that many actors are seen but remain silent, and the

speaking characters get most screen time. Right: Demographics of labeled identities in APES, sorter by gender, age group, and race.

Despite representing demographics better than previous datasets [2, 17], we still observe room for improvement towards a more balanced

distribution. Nevertheless, for most demographics, the dataset contains at least 1.5K tracks and 155K face crops, a representative set for

training deep learning models.

appealing property is that it provides a download mecha-

nism 2 to gather the videos in the dataset; this is crucial for

reproducibility and promote future research. Finally, the

AVA dataset has been augmented with Active Speaker an-

notations [25]. This new set contains face tracks annotated

at 20 frames per second; it also includes annotations that

link speech activity with those face tracks. Consequently,

we choose videos from AVA to construct the APES dataset.

Our task is then to label the available face tracks and speech

segments with actors’ identities.

Labeling face identities. We first downloaded a total of

144 videos from the AVA dataset, gathered all face tracks

available, and annotated identities for a total of 33739 face

tracks. We did so in two stages. In the first stage, we ad-

dressed the identity assignment tasks per video and asked

human annotators to cluster the face tracks into matching

identities. To complete this first task, we employed three

2Researchers can download the full set of AVA videos at:

https://github.com/cvdfoundation/ava-dataset

human annotators for 40 hours each. We noticed two com-

mon errors during this stage: (i) false positives emerging

from small faces or noisy face tracks; and (ii) false nega-

tives that assign the same person into more than one iden-

tity cluster. We alleviated these errors by implementing a

second stage to review all instances in the clustered identi-

ties and merged wrongfully split clusters. This process was

a relatively shorter verification task, which annotators com-

pleted in eight hours. At the end of this annotation stage,

about 8.4% of the face tracks were labeled as ambiguous;

therefore, we obtained a total of 30880 face tracks anno-

tated among 1913 identities.

Labeling voice identities. After labeling all face tracks

with their corresponding identities, we now need to find

their voice pairs. Our goal then is to cluster all voices

in the videos and match their corresponding faces’ origi-

nal identity. In other words, we want the same person’s

faces and voices to share the same identity. Towards this

goal, we leveraged the original annotations from the AVA-

ActiveSpeakers dataset [25], which contain temporal win-
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Figure 4. APES identity statistics. We analysis 3 relevant statistics for the label distribution in APES, all of them follow a long tailed

distributions Left: Number of face tracks per identity. This distribution indicates that main characters tend to appear more often than, for

instance, extras or background actors. Center: Average face coverage per identity, computed as the mean of the relative area covered by

all identity face tracks. This statistic hints that a big portion of identites are framed within close-ups, but still many identities are portrait

in the background of the scene. Right: Average length of continuous speech per identity. Interestingly, most speech segments last at most

four seconds, and about 25% of the identities do not speak at all.

dows of speech activity associated with a face track. We

mapped speech segments to their corresponding face track

and assigned a common identity. We annotated 26879 voice

segments accounting for a total of 11.1 hours of speech

among the 1913 identities.

3.2. Dataset Statistics

We annotated over 36 hours from 144 videos, including

30880 face tracks, 3.1M face bounding boxes, and 26879

voice segments. Our labeling framework annotated 1913

identities and discarded 2859 ambiguous face tracks. We

discuss in detail the statistics of the dataset below.

Global statistics. In Figure 3 (Left), we observe the dis-

tribution of the number of tracklets and identities per video.

The number of tracklets per video follows a long-tail distri-

bution, and there is no correlation between the number of

tracklets with the number of identities. This fact indicates

that certain identities have longer coverage than others. Fig-

ure 3 (Center) shows the average length an identity is Seen

or Seen & Heard. Interestingly, the Seen & Heard distribu-

tion exhibits a long-tailed distribution, with many identities

being heard only very few times. Also, some identities are

seen many times without speaking at all. Finally, we inves-

tigate the demographics of the dataset in Figure 3 (Right).

To do this, we manually annotate the identities with gender,

age, and race attributes. Although work needs to be done

to balance samples across demographics, the survey shows

that our video source has representative samples to cover

the various demographic groups. For instance, for the most

under-represented group, kids, APES contains more than

1.5K tracks. Moreover, APES provides significant progress

from previous datasets that contain a single demographic

group, e.g., iQIYI-VID [17] contains only Asian celebri-

ties, and the Big Bang Theory dataset [2] comprises a cast

limited to a single TV series.

