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Abstract

Visual Question Answering is a multi-modal task that

aims to measure high-level visual understanding. Contem-

porary VQA models are restrictive in the sense that answers

are obtained via classification over a limited vocabulary (in

the case of open-ended VQA), or via classification over a set

of multiple-choice-type answers. In this work, we present a

completely generative formulation where a multi-word an-

swer is generated for a visual query. To take this a step

forward, we introduce a new task: ViQAR (Visual Question

Answering and Reasoning), wherein a model must generate

the complete answer and a rationale that seeks to justify the

generated answer. We propose an end-to-end architecture to

solve this task and describe how to evaluate it. We show that

our model generates strong answers and rationales through

qualitative and quantitative evaluation, as well as through

a human Turing Test.

1. Introduction

Visual Question Answering (VQA) [2] is a vision-

language task that has seen a lot of attention in recent years.

In general, the VQA task consists of either open-ended

or multiple choice answers to a question about the image.

There are an increasing number of models that obtain the

best possible performance on benchmark VQA datasets,

which intend to measure visual understanding based on vi-

sual questions. However, answers in existing VQA datasets

and models are largely one-word answers (average length is

1.1 words), which gives existing models the freedom to treat

answer generation as a classification task. For the open-

ended VQA task, the top-K answers are chosen, and models

perform classification over this vocabulary.

However, many questions which require commonsense

reasoning cannot be answered in a single word. A textual

answer for a sufficiently complicated question may need

to be a sentence. For example, a question of the type

*equal contribution

”What will happen....” usually cannot be answered com-

pletely using a single word. Figure 1 shows examples

of such questions where multi-word answers are required

(the answers and rationales in this figure are generated by

our model in this work). Current VQA systems are not

well-suited for questions of this type. To reduce this gap,

more recently, the Visual Commonsense Reasoning (VCR)

task [44, 28, 10, 46, 36] was proposed, which requires a

greater level of visual understanding and an ability to rea-

son about the world. More interestingly, the VCR dataset

features multi-word answers, with an average answer length

of 7.55 words. However, VCR is still a classification task,

where the correct answer is chosen from a set of four an-

swers. Models which solve classification tasks simply need

to pick an answer in the case of VQA, or an answer and

a rationale for VCR. However, when multi-word answers

are required for a visual question, options are not sufficient,

since the same ’correct’ answer can be paraphrased in a

multitude of ways, each having the same semantic meaning

but differing in grammar. Figure 2 shows an image from the

VCR dataset, where the first highlighted answer is the cor-

rect one among a set of four options provided in the dataset.

The remaining three answers in the figure are included by

us here (not in the dataset) as other plausible correct an-

swers. Existing VQA models are fundamentally limited by

picking a right option, rather to answer in a more natural

manner. Moreover, since the number of possible ‘correct’

options in multi-word answer settings can be large (as evi-

denced by Figure 2), we propose that for richer answers, one

would need to move away from the traditional classification

setting, and instead let our model generate the answer to a

given question. We hence propose a new task which takes a

generative approach to multi-word VQA in this work.

Humans when answering questions often use a ratio-

nale to justify the answer. In certain cases, humans an-

swer directly from memory (perhaps through associations)

and then provide a post-hoc rationale, which could help

improve the answer too - thus suggesting an interplay be-

tween an answer and its rationale. Following this cue, we

also propose to generate a rationale along with the answer



Generated reason: there is a fire 
right in front of him

person1
person2

Figure 1: Given an image and a question about the image, we generate a natural language answer and reason that explains why the answer

was generated. The images shown above are examples of outputs that our proposed model generates. These examples also illustrate the

kind of visual questions for which a single-word answer is insufficient. Contemporary VQA models handle even such kinds of questions

only in a classification setting, which is limiting.

person4
person3

Input Image Answer choices from VCR dataset

Question:  Why are person3 and person4 

sitting at the table?

