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Abstract

Standard zero-shot learning (ZSL) methods use a large
number of seen categories to predict very few unseen cate-
gories while maintaining unified data splits and evaluation
metrics. This has enabled the research community to ad-
vance notably towards formulating a standard benchmark
ZSL algorithm. However, the most substantial impact of
ZSL lies in enabling the prediction of a large number of
unseen categories from very few seen categories within a
specific domain. This permits the collection and annotation
of training data for only a few previously seen categories,
thereby significantly mitigating the training data collection
and annotation process. We address the difficult problem of
predicting a large number of unseen object categories from
very few previously seen categories and propose a frame-
work that enables us to examine the limits of inferring sev-
eral unseen object categories from very few previously seen
object categories, i.e., the limits of ZSL. We examine the
functional dependence of the classification accuracy of un-
seen object classes on the number and types of previously
seen classes and determine the minimum number and types
of previously seen classes required to achieve a prespecified
classification accuracy for the unseen classes on three stan-
dard ZSL data sets. An experimental comparison of the
proposed framework to a prominent ZSL technique on these
data sets shows that the proposed framework achieves higher
classification accuracy on average while providing valuable
insights into the unseen class inference process.

Keywords: Zero-shot learning, unsupervised cluster-
ing, semantic embedding, deep learning

1. Introduction

Advances in Deep Neural Network (DNN) architec-
tures have empowered computers to achieve human-
level classification performance on object recognition
tasks through the development of powerful and ro-
bust visual classifiers. Many problem domains are
faced with a large and growing number of object cat-

egories resulting in a need to collect and annotate a
large number of training images for each object cate-
gory to enable the classifier to adapt to the naturally
occurring variations in object appearances. Since clas-
sifiers trained on observed object instances lack the
ability to deal with previously unseen classes, effi-
cient collection and reliable annotation of training im-
age data for a wide variety of object categories is of
critical importance. To address the training data col-
lection and annotation bottleneck, various Zero-Shot
Learning (ZSL) methods have been proposed wherein
training image data for every single object category is
not strictly required.

Humans perform ZSL naturally, enabling recogni-
tion of at least 30,000 object classes [3]. The human
ability to understand natural variations in object ap-
pearances stems from variety of factors. However, one
of the prominent factors is an existing and ever evolv-
ing natural language (NL) knowledge base, which en-
ables humans to connect unseen object categories to
previously seen categories using high-level NL de-
scriptions. To emulate the ZSL process on computers,
previously unseen object categories are recognized by
leveraging auxiliary information related to the unseen
object categories derived typically from external data
sources analogous to the human NL knowledge base
such as Wikipedia and WordNet [15], or in some cases,
manually engineered ontologies.

Several ZSL methods have been proposed in the lit-
erature; however, all of them use a proposed split of
standard ZSL data sets [10, 29, 19] into seen and un-
seen classes to aid uniform research towards the for-
mulation of a universal optimal ZSL framework [31].
The formal ZSL problem is typically posed as one of
maximizing classification accuracy using specific cat-
egories within a standard data set as seen classes and
the remaining as unseen classes where the number of
seen classes is significantly higher than the number
of unseen classes. While conventional ZSL methods
have resulted in the formulation of several benchmark



approaches, the critical issue of mitigating the train-
ing data collection and annotation process has been
largely skirted.

In this paper, we propose a new ZSL framework
to infer the limits of inferring unseen object categories
from very few seen object categories, i.e., test the lim-
its of ZSL. By aiming to infer a large number of unseen
object categories using very few seen object categories,
the proposed ZSL framework aims to address the crit-
ical issue of optimizing the seen object categories and
the number of annotated training images needed from
each of the seen object categories to achieve a prespec-
ified overall classification accuracy. We note the func-
tional dependence of the classification accuracy on the
number of previously seen classes drawn from the en-
tire spectrum of classes in three widely used object
classification data sets, i.e., Animals-with-Attributes-2
(AWA2) [10], CalTech-UCSD Birds-200-2011 (CUB) [29]
and Scene Understanding with Attributes (SUN) [19].
We determine the optimal set of representative seen
classes that allows one to infer a large number of pre-
viously unseen classes with a prespecified measure of
accuracy.