Identity statistics. We analyze here characteristics of the

annotated identities. First, in Figure 4 (Left), we show the

distribution of the number of tracklets per identity. We ob-

serve a long-tailed distribution where some identities, likely

the main characters, have ample screen time, while others,

e.g. supporting cast, appear just a few times. Figure 4(Cen-

ter) shows the average face coverage per identity, where

we observe also a long-tail distribution. On the one hand,

identities with large average face coverage include actors

favored with close-ups; on the other hand, identities with

low average face coverage include actors framed within a

wide shot. Finally, we plot the average length of continuous

speech per identity (Figure 4 (Right)). Naturally, different

characters have different speech rhythms, and therefore the

dataset exhibits a non-uniform distribution. Interestingly a

big mass centers around one second of speech. This char-

acteristic might be due to the natural dynamics of engaging

dialogues. Moreover, we observe than about 25 % of the

identities do not speak at all.

4. Experimental Analysis

4.1. Baseline methods.

We now outline the standard evaluation setup and met-

rics for the APES dataset along with a baseline method that

relies on a two-stream architecture for multi-modal metric

learning. The first stream receives cropped faces while the

second works over audio clips. Initially, each stream is op-

timized via triplet loss to minimize the distance between

matching identities in the feature space. As highlighted in

other works [26, 20, 24], it is essential to acquire a clean

and extensive set of triplets to achieve good performance.

Below, we detail each modality of our baseline model and

different subsets for training.

Facial Matching. To optimize the face matching net-

work, we remove the classification layer from a standard
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Seen & Heard Seen

Avg Positive Avg Negative Avg Positive Avg Negative

Sampling strategy Tracklets Tracklets Clean Tracklets Tracklets Clean

Weak 1 11862 ✗ 1 23679 ✗

Within 10 112 ✓ 16 242 ✓

Across 10 11862 ✓ 16 23679 ✓

Table 2. Identity Sampling. APES allows for multiple sampling strategies to form triplets during training. APES-IN is the simplest

scenario as it samples positive and negative identities from a single video. Such sampling generates a 10:112 positive-to-negative ratio,

for instance, in the case of the Seen & Heard task. APES-Across creates a more challenging scenario, where negatives are extracted from

all videos across the dataset; it is much more imbalanced problem with a 10:11862 positive-to-negative ratio. APES-weak considers an

extreme scenario where a single tracklet is used to retrieve identities from the whole video collection; this setting is not only extremely

unbalance 1:11862 but also challenging as the audiovisual identity from a single tracklet tend to be highly similar in appearance and sound

characteristics.

Triplet loss optimization

Audio CNNVisual CNN

QueryPositive Negative

Embedding space

Figure 5. Creating Audiovisual Embeddings , We use a two

stream neural network to identify corresponding identities in

APES. Our approach uses independent visual (light yellow) and

audio (light blue) CNNs, the joint feature set is then optimized

by means of the triplet loss to obtain an embedding where corre-

sponding identities are close located,

Resnet-18 encoder [13] pre-trained on ImageNet [7], and

fine-tune it using a triplet loss [26]. We choose the ADAM

optimizer [16] with an initial learning rate of 3× 10−4 and

learning rate annealing of 0.1 every 30 epochs for a total of

70 epochs. We resize face crops to 124 × 124 and perform

random flipping and corner cropping during training.

Voice Matching. Similar to the visual stream, we use a

ResNet-18 model initialized with ImageNet weights and

fine-tuned via triple loss learning. We follow a setup simi-

lar to [25] and use a Mel-spectrogram calculated from audio

snippets of 0.45 seconds length in the audio stream. We use

the same hyper-parameters configuration described for the

visual matching network.

Cross-modal Matching. For the audiovisual experi-

ments, we combine the individual configurations for voice

and face matching. However, we add a third loss term which

optimizes the feature representation obtained from a joint

embedding of audiovisual features, which we obtain via

concatenation of each stream’s last layer feature map. This

third loss is also optimized using the triplet loss. Figure 5

illustrates our cross-modal baseline.