a) person3 and person4 are having tea
b) they are eating dinner
c) person3 and person4 are waiting for 

breakfast
d) person3 and person4 are celebrating a 

birthday

Other possible multi-word answers:
● person3 and person4 are in a party

● They are having drinks in a birthday 

party

● person3 and person4 are attending 

a friend’s birthday party

● They are talking to each other at 

a party

Figure 2: An example from the VCR dataset shows that there can be many correct multi-word answers to a question that makes classification

setting restrictive. The highlighted option is the correct option present in the VCR dataset, the rest are plausible correct answers.

which serves two purposes: (i) it helps justify the gener-

ated answer to end-users; and (ii) it helps generate a bet-

ter answer. Going beyond contemporary efforts in VQA,

we hence propose, for the first time to the best of our

knowledge, an approach that automatically generates both

multi-word answers and an accompanying rationale, that

also serves as a textual justification for the answer. We

term this task Visual Question Answering and

Reasoning (ViQAR) and propose an end-to-end method-

ology to address this task. This task is especially important

in critical AI tasks such as VQA in the medical domain,

where simply answering questions about the medical im-

ages is not sufficient.

In addition to formalizing this new task, we provide a

simple yet reasonably effective model consisting of four se-

quentially arranged recurrent networks to address this chal-

lenge. The model can be seen as having two parts: a genera-

tion module (GM), which comprises of the first two sequen-

tial recurrent networks, and a refinement module (RM),

which comprises of the final two sequential recurrent net-

works. The GM first generates an answer, using which it

generates a rationale that explains the answer. The RM gen-

erates a refined answer based on the rationale generated by

GM. The refined answer is further used to generate a re-

fined rationale. Our overall model design is motivated by

the way humans think about answers to questions, wherein

the answer and rationale are often mutually dependent on

each other. We seek to model this dependency by first gen-

erating an answer-rationale pair and then using them as pri-

ors to regenerate a refined answer and rationale. We train

our model on the VCR dataset, which contains open-ended

visual questions along with answers and rationales. Con-

sidering this is a generative task, we evaluate our methodol-

ogy by comparing our generated answer/rationale with the

ground truth answer/rationale on correctness and goodness

of the generated content using generative language metrics,

as well as by human Turing Tests.

Our main contributions in this work can be summarized

as follows: (i) We propose a new task ViQAR that seeks

to open up a new dimension of Visual Question Answering

tasks, by moving to a completely generative paradigm; (ii)

We propose a simple and effective model based on genera-

tion and iterative refinement for ViQAR (which could serve

as a baseline to the community); (iii) Considering genera-

tive models in general can be difficult to evaluate, we pro-

vide a discussion on how to evaluate such models, as well

as study a comprehensive list of evaluation metrics for this

task; (iv) We conduct a suite of experiments which show

promise of the proposed model for this task, and also per-

form ablation studies of various choices and components

to study the effectiveness of the proposed methodology on

ViQAR. We believe that this work could lead to further ef-

forts on common-sense answer and rationale generation in

vision tasks in the near future. To the best of our knowl-

edge, this is the first such effort of automatically generating

a multi-word answer and rationale to a visual question.



2. Related Work

VQA and Image Captioning. A lot of work in VQA is

based on attention-based models that aim to ’look’ at the

relevant regions of the image in order to answer the ques-

tion [1, 30, 42, 40]. Other recent work has focused on better

multimodal fusion methods [19, 20, 12, 43], the incorpora-

tion of relations [31, 23, 35], the use of multi-step reason-

ing [4], and neural module networks for compositional rea-

soning [18, 6, 16]. Visual Dialog [8, 46] extends VQA but

requires an agent to hold a meaningful conversation with

humans in natural language based on visual questions. Im-

age captioning [39, 41, 29, 1, 34] is a global description of

an image and hence different from ViQAR which is con-

cerned with answering a question about understanding of a

local region in the image.