The proposed framework significantly aids the
training data collection and annotation process by
identifying the key object categories from which this
process can be initiated and determining the object
categories at which it can be halted based on an ex-
pected or prespecified classification accuracy measure
for a given problem. We evaluate the proposed frame-
work in the more realistic generalized ZSL (GZSL)
setting where the input images during prediction
or inference can come from both, the seen and un-
seen classes [22]. We present valuable insights into
the inference process for cases where the proposed
framework performs exceptionally well, and for cases
where it fails to infer the correct unseen category. We
also compare the proposed framework with the well
known Attribute Label Embedding (ALE) [1] scheme for
ZSL, which has been shown in [31] to perform very
well on the aforementioned AWA2, CUB and SUN
data sets.

2. Related Work

Zero-shot learning (ZSL) approaches can be
broadly classified into two categories, i.e., inductive
ZSL (IZSL) and transductive ZSL (TZSL), based on the
unseen class information available during the train-
ing process. In IZSL, one has access to labeled im-
age data from the seen classes and auxiliary informa-
tion (i.e., semantic attributes/descriptions) from both,
seen and unseen classes during training. In the TZSL
framework, one has access to auxiliary information

from both, seen and unseen classes, labeled image
data from the seen classes and unlabeled image data
from the unseen classes during training. The IZSL
and TZSL schemes can each be subclassified as con-
ventional or generalized based on the model evalu-
ation procedure used during testing. Conventional
ZSL assumes that the input images during prediction
or inference can only come from the unseen classes
whereas generalized ZSL (GZSL) allows for the more
practical real-word scenario where the input images
during prediction or inference can come from both,
the seen and unseen classes [22].

The Directed Attribute Prediction (DAP) and Indirect
Attribute Prediction (IAP) models [11], use a two-stage
IZSL approach where in the first stage, the attributes
of an image are predicted, and in the second stage, the
class label is inferred by searching for the class with
the most similar set of attributes. Although widely
cited, DAP and IAP suffer from domain shift [8] where
the intermediate functions learned from the auxiliary
information are observed to introduce an unknown
bias in the absence of adaptation to the target do-
main. More recent ZSL schemes learn a compatibility
function from the image feature space to the seman-
tic or auxiliary space and are categorized based on
learned compatibility function. Attribute Label Embed-
ding (ALE) [1], Deep Visual-Semantic Embedding (DE-
VISE) [7], Structured Joint Embedding (SJE) [2] learn a
linear compatibility function between the image space
and semantic or auxiliary space coupled with an op-
timization algorithm. Embarrassingly Simple Zero-Shot
Learning (ESZSL) [21] uses an additional regulariza-
tion term to suppress noise in the auxiliary space
whereas Latent Embedding (LATEM) [30] generalizes
the notion of linear compatibility by learning a piece-
wise linear compatibility function resulting in signifi-
cantly improved accuracy.

Cross-Modal Transfer (CMT) [24] approaches extend
the linear compatibility-based approaches by learn-
ing non-linear projections from the image space to
Word2Vec [14] space. Hybrid approaches [31] learn a
joint embedding of both the image and semantic fea-
tures in a combined intermediate space using a com-
bination of linear and non-linear compatibility func-
tions. Semantic Similarity Embedding (SSE) [32] uses a
max-margin scheme to jointly optimize domain data
and semantic data. The Convex Combination of Seman-
tic Embeddings (CONSE) scheme [18] maps images into
the semantic embedding space via a convex combina-
tion of the class label embedding vectors thereby obvi-
ating the need for additional training. Wang et al. [28]
use a Graph Convolutional Network (GCN) and GLoVe
text embedding [20] to generate a knowledge graph



embedding that exploits both, semantic embeddings
and domain relationships to predict the object classi-
fiers.