4.2. Experimental Setup

Dataset splits and Tasks. We follow the official train-

val splits defined in the original AVA-ActiveSpeaker dataset

[25]. As not every person is actively speaking at every mo-

ment, we define two tasks: Seen & Heard (a person is on-

screen and talking), and only Seen (the person is on-screen

but not speaking). Each of these tasks yield a corresponding

training and validation subset. The Seen task subsets have

23679 and 7989 tracklets for training and validation respec-

tively. Conversely, the Seen & Heard subset, is comprised

of 11862 tracklers for training and 3582 for validation.

Identity Sampling. The APES dataset allows us to sam-

ple positive and negative samples during training in three

different ways. The most direct sampling would gather ev-

ery tracklet from a single movie. In such a scenario, we

will create a positive bag with the tracklets that belong to

a given identity, while negative samples would be obtained

from every other tracklet in the same movie. We name this

setup Within, a simplified configuration where we have a

1:15 ratio of positive tracklets (same identity) to negative

tracklets (different identity).

While the Within modality allows us to explore the

problem, it might be an overly simplified scenario. Hence,

we also devise the Across setup, where we sample negatives

identities over the full video collection, i.e., across different

movies. This sampling strategy significantly changes the

6



ratio of positive to negative tracklets to 1:150 and better re-

sembles the natural imbalance of positive/negative identities

in real-world data.

Finally, we create an extreme setup that resembles few-

shot learning scenarios for identity retrieval learning. In this

case, a single (or very few) positive samples are available to

train our embeddings. These positive samples are sampled

from the same tracklet as the query, and instances from ev-

ery other tracklet in the datasets form the negative bag. We

name this setup as Weak, which results in a strongly imbal-

anced subset with about 1:1500 ratio of positive to negative

tracklets. A summary of these three sampling sets is pre-

sented in Table 2.

Evaluation metrics. Three evaluation metrics assess

methods’ effectiveness in APES:

• Precision at K (P@K): we estimate the precision from

the top K retrieved identities for every tracklet in a

video. As there are no shared identities over videos,

we simply estimate the precision at K for every video,

and then average for the full validation set.

• Recall at K (R@K): we estimate the recall from the

top K retrieved identities for every tracklet in a video.

Again, we estimate the recall at K for every video and

compute the average over the full validation set.

• Mean average precision (mAP): as final and main eval-

uation metric, we use the mean average precision. Like

in the recall and precision cases, we compute the mAP

for every tracklet in a video, and the average the results

for videos in the validation set.

4.3. Benchmark Results
Seen & Heard benchmark results. Table 3 summarizes

our benchmark results for the three main configurations:

Facial Matching, where we operate exclusively on visual

data; Voice Matching, where we exclusively model audio

data; and Cross-modal Matching, where we train and val-

idate over the audio and visual modalities. Overall results

obtained with facial and cross-modal matching are far from

perfect. Our best baseline model obtains a max mAP of

64.8%. This result indicates that the standard triplet loss is

just an initial baseline for the APES dataset and that there

is ample room for improvement. The relatively high preci-

sions at K=1 and K=5 in almost every setting, suggests the

existence of a few easy positives matches for every query in

the dataset. However, the relative low precision and recall at

K=10 suggest that the method quickly exhibits wrong esti-

mations as we progress through the ranking. This drawback

is worst in the APES-Weak training setting, as its selection

bias induces a much lower variability on the positive sam-

ples. The analysis of the recall scores highlights the impor-

tance of the additional audio information. After the network

R@10 R@50 R@100 P@1 P@5 P@10 mAP(%)

Random 12.0 52.9 87.3 18.1 18.7 18.4 19.1

Facial Matching

Weak 38.2 74.5 94.2 80 62.3 49.9 45.4

Within 48.1 86.5 98.1 87.5 74.0 62.8 64.1

Across 48.2 86.3 98.2 88.0 73.6 62.6 63.4

Voice Matching

Weak 17.4 59.1 89.4 29.2 26.9 23.2 20.5

Within 18.2 59.7 89.9 30.0 26.7 24.8 21.8

Across 17.7 58.9 89.5 29.3 26.6 24.5 22.0

Cross-modal Matching

Weak 38.2 74.2 94.3 80.1 62.0 49.4 47.9

Within 47.9 87.1 98.5 85.9 72.4 61.2 64.8

Across 48.1 86.8 98.3 86.7 73.3 62.2 63.6

Table 3. Benchmark results for Seen & Heard task. We

measure recall at K (R@K), precision at K (P@K), and the mean

Averge Precision (mAP). We observe that the Cross-modal match-

ing baseline slightly outperforms the facial matching model (by

0.7% mAP). This result suggests that the audio signal is helpful to

the re-identification process, especially increasing the recall of the

proposed method. The relative low precision for larger K’s sug-

gest that correspondences are easy to build for a few images, but

much harder as candidates become more diverse. We also observe

that identifying persons using only voice is a much harder task.