The efforts closest to ours are those that provide justi-

fications along with answers [25, 14, 24, 32, 38, 32], each

of which however also answers a question as a classifica-

tion task (and not in a generative manner) as described be-

low. Li et al. [25] created the VQA-E dataset that has an

explanation along with the answer to the question. Wu et

al. [38] provide relevant captions to aid in solving VQA,

which can be thought of as weak justifications. More recent

efforts [32, 33] attempt to provide visual and textual expla-

nations to justify the predicted answers. Datasets have also

been proposed for VQA in the recent past to test visual un-

derstanding [47, 13, 17]; for e.g., the Visual7W dataset [47]

contains a richer class of questions about an image with tex-

tual and visual answers. However, all these aforementioned

efforts continue to focus on answering a question as a clas-

sification task (often in one word, such as Yes/No), followed

by simple explanations. We however, in this work, focus on

generating multi-word answers with a corresponding multi-

word rationale, which has not been done before.

Visual Commonsense Reasoning (VCR). VCR [44] is a

vision-language dataset, which involves choosing a correct

answer (among four provided options) for a given question

about the image, and then choosing a rationale to justify the

answer. The task associated with the dataset aims to test for

visual commonsense understanding and provides images,

questions and answers of a higher complexity than other

datasets such as CLEVR [17]. The dataset has attracted

various methods [44, 28, 10, 46, 36, 27, 3], each of which

however follow the dataset’s task and treat this as a classi-

fication problem. None of these efforts attempt to answer

and reason using generated sentences.

In contrast to all the aforementioned efforts, our work,

ViQAR, focuses on automatic complete generation of the

answer, and of a rationale, given a visual query. This is a

challenging task, since the generated answers must be cor-

rect (with respect to the question asked), be complete, be

natural, and also be justified with a well-formed rationale.

3. ViQAR: Task description

Let V be a given vocabulary of size |V| and

A = (a1, . . . , ala) ∈ V la , R = (r1, . . . , rlr ) ∈ V lr

represent answer sequences of length la and rationale se-

quences of length lr respectively. Let I ∈ R
D represent

the image representation, and Q ∈ R
B be the feature rep-

resentation of a given question. We also allow the use of

an image caption, if available, in this framework given by a

feature representation C ∈ R
B . Our task is to compute a

function F : RD × R
B × R

B → V la × V lr that maps the

input image, question and caption features to a large space

of generated answers A and rationales R, as given below:

F(I,Q,C) = (A,R) (1)

Note that the formalization of this task is different from

other tasks in this domain, such as Visual Question An-

swering [2] and Visual Commonsense Reasoning [44]. The

VQA task can be formulated as learning a function G :
R

D × R
B → C, where C is a discrete, finite set of choices

(classification setting). Similarly, the Visual Commonsense

Reasoning task provided in [44] aims to learn a function

H : RD × R
B → C1 × C2, where C1 is the set of possible

answers, and C2 is the set of possible reasons. The genera-

tive task, proposed here in ViQAR, is harder to solve when

compared to VQA and VCR. One can divide ViQAR into

two sub-tasks:

• Answer Generation. Given an image, its caption, and

a complex question about the image, a multi-word nat-

ural language answer is generated:

(I,Q,C) → A

• Rationale Generation. Given an image, its caption, a

complex question about the image, and an answer to

the question, a rationale to justify the answer is gener-

ated: (I,Q,C,A) → R

We also study variants of the above sub-tasks (such as when

captions are not available) in our experiments. Our experi-

ments suggest that the availability of captions helps a model

achieve better performance on our task. We now present a

methodology built using known basic components to study

and show that the proposed, seemingly challenging, new

task can be solved with existing architectures. In particular,

our methodology is based on the understanding that the an-

swer and rationale can help each other, and hence needs an

iterative refinement procedure to handle such a multi-word

multi-output task. We consider the simplicity of the pro-

posed solution as an aspect of our solution by design, more

than a limitation, and hope that the proposed architecture

will serve as a baseline for future efforts on this task.



Figure 3: The decoder of our proposed architecture: For simplicity we only show the last time-step of each unrolled LSTM. Here t1 = la,

t2 = la + lr , t3 = 2la + lr and t4 = 2la + 2lr . Given an image and a question on the image, the model must generate an answer to the

question and a rationale to justify why the answer is correct.