Recent ZSL approaches use the Generative Adversar-
ial Network (GAN), where each class is represented by
a probability distribution and the generator network
synthesizes fake unseen features from noisy inputs
and the discriminator network distinguishes the fake
features from the real ones. The Generative Framework
for Zero-Shot Learning (GFZSL) [26] models the class-
conditional distributions of seen and unseen classes
using a multivariate Gaussian distribution. The Lever-
aging the Invariant Side GAN (LisGAN) approach [13]
uses a conditional Wasserstein GAN wherein fake un-
seen features are generated from random noise func-
tions conditioned on the semantic descriptions and
the discriminator learns to distinguish the fake fea-
tures from the real ones via a minimax game. The
LsrGAN approach [27] performs explicit knowledge
transfer between the seen and unseen object categories
using a novel semantic regularized loss (SR-Loss) func-
tion that exploits the semantic relationships between
the two categories. The recent TF-vaegan [17] com-
bines a Variable Auto-Encoder (VAE) and GAN and
introduces a feedback loop from a semantic embed-
ding decoder that iteratively refines the generated fea-
tures during both the training and feature synthe-
sis stages. The synthesized features and their cor-
responding latent embeddings from the decoder are
then transformed into discriminative features and ex-
ploited during classification to reduce the ambiguities
amongst the categories.

The proposed ZSL framework draws upon the two-
stage DAP and IAP approaches [11] and hence falls
within the IZSL category. However, the problem being
addressed by the proposed ZSL framework is substan-
tially different in that the proposed ZSL framework
aims to predict a large number of unseen classes from
very few seen classes and, consequently, has access to
far less training data compared to conventional ZSL
approaches. Hence, generative-adversarial-based and
compatibility learning-based ZSL approaches which
are training data-intensive would be expected to per-
form poorly in this scenario. The proposed ZSL frame-
work permits one to examine and understand how
classification accuracy measures change as a function
of the number and types of the seen classes. The pro-
posed framework also allows for selection of an opti-
mal number and type of seen classes based on an ex-
pected overall classification accuracy measure which
in turn allows one to optimize the training data col-
lection and annotation process. The proposed frame-
work is inspired by Sharma et al. [23] who address the

scenario where the unseen classes significantly out-
number the seen classes; however, they use only em-
beddings from unstructured text corpora and k-means
clustering which yields discrete categories. In con-
trast, the proposed framework incorporates embed-
dings from structured information and uses cluster-
ing based on partial membership and is experimen-
tally compared to an extensively cited ZSL scheme on
widely used ZSL evaluation data sets.

3. Methodology

Figure 1 gives a high-level depiction of the pro-
posed framework. Broadly, the proposed framework
comprises of the following components: deep fea-
ture extraction; incorporation of auxiliary informa-
tion; clustering of auxiliary information; multi-label
classification of deep features; and prediction of cate-
gories/classes. We present the details of each of the
above components.

3.1. Deep Feature Extraction

A ResNet-101 [9] DNN architecture pre-trained on the
ImageNet data set [5] is used to extract deep-learned
features from images, thus reducing the training time
significantly while yielding useful features. Features
are extracted from the last ResNet-101 layer, resulting
in 2048 features for each image. The extracted visual
features are split into training and testing sets using
a stratified 80:20 split. Stratified sampling is used so
that instances of seen and unseen classes are present
in the test set, thus making it a GZSL setting.