Seen Full Set

R@10 R@50 R@100 P@1 P@5 P@10 mAP(%)

Random 5.1 26.0 52.7 17.2 17.1 16.9 17.1

Facial Matching

Weak 26.9 54.5 74.5 82.2 66.0 54.6 39.3

Within 33.1 70.5 87.4 87.8 77.3 68.7 58.8

Across 33.8 70.4 87.6 88.2 77.6 68.6 59.4

Table 4. Benchmark for the Seen Set. We use the same metrics

as in the Seen & Heard setting. We find that this configuration is

slightly harder despite having more data. This counter-intuitive re-

sult can be explained as movies often rely on shots where a active-

speakers are portray in close-ups. In short, the Seen task has more

data available for training, but also more challenging scenarios.

is enhanced with audio data, the recall metrics improve sig-

nificantly, reaching 98.5% at K=100. While this improve-

ment comes at the cost of some precision, overall, the mAP

shows an improvement of 0.7%. Finally, there is only a

slight difference between the Within and Across sampling

settings, the former having a marginally better recall. This

suggests that the massive imbalance induced in the across

setting does not significantly improve the diversity of the

data observed at training time and that more sophisticated

sampling strategies such as hard negative mining might be

required to take advantage of that extra information.

Seen benchmark results. We empirically found that fus-

ing modalities with noisy audio data (original splits) pro-

vides no improvement. As outlined before, our experi-

ments suggest that audio models are highly sensitive to
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Query Nearest Neighbors

Figure 6. Qualitative results. We showcase easy (top two rows) and hard (bottom two rows) examples in our benchmark. Green bounding

boxes indicate the localization of the queried and retrieved faces, and red borders around the frame indicates a false positive. We empirically

observe that queries from large faces within dialogue scenes tend to be easier to retrieve. In contrast, queries from small faces and cases

where the subject is moving are challenging to our baseline.

noisy speech annotations and do not converge if there is

large uncertainty in the ground truth. Under this circum-

stances the optimization just learns to ignore the audio cues,

and yields the same performance as the visual-only setting.

Despite this we report our results of a facial matching for

the Seen task, as it will serve as baseline for future works

that can handle noise speech data. Table 4 contains the

benchmark for the Seen task. We find that this task is ac-

tually harder than the Seen & Heard task, despite having

more available data. We explain this result as movies typ-

ically depict speakers over large portions of the screen and

offer a clear view angle to him/her, which results on aver-

age larger faces with less noise in the Seen & Heard task,

and smaller more challenging faces in the Seen. In other

words, we hypothesize that speaking faces are easier to re-

identify as they are usually framed within close-ups. This

bias makes it harder to find every matching tracklet for the

identity (thus reducing recall).

4.4. Qualitative Results

We showcase easy and hard instances for our baseline

in Figure 6. Every row shows a query in the left, and

the top five nearest neighbors on the right. The first two

rows, shows instances where our baseline model correctly

retrieves instances of the same person. We have empiri-

cally noticed that instances where query faces are large, e.g.

in close-ups and medium shots from dialogue scenes, our

baseline model tends to provide a very good ranking to the

retrieved instances. The two rows from the bottom illustrate

hard cases where the baseline model fails. We have seen

that small faces, poor illumination, occlusion, and subjects

in motion present a challenging scenario to our baseline.

5. Conclusion

We introduce APES, a new dataset for audiovisual per-

son search. We compare APES with existing datasets for

person identity analysis and show that it complements pre-

vious datasets in that those have mainly focused on visual

analysis only. We include benchmarks for two tasks Seen

and Seen & Heard to showcase the value of curating a new

audiovisual person search dataset. We believe in the cru-

cial role of datasets at measuring progress in computer vi-

sion; therefore, we are committed to releasing APES to en-

able further development, research, and benchmarking in

the field of audiovisual person identity understanding.
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