4. Proposed methodology

We present an end-to-end, attention-based, encoder-

decoder architecture for answer and rationale generation

which is based on an iterative refinement procedure. The

refinement in our architecture is motivated by the observa-

tion that answers and rationales can influence one another

mutually. Thus, knowing the answer helps in generation of

a rationale, which in turn can help in the generation of a

more refined answer. The encoder part of the architecture

generates the features from the image, question and caption.

These features are used by the decoder to generate the an-

swer and rationale for a question.

Feature Extraction. We use spatial image features as

proposed in [1], which are termed bottom-up image fea-

tures. We consider a fixed number of regions for each im-

age, and extract a set of k features, V , as defined below:

V = {v1,v2, . . . ,vk} where vi ∈ R
D. (2)

We use BERT [9] representations to obtain fixed-size

embeddings for the question and caption, Q ∈ R
B and C ∈

R
B respectively. The question and caption are projected

into a common feature space T ∈ R
L given by:

T = g(WT
t (tanh(WT

q Q)⊕ tanh(WT
c C))), (3)

where g is a non-linear function, ⊕ indicates concatenation

and Wt ∈ R
L×L, Wq ∈ R

B×L and Wc ∈ R
B×L are learn-

able weight matrices of the layers (we use two linear layers

in our implementation in this work).

Let the mean of the extracted spatial image features (as

in Equation 2) be denoted by V̄ ∈ R
D. These are con-

catenated with the projected question and caption features

to obtain F, which is the common input feature vector to all

the LSTMs in our architecture:

F = V̄ ⊕T (4)

Architecture. Figure 3 shows our end-to-end architec-

ture to address ViQAR. As stated earlier, our architec-

ture has two modules: generation (GM ) and refinement

(RM ). The GM consists of two sequential, stacked

LSTMs, henceforth referred to as answer generator (AG)

and rationale generator (RG) respectively. The RM seeks

to refine the generated answer as well as rationale, and is an

important part of the proposed solution as seen in our exper-

imental results. It also consists of two sequential, stacked

LSTMs, which we denote as answer refiner (AR) and ratio-

nale refiner (RR).

Each sub-module (presented inside dashed lines in the

figure) is a complete LSTM. Given an image, question, and

caption, the AG sub-module unrolls for la time steps to gen-

erate an answer. The hidden state of Language and Atten-

tion LSTMs after la time steps is a representation of the

generated answer. Using the representation of the generated

answer from AG, RG sub-module unrolls for lr time steps

to generate a rationale and obtain its representation. Then

the AR sub-module uses the features from RG to generate a

refined answer. Lastly, the RR sub-module uses the answer

features from AR to generate a refined rationale. Thus, a

refined answer is generated after la+ lr time steps and a re-

fined rationale is generated after la further time steps. The

complete architecture runs in 2la + 2lr time steps.

The LSTMs. The two layers of each stacked LSTM [15]

are referred to as the Attention-LSTM (La) and Language-

LSTM (Ll) respectively. We denote ha
t and xa

t as the hid-



den state and input of the Attention-LSTM at time step t re-

spectively. Analogously, hl
t and xl

t denote the hidden state

and input of the Language-LSTM at time t. Since the four

LSTMs are identical in operation, we describe the attention

and sequence generation modules of one of the sequential

LSTMs below in detail.

Spatial visual attention. We use a soft, spatial-attention

model, similar to [1] and [29], to compute attended image

features V̂. Given the combined input features F and pre-

vious hidden states ha
t−1

, hl
t−1

, the current hidden state of

the Attention-LSTM is given by:

xa
t ≡ hp ⊕ hl

t−1
⊕ F⊕ πt,

ha
t = La(x

a
t , h

a
t−1

), (5)

where πt = WT
e 1t is the embedding of the input word,

We ∈ R
|V|×E is the weight of the embedding layer, and 1t

is the one-hot representation of the input at time t. hp is

the hidden representation of the previous LSTM (answer or

rationale, depending on the current LSTM).