3.2. Auxiliary Information

Auxiliary information is exploited to establish seman-
tic relationships between seen and unseen classes,
which is a critical aspect of ZSL. In the proposed
framework, three sources of auxiliary information are
used.
Attributes. All three data sets have labelled attribute
information for each of their classes. The AWA2 data
set [10] includes attributes such as black, small, walks,
smart etc. with 85 such attributes for each class. The
CUB data set [29] includes attributes such as primary
color, wing color, wing shape, size etc. with 312 such at-
tributes for each class. The SUN data set [19] includes
attributes such as man-made, natural light, medical activ-
ity, diving etc. with 102 such attributes for each class.
Text Embeddings. The learned vector representa-
tions for words (i.e., word/text embeddings) derived
from a large general text corpus can help to construct
semantic relationships between the seen and unseen
class labels. FastText [4] has been shown to perform
better than other word embedding models such as
Word2Vec [14] and GloVe [20] since it treats each word



Figure 1. High-level schematic of the proposed framework.

as composed of character n-grams. Consequently,
FastText can also generate vectors for a combination
of words; for instance, ”polar bear” has a unique Fast-
Text vector representation. In our framework, Fast-
Text embeddings pre-trained on a very large Wikipedia
corpus are extracted for each class label, resulting in a
300-dimensional vector for each object category.

Hierarchy Embeddings. Creating a hierarchy of cat-
egories present in a data set allows us to derive
taxonomy-based relationships between the classes
and thereby improve ZSL performance. For the AWA2
and CUB data sets, Lee et al. [12] propose a two-stage
approach for generating hierarchy embeddings where
they first derive a top-down hierarchy using Word-
Net [15] and then create a flattened hierarchy by repre-
senting the probabilities of all the leaf nodes as a sin-
gle probability vector. In the case of the AWA2 and
CUB data sets, this results in a 61-dimensional vec-
tor and 193-dimensional vector respectively. The SUN
data set, on the other hand, provides its own two-level
hierarchy information for each of its 717 categories re-
sulting in a 19-dimensional vector.

Combined Semantic Space. The vector spaces of at-
tributes, text embeddings, and hierarchy embeddings
are combined into a unified space with reduced di-
mensionality, while retaining the most important in-
formation. Dimensionality reduction of the seman-
tic space reduces the computational complexity of the
clustering phase and creates robust clusters. Principal
Component Analysis (PCA) is used for dimensionality
reduction since it retains the variance in the input data
while reducing the data dimensionality resulting in a
compact combined semantic space. Figure 2 shows
the t-distributed stochastic neighbour embedding (t-
SNE) plots [25] of the combined semantic space for the
AWA2 and CUB data sets. Since CUB is a fine-grained

data set whereas AWA2 is a coarse-grained data set,
we observe that the classes in the former are clustered
closer to each other compared to those in the latter.

3.3. Clustering of Auxiliary Information

Clustering is used to identify object categories that
are good representatives for a large number of sim-
ilar object categories. The underlying hypothesis is
that the resulting cluster centers would have a strong
relationship with its cluster members, thus allowing
us to infer cluster members using the cluster centers
alone. We use two clustering algorithms, i.e., the Gaus-
sian Mixture Model (GMM) [16] and Affinity Propaga-
tion (AP) [6], to identify the clusters and representa-
tive classes for the clusters where the clustering is per-
formed in the combined reduced-dimensional seman-
tic space.

Gaussian Mixture Model (GMM): The GMM can
accommodate clusters that have different sizes and
correlation structures within them, as opposed to k-
means clustering where the number of clusters is de-
noted by the variable k. GMM-based clustering re-
quires us to specify the number of clusters (i.e., GMM
components) k before fitting the model. In our exper-
iments, we start with k = 5 and end with a value of k
that equals the total number of classes for a given data
set in steps of 5.

Affinity Propagation (AP): AP is a clustering algo-
rithm based on concept of ”message passing” between
data points. Unlike the GMM, AP does not require the
number of clusters k in the final output to be specified
in advance; the algorithm itself determines the opti-
mal number of clusters k.

In this work, we focus primarily on the GMM-
based clustering algorithm since we propose to study
how changing number of seen classes, i.e., the value



Figure 2. The t-SNE plots of the combined semantic space for the AWA2 (all classes) and CUB (10 random classes) data sets.

of k, impacts the classification accuracy.

3.4. Multilabel Classification of Deep Features

A trained visual classifier is used to label each new
test image into one of the representative objects cor-
responding to the clusters. For each value of k, the
training set is filtered for the class labels associated
with the cluster centers. For example, in the AWA2
data set, for k = 5, the class labels chimpanzee, hamster,
humpback whale, bobcat, and ox are the cluster centers.
The image features associated with the class labels of
the cluster centers alone are considered as the training
set and a multi-class visual classifier is trained using
this training set.

Visual Classifier. In our framework, we use a Ran-
dom Forest (RF) classifier since it is highly scalable for
a large number of classes and known to yield good re-
sults. The RF classifier builds an ensemble of decision
trees using a bagging ensemble technique. Since we
need to train multiple classifiers for varying values of
k, when using GMM-based clustering, it is not feasi-
ble to train neural network- or SVM-based classifiers
because of the extensive parameter tuning involved.

3.5. Generation of Predictions

Each test instance is classified into one of the rep-
resentative clusters for a given value of k. Alternative
hypotheses or predictions are then generated using a
similarity measure in the combined semantic space.
Similarity measure. If the distance between two data
points is small then there is a high degree of similarity
between the classes and vice versa. We use the cosine
similarity measure which computes the cosine of the an-
gle between two vectors. The cosine similarity mea-
sure is advantageous because even if the two classes
are far apart based on a standard distance metric, it is
possible for their corresponding vectors to be closely
aligned in terms of angular separation. The smaller
the angular separation between the two vectors, the
higher the cosine similarity measure.
Testing. The test set is split into two subsets. The first
subset denotes the seen classes, comprising of data

pertaining to class labels present in the training set.
The second subset denotes the unseen classes, com-
prising of data pertaining to class labels absent from
the training set. For each of these subsets, we deter-
mine top prediction using the trained visual classi-
fier and then find the closest class label in the com-
bined semantic space using the cosine similarity mea-
sure. Classification accuracy is computed for each
subset separately followed by the computation of the
harmonic score or H-Score (HS) which is the harmonic
mean of the seen class accuracy (SCA) and unseen class
accuracy (UCA) as shown in equation (1). Since our
aim is to attain high classification accuracy on both
the seen and unseen classes, the harmonic mean is a
better quantifier of overall classification accuracy.

HS =
2 × (SCA × UCA)

(SCA + UCA)
(1)

4. Results: Comparison and Discussion

Since the experimental setup for the proposed
framework differs from that of standard ZSL, it is hard
to compare our results with those of other ZSL frame-
works described in the literature. To achieve a fair
comparison of the proposed framework with other
ZSL approaches, we adapt a well known ZSL frame-
work, i.e., Attribute Label Embedding (ALE) [1] to our
experimental setup.

ALE uses a bilinear compatibility function to asso-
ciate visual and auxiliary information by embedding
each class in the space of attribute vectors. A com-
parison study performed in [31] shows that ALE out-
performs other ZSL frameworks in the GZSL setting.
Recent generative methods described in the literature
could potentially perform better than ALE but such a
comparison study using same data sets, experimen-
tal conditions, and evaluation metrics has not been
performed yet. Hence, we chose to compare the pro-
posed approach with the ALE framework. Once the
clusters centers are determined for each value of k,
the ALE procedure is performed on the appropriate



training and testing sets. Table 1 and Table 2 show
a summary of the comparison between the proposed
approach and ALE using both, GMM-based clustering
and AP-based clustering algorithms.

Results on the AWA2 data set. The AWA2 data set
has 50 classes and the training set consists of 560 im-
ages per class on average. We study performance of
the proposed approach for k = 25 which renders half
the classes as seen and half the classes as unseen for
the model. The seen classes exhibit an average clas-
sification accuracy of 85% whereas the unseen classes
exhibit an average classification accuracy of 27% on
the test set.