The hidden state ha
t and visual features V are used by

the attention module (implemented as a two-layered MLP

in this work) to compute the normalized set of attention

weights αt = {α1t, . . . , αkt} (where αit is the normalized

weight of image feature vi) as below:

yi,t = WT
ay(tanh(W

T
avvi +WT

ahh
a
t )),

αt = softmax(y1t . . . , ykt). (6)

In the above equations, Way ∈ R
A×1, Wav ∈ R

D×A

and Wah ∈ R
H×A are weights learned by the attention

MLP, H is the hidden size of the LSTM and A is the hid-

den size of the attention MLP. The attended image feature

vector V̂t =
∑k

i=1
αitvi is the weighted sum of all visual

features.

Sequence generation. The attended image features V̂t,

together with T and ha
t , are inputs to the language-LSTM

at time t. We then have:

xl
t ≡ hp ⊕ V̂t ⊕ ha

t ⊕T

hl
t = Ll(x

l
t, h

l
t−1

)

yt = WT
lhh

l
t + blh

pt = softmax(yt) (7)

where hp is the hidden state of the previous LSTM, hl
t is the

output of the Language-LSTM, pt is the conditional proba-

bility over words in V at time t. The word at time step t is

generated by a single-layered MLP with learnable param-

eters: Wlh ∈ R
H×|V|, blh ∈ R

|V|×1. The attention MLP

parameters Way , Wav and Wah, and embedding layer’s pa-

rameters We are shared across all four LSTMs.

Loss Function. For a better understanding of our ap-

proach, Figure 4 presents a high-level illustration of our

proposed generation-refinement model.

AG RG AR RRF

Figure 4: High-level illustration of our proposed Generation-

Refinement model

Let A1 = (a11, a12, ..., a1la), R1 = (r11, r12, ..., r1lr ),
A2 = (a21, a22, ..., a2la) and R2 = (r21, r22, ..., r2lr ) be

the generated answer, generated rationale, refined answer

and refined rationale sequences respectively, where aij and

rij are discrete random variables taking values from the

common vocabulary V . Given the common input F , our ob-

jective is to maximize the likelihood P (A1, R1, A2, R2|F )
given by:

P (A1, R1, A2, R2|F ) = P (A1, R1|F )P (A2, R2|F,A1, R1)

= P (A1|F )P (R1|F,A1)

P (A2|F,A1, R1)P (R2|F,A1, R1, A2)
(8)

In our model design, each term in the RHS of Eqn 8 is

computed by a distinct LSTM. Hence, minimizing the sum

of losses of the four LSTMs becomes equivalent to maxi-

mizing the joint likelihood. Our overall loss is the sum of

four cross-entropy losses, one for each LSTM, as given be-

low:

L = −

( la
∑

t=1

log p
θ1
t +

lr
∑

t=1

log p
θ2
t +

la
∑

t=1

log p
θ3
t +

lr
∑

t=1

log p
θ4
t

)

(9)

where θi represents the ith sub-module LSTM, pt is the

conditional probability of the tth word in the input se-

quence as calculated by the corresponding LSTM, la in-

dicates the ground-truth answer length, and lr the ground

truth rationale length. Other loss formulations, such as a

weighted average of the cross entropy terms did not per-

form better than a simple sum. We tried weights from

0.0, 0.25, 0.5, 0.75, 1.0 for the loss terms.

5. Experiments and results

In this section, we describe the dataset used for this work,

implementation details of out model, and present the results

of the proposed method and its variants.