Among the input classes, we identify three cases of
seen classes and three cases of unseen classes:
Seen Classes Case 1: Classes exhibiting ≥ 90% clas-
sification accuracy on the test set. In the AWA2 data
set, 16 of 25 seen classes fall in this category and are
expected to aid very well in the inference of unseen
classes related to these seen classes. These seen classes
have a good number of images to train on and the clas-
sifier is able to clearly identify distinguishing features
for each class. For example, humpback whale is a seen
class that exhibits 100% classification accuracy on the
test set. Ideally, we would want all seen classes to fall
into this category.
Seen Classes Case 2: Classes exhibiting classification
accuracy ≥ 60% but < 90% on the test set. Seven of
the 25 seen classes fall in this category and are ex-
pected to aid reasonably in the inference of unseen
classes. Although these classes have a reasonable
number of images to train on, they are very close to
each other but are still considered as seen classes. For
example, ox, moose, and cow fall in this category. It
is understandable why the visual classifier is unable
to clearly distinguish between these categories, since
they are quite similar compared to other categories in
this data set.
Seen Classes Case 3: Classes exhibiting classification
accuracy < 60% on the test set. Two of the 25 seen
classes fall in this category and are expected to nega-
tively impact the unseen class inference process. Since
the training sets for these 2 classes have only 160 im-
ages on average, the visual classifiers are insufficiently
trained to learn the class discriminative features.
Unseen Classes Case 1: Classes exhibiting > 60%
classification accuracy on the test set. Six of the 25 un-
seen classes fall in this category comprising of cases
when a particular unseen class is inferred from a seen
class falling in Case 1 of seen classes. For example,
blue whale is an unseen class that exhibits 100% accu-
racy on the test set, and it is inferred from humpback
whale which falls under Case 1 of the seen classes.

Unseen Classes Case 2: Classes exhibiting classifica-
tion accuracy ≥ 1% but ≤ 60% on the test set. Six
of the 25 unseen classes fall in this category. These
are cases where the unseen classes are inferred from
the seen classes falling in Case 2 and Case 3 of seen
classes. These unseen classes exhibit poor perfor-
mance since the seen classes they are inferred from
are not clearly distinguishable by the visual classifier.
For example, the unseen class deer is inferred from
the seen class moose which falls in Case 2 of the seen
classes.

Unseen Classes Case 3: Classes that exhibit 0% accu-
racy on the test set. Twelve of the 25 unseen classes
fall in this category. Our inference procedure only al-
lows one unseen class inference per seen class; hence,
unseen classes that are farther away from seen classes
cannot be inferred and fall in this category. For exam-
ple, antelope is an unseen class that falls in the moose
cluster, but only deer can be inferred from moose since
it is the closest neighbor to moose based on the cosine
similarity measure.

Figure 3 shows a comparison of the H-scores ob-
tained on the all data sets by the proposed model and
ALE for all values of k. Our model performs signifi-
cantly better than ALE for all values of k on this data
set. The H-score increases monotonically with increas-
ing k which is expected since the increasing number of
seen classes enables more unseen classes to be inferred
with greater accuracy. Figures 4 and 5 show the qual-
itative results for the unseen and seen cases, respec-
tively. We observe that the proposed model performs
well when a seen class has a sufficient number of train-
ing images and the unseen class being inferred from
it is proximal to the seen class and performs poorly
when the unseen class being inferred is distant from
any of the representative classes.

To determine the optimal number of classes re-
quired to achieve reasonable performance, we choose
a k value that results in a greater than average H-score
performance for the proposed model. For k = 20, we
achieve a H-score of 46% with the proposed model
whereas the average H-score on the AWA2 data set
is 45% across all categories and k values. Thus, on the
AWA2 data set, we need to have at least 20 seen classes
to reasonably infer the unseen classes with greater
than average accuracy with the proposed model.

Results on the CUB data set. The CUB data set has
200 classes with 47 images per class on average in
the training set. This is a small number of images
to train on for each seen class. The proposed model
performs better than ALE for values of k ≤ 65. For
65 < k ≤ 115, the proposed model and ALE ex-
hibit comparable performance and for k > 115, the



Figure 3. H-score comparison between the proposed model and ALE on the (from left to right) AWA2, CUB, and SUN data
sets when using GMM-based clustering.