5.1. Experimental setup

Dataset. Considering there has been no dataset explicitly

built for this new task, we study the performance of the pro-

posed method on the recently introduced VCR [44] dataset,



Table 1: Quantitative evaluation on VCR dataset; we compare against a basic two-

stage LSTM model and a VQA model as baselines; remaining columns are proposed

model variants.[CS = cosine similarity]

Metrics
VQA-Baseline Baseline Q+I+C

(Ours)

Q+I

(Ours)

Q+C

(Ours)

Univ Sent Encoder CS 0.419 0.410 0.455 0.454 0.440

Infersent CS 0.370 0.400 0.438 0.442 0.426

Embedding Avg CS 0.838 0.840 0.846 0.853 0.845

Vector Extrema CS 0.474 0.444 0.493 0.483 0.475

Greedy Matching Score 0.662 0.633 0.672 0.661 0.657

METEOR 0.107 0.095 0.116 0.104 0.103

Skipthought CS 0.430 0.359 0.436 0.387 0.385

RougeL 0.259 0.206 0.262 0.232 0.236

CIDEr 0.364 0.158 0.455 0.310 0.298

F-BERTScore 0.877 0.860 0.879 0.867 0.868

Table 2: Comparison of proposed Generation-

Refinement architecture with variations in number

of refinement modules. [CS: cosine similarity]

Metrics #Refine Modules

0 1 2

Univ Sent Encoder CS 0.453 0.455 0.430

Infersent CS 0.434 0.438 0.421

Embedding Avg CS 0.850 0.846 0.840

Vector Extrema CS 0.482 0.493 0.462

Greedy Matching Score 0.659 0.672 0.639

METEOR 0.101 0.116 0.090

Skipthought CS 0.384 0.436 0.375

RougeL 0.234 0.262 0.198

CIDEr 0.314 0.455 0.197

F-BertScore 0.868 0.879 0.861

Table 3: Results of the Turing test on VCR and Visual7W dataset performed with 30 people who had to rate samples consisting of a

question and its corresponding answer and rationales on five criteria. For each criterion, a rating of 1 to 5 was given. The table gives the

mean score and standard deviation for each criterion for the generated and ground truth samples.

Criteria
VCR Visual7W

Generated Ground-truth Generated Ground-truth

How well-formed and grammatically correct is the answer? 4.15±1.05 4.40±0.87 3.98±1.08 –

How well-formed and grammatically correct is the rationale? 3.53±1.26 4.26±0.92 3.80±1.04 –

How relevant is the answer to the image-question pair? 3.60±1.32 4.08±1.03 4.11±1.17 –

How well does the rationale explain the answer with respect to the image-question pair? 3.04±1.36 4.05±1.10 3.83±1.23 –

Irrespective of the image-question pair, how well does the rationale explain the answer ? 3.46±1.35 4.13±1.09 3.83±1.28 –

which has all components needed for our approach. We

train our proposed architecture on VCR, which contains

ground truth answers and ground truth rationales against

which we compare our generated answers and rationales.

Table 4: Statistical comparison of VCR with VQA-E, and VQA-

X datasets. VCR dataset is highly complex as it is made up of

complex subjective questions.

Dataset Avg. A Avg. Q Avg. R Complexity

length length length

VCR 7.55 6.61 16.2 High

VQA-E 1.11 6.1 11.1 Low

VQA-X 1.12 6.13 8.56 Low

VQA-E [25] and VQA-X [32] are competing datasets

that contains explanations along with question-answer

pairs. Table 4 shows the high-level analysis of the three

datasets. Since VQA-E and VQA-X are derived from VQA-

2 [13], many of the questions can be answered in one word

(a yes/no answer or a number). In contrast, VCR asks open-

ended questions and has longer answers. Since our task

aims to generate rich answers, the VCR dataset provides

a richer context for this work. CLEVR [17] is another VQA

dataset that measures the logical reasoning capabilities by

asking the question that can be answered when a certain se-

quential reasoning is followed. This dataset however does

not contain reasons/rationales on which we can train. Also,

we do not perform a direct evaluation on CLEVR because

our model is trained on real-world natural images while

CLEVR is a synthetic shapes dataset. In order to study our

method further, we also study the transfer of our learned

model to another challenging dataset, Visual7W [47], by

generating an answer/rationale pair for visual questions in

Visual7W (please see Section 5.3 more more details).

Implementation Details. We use spatial image features

generated from [1] as our image input. Fixed-size BERT

representations of questions and captions are used. Hidden

size of all LSTMs is set to 1024 and hidden size of the at-

tention MLP is set to 512. We trained using the ADAM

optimizer with a decaying learning rate starting from 4e−4,

using a batch size of 64. Dropout is used as a regularizer.

Evaluation metrics. We use multiple objective evalua-

tion metrics to evaluate the goodness of answers and ra-

tionales generated by our model. Since our task is gener-

ative, evaluation is done by comparing our generated sen-



tences with ground-truth sentences to assess their semantic

correctness as well as structural soundness. To this end,

we use a combination of multiple existing evaluation met-

rics. Word overlap-based metrics such as METEOR [22],

CIDEr [37] and ROUGE [26] quantify the structural close-

ness of the generated sentences to the ground-truth. While

such metrics give a sense of the structural correctness of the

generated sentences, they may be insufficient for evaluating

generation tasks, since there could be many valid genera-

tions which are correct, but not share the same words as

a single ground truth answer. Hence, in order to measure

how close the generation is to the ground-truth in mean-

ing, we additionally use embedding-based metrics (which

calculate the cosine similarity between sentence embed-

dings for generated and ground-truth sentences) including

SkipThought cosine similarity [21], Vector Extrema cosine

similarity [11], Universal sentence encoder [5], Infersent [7]

and BERTScore [45]. We use a comprehensive suite of all

the aforementioned metrics to study the performance of our

model. We further provide details of performance of our

model on the VCR classification task in the supplementary.

5.2. Performance evaluation of ViQAR

Quantitative results. Quantitative results on the suite of

evaluation metrics stated earlier are shown in Table 1. Since

this is a new task, there are no known methods to compare

against. We compare our model against a baseline (called

Baseline in Table 1) composed of two separate two-stage

LSTMs, one for answer and one for the rationale, and a

VQA-based method [1] that extracts multi-modal features

to generate answers and rationales parallelly in an end-to-

end manner (called VQA-Baseline in Table 1). (Compari-

son with other standard VQA models is not relevant in this

setting, since we perform a generative task, unlike existing

VQA models.) We show results on three variants of our pro-

posed Generation-Refinement model: Q+I+C (when ques-

tion, image and caption are given as inputs), Q+I (question

and image alone as inputs), and Q+C (question and caption

alone as inputs). Evidently, our Q+I+C performed the most

consistently across all the evaluation metrics. Importantly,

our model outperforms both baselines, including the VQA-

based one, on every single evaluation metric, showing the

utility of the proposed architecture.

Qualitative results. Figure 5 (Top) shows an example

where the proposed model (Q+I+C setting) generates a

meaningful answer with a supporting rationale. Given the

question, ”What does person2 do?”, the generated rationale:

”person2 is wearing a school uniform” actively supports

the generated answer: ”person2 is a student”, justifying the

choice of a two-stage generation-refinement architecture.

For completeness of understanding, we present an exam-

ple, Figure 5 (Bottom), on which our model fails to gener-

person2

person1

Figure 5: (Best viewed in color) Top: Example output from our

proposed Generation-Refinement architecture. Bottom: A chal-

lenging input for which our model fails.

ate the semantically correct answer. Even on this result, we

observe the generated answer and rationale are grammat-

ically correct and complete (where rationale supports the

answer). Improving the semantic correctness of the gener-

ations will be an important direction of future work. Qual-

itative results indicate that our model is capable of generat-

ing answer-rationale pairs to complex subjective questions

starting with ’Why’, ’What’, ’How’, etc. More qualitative

results are presented in the supplementary owing to space

constraints.