Figure 4. Qualitative results of seen cases from AWA2, CUB, and SUN data sets. Case-1 includes categories with clearly
identifiable discriminative features. Case-2 include categories for which we are unable to clearly distinguish between similar
categories. Case-3 include categories that have fewer images to train on and we are unable to identify distinguishing features.

Table 1. Comparison of average classification accuracy across k values between the proposed model and ALE when using
GMM-based clustering.

Proposed Model ALE

Data Set Avg. Seen Avg. Unseen Avg. H-Score Avg. Seen Avg. Unseen Avg. H-Score
AWA2 94% 32% 45% 90% 14% 24%
CUB 78% 22.86% 33% 70% 17.50% 27.19%
SUN 58.20% 15% 21.60% 41.50% 17.80% 25%

Table 2. Comparison of average classification accuracy between the proposed model and ALE when using AP-based clustering.

Proposed Model ALE

Data Set Seen Unseen H-Score Seen Unseen H-Score
AWA2 96.44% 23.43% 37.7% 83.40% 10% 17.50%
CUB 91% 9.70% 17.50% 55% 8.33% 14.40%
SUN 83.10% 4.30% 8.20% 24.40% 8.20% 12.30%



Figure 5. Qualitative Results of unseen cases from AWA2, CUB, and SUN data sets. Case-1 includes categories which are
inferred from seen classes belonging to Case-1. Case-2 includes categories which are inferred from seen classes belonging to
Case-2 and Case-3. Case-3 includes categories which are farther away from the seen classes and cannot be inferred.

proposed model significantly outperforms ALE on the
CUB data set. Thus, across a large range of k values,
the proposed model performs better than ALE on the
CUB data set. For k = 80, we achieve a H-score of
33.5% with the proposed model whereas the average
H-score on the CUB data set is 33% across all cate-
gories and k values. Thus, on the CUB data set, we
need at least 80 seen classes to reasonably infer the un-
seen classes with higher than average accuracy with
the proposed model.
Results on the SUN data set. The SUN data set has
717 classes with 16 images per class on average in the
training set. This makes it hard for the visual classifier
to learn distinguishing features for each class because
of the large number of classes and small number of
images for each class. ALE performs better than the
proposed model for values of k ≤ 560 and the pro-
posed model performs better than ALE for values of k
beyond 560. For k = 360, we achieve a H-score of 22%
with the proposed model and the average H-score on
the CUB data set is 21.6% across all categories and k
values. Thus, on the SUN data set, we need at least
360 seen classes to reasonably infer the unseen classes
with greater than average accuracy with the proposed
model.

5. Conclusions and Future Work

We have proposed a framework for generalized
zero-shot learning (GZSL) that is simple yet very effec-
tive for scenarios where the number of unseen classes

is significantly higher than that of seen classes. The
proposed framework offers an intuitive approach to
aid in the training data collection and annotation pro-
cess for image recognition tasks by identifying rep-
resentative classes using unsupervised clustering and
a method to infer unseen classes using a simple co-
sine similarity measure. The proposed framework
achieves accuracy figures that are 21% greater on the
AWA2 data set and 6% greater on the CUB data set
when compared to the well known Attribute Label
Embedding (ALE) scheme for GZSL; whereas on the
SUN data set, it exhibits performance that is compa-
rable to that of ALE. The proposed framework allows
us to determine the minimum number and types of
categories needed to be considered as previously seen
to achieve reasonable classification accuracy results on
all the three data sets.

A current drawback of the proposed framework is
its inability to infer unseen classes that are very dis-
tant from the representative classes in the semantic
space which presents scope for future improvement.
A potential solution could be a scheme to map the
distance between each unseen class and representa-
tive class in a cluster to the classification probabilities
obtained from the visual classifier allowing the frame-
work to infer all unseen classes, regardless of the dis-
tance, with non-zero probability. We also intend to
evaluate the scalability of the proposed framework on
a very large data set such as ImageNet with ≥ 1000
classes and several hundred images per class.
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