Human Turing test. In addition to the study of the ob-

jective evaluation metrics, we also performed a human Tur-

ing test on the generated answers and rationales. 30 hu-

man evaluators were presented each with 50 randomly sam-

pled image-question pairs, each containing an answer to the

question and its rationale. The test aims to measure how

humans score the generated sentences w.r.t. ground truth

sentences. Sixteen of the fifty questions had ground truth

answers and rationales, while the rest were generated by

our proposed model. For each sample, the evaluators had

to give a rating of 1 to 5 for five different criteria, with 1

being very poor and 5 being very good. The results are pre-

sented in Table 3. Despite the higher number of generated

answer-rationales judged by human users, the answers and

rationales produced by our method were deemed to be fairly

correct grammatically. The evaluators also agreed that our

answers were relevant to the question and the generated ra-

tionales are acceptably relevant to the generated answer.

5.3. Further analysis of ViQAR

Ablation studies on refinement module. We evaluate

the performance of variations of our proposed generation-

refinement architecture M : (i) M −RM : where the refine-

ment module is removed; (ii) M+RM : where a second re-

finement module is added, i.e. the model has one generation

and two refinement modules (to see if further refinement of



 

Figure 6: Qualitative results for our model with (in green, last row)

and without (in red, penultimate row) Refinement module

answer and rationale helps). Table 2 shows the quantitative

results. We observe that our proposed model, which has one

refinement module has the best results. Adding additional

refinement modules causes the performance to go down.

We hypothesize that the additional parameters (in a sec-

ond Refinement module) in the model makes it harder for

the network to learn. Removal of the refinement module

also causes performance to drop, supporting our claim on

the usefulness for a Refinement module too. Figure 6 pro-

vides a few qualitative results with and without the refine-

ment module, supporting our claim. More results are pre-

sented in the supplementary.

Transfer to other datasets. We also studied whether the

proposed model, trained on the VCR dataset, can provide

answers and rationales to visual questions in other VQA

datasets (which do not have ground truth rationale pro-

vided). To this end, we tested our trained model on the

widely used Visual7W [47] dataset without any additional

training.

Figure 7 presents qualitative results for ViQAR task

on the Visual7W dataset. We also perform a Turing test

on the generated answers and rationales to evaluate the

model’s performance on Visual7W. Thirty human evalu-

ators were presented each with twenty five hand-picked

image-question pairs, each of which contains a generated

answer to the question and its rationale. The results, pre-

sented in Table 3 show that our algorithm generalizes rea-

sonably well to another VQA dataset and generates answers

and rationales relevant to the image-question pair, without

any explicit training for this dataset. This adds a promising

dimension to this work. More results are presented in the

supplementary.

ViQAR is a completely generative task and objective

Question:  What are the men 

doing?

Answer: Person2 and Person1 are 

cooking for food

Reason: They are holding a table 

and the table has food

Question: Why are the people all 

dressed up?

Answer: They are celebrating a 

costume party

Reason: They are all dressed in 

nice dresses and in fancy clothes

Figure 7: Qualitative results on Visual7W dataset (note that there

is no rationale provided in this dataset, and all above rationales

were generated by our model)

evaluation is a challenge, as in any other generative method.

For comprehensive evaluation, we use a suite of objective

metrics typically used in related vision-language tasks, and

perform a Human Turing Test on the generated sentences.

We perform a detailed analysis in the supplementary and

show that even our successful results (qualitatively speak-

ing) may have low scores on objective evaluation metrics at

times, since generated sentences may not match a ground

truth sentence word-by-word. We hope that opening up this

dimension of generated explanations will only motivate a

better metric in the near future.

6. Conclusion

In this paper, we propose ViQAR, a novel task for gen-

erating a multi-word answer and a rationale given an image

and a question. Our work aims to go beyond classical VQA

by moving to a completely generative paradigm. To solve

ViQAR, we present an end-to-end generation-refinement ar-

chitecture which is based on the observation that answers

and rationales are dependent on one another. We showed

the promise of our model on the VCR dataset both qualita-

tively and quantitatively, and our human Turing test showed

results comparable to the ground truth. We also showed that

this model can be transferred to tasks without ground truth

rationale. We hope that our work will open up a broader dis-

cussion around generative answers in VQA and other deep

neural network models in general.
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