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Abstract

A common strategy to video understanding is to incorpo-

rate spatial and motion information by fusing features de-

rived from RGB frames and optical flow. In this work, we

introduce a new way to leverage semantic segmentation as

an intermediate representation for video understanding and

use it in a way that requires no additional labeling. Second,

we propose a general framework which learns the intermedi-

ate representations (optical flow and semantic segmentation)

jointly with the final video understanding task and allows the

adaptation of the representations to the end goal. Despite the

use of intermediate representations within the network, dur-

ing inference, no additional data beyond RGB sequences is

needed, enabling efficient recognition with a single network.

Finally, we present a way to find the optimal learning con-

figuration by searching the best loss weighting via evolution.

We obtain more powerful visual representations for videos

which lead to performance gains over the state-of-the-art.

1. Introduction

In the task of action recognition, the model is given only

a video-level action class as a supervision signal. From this,

the model has to implicitly learn a wide variety of concepts

from the input data: objects, people, motion and their re-

lationships through time. Thus using explicit intermediate

representations can aid in the learning process. One no-

table form of intermediate representation, optical flow, has

been used extensively in two-stream architectures [52, 4, 15].

Optical flow is often pre-computed using an algorithm opti-

mized for the quality of optical flow itself, rather than the

downstream video understanding task.

As an addition to motion information, knowledge about

the presence and location of people and objects should also

be highly relevant in understanding the activity in a video

sequence [24]. We propose a new way to use semantic seg-

mentation as an intermediate representation learned by the

network (Figure 1). Semantic segmentation is learned along

with the main video understanding task using annotations

Figure 1. Intermediate representations from optical flow (middle)

and semantic segmentation (right) are learned alongside the main

RGB task and their losses are simultaneously optimized for improv-

ing the performance of the main video understanding task. Merging

of streams is highlighted with red borders and supervision by loss

is highlighted in green.

generated by an off-the-shelf teacher model that was trained

on static images unrelated to the task. Therefore, the annota-

tions are readily available and require no additional labeling

effort.

How can one best take advantage of these intermediate

representations? Enforcing rigid intermediate representa-

tions, for example by training and freezing a model for op-

tical flow, prevents these representations from learning in-

formation that is specific to the given task, e.g., when some

types of motion are more informative than others. To al-

low for such flexibility, we encourage intermediate repre-

sentations in a “soft” way through auxiliary learning objec-

tives that are optimized jointly with the video understanding

task. Importantly, after training the network and learning the

corresponding intermediate representations, the network re-

quires RGB-only inputs at inference.

As all intermediate representations are jointly learned

with the final task by optimizing a weighted sum of these



objectives, the weights of their losses determine the impor-

tance of each stream’s feature representations and interme-

diate losses. In addition to optimizing these representa-

tions, we also optimize the loss weights for end-to-end action

recognition performance using evolution to maximize mu-

tual usefulness of each loss (Figure 1). We call the approach

‘AIRStreams’, short from Adaptive Intermediate Represen-

tation Streams, as it provides a framework for using different

streams of intermediate representations in an adaptive man-

ner for video understanding.

Our contributions are threefold: (a) We propose to incor-

porate semantic segmentation as a learned intermediate rep-

resentation for video understanding that is complementary

to optical flow, improves performance, and does not require

additional labeling. (b) We provide a novel framework that

combines different intermediate representations in a way that

automatically optimizes them with respect to the final task.

The networks in our framework require RGB inputs only. c)

We use an evolutionary strategy to further balance the learn-

ing of these representations for final action recognition task.

Our experimental evaluation shows that AIRStreams per-

forms well across three major action recognition datasets.

In an extensive analysis of the effect of adaptive intermedi-

ate representations and the proposed approach, we find that

the extra modalities help, more specifically: (i) Adding the

semantic segmentation stream significantly improves perfor-

mance, and can do so without pre-training. (ii) Intermediate

representations are more useful when optimized jointly with

the task by allowing the end-to-end gradient to affect the in-

termediate representation. (iii) Optimizing the weights of

the intermediate losses for the task provides additional im-

provements in performance. (iv) Combining the aforemen-

tioned concepts, AIRStreams outperforms or is competitive

with the best current video understanding models in multiple

action recognition datasets.

While incorporating extra modalities requires more com-

putation, we opted for an orthogonal approach where we use

a lightweight backbone, but utilize the compute to pack ad-

ditional modalities, which bring in new valuable information

and large improvements. At inference, our model is very

efficient, taking 17 GFLOPs, as opposed to SlowFast [13]

which is 213 GFLOPs, and I3D [4] - 216 GFLOPs.

2. Previous work

Understanding videos has had many successful ap-

proaches applying a number of deep architectures [55, 53,

52, 14, 57, 27, 64, 4, 54, 11, 13]. Optical flow, although a

product of the raw video stream, has been demonstrated to

be of high value to video recognition [48]. Two-stream net-

works [52, 4, 15] are particularly interesting constructs with

RGB and flow streams, in which optical flow is used as a sep-

arate input to a deep network, instead of relying on the RGB

sequence to learn flow information on its own. Early ver-

sions, e.g., Wang et al. [58], used an RGB difference stream

and a warped RGB stream after applying flow. While the

majority of two-stream networks apply late-fusion, by fus-

ing features from the two streams before the final output, the

work of [14] proposes fusion across layers from multiple

streams.

Slow-fast networks [13] consider two individual RGB-

only streams, which jointly process information at different

temporal resolutions. They also advocate for fixed connec-

tions between parallel layers. We here propose the semantics

stream and to optimize the performance and mutual benefit

of multiple streams working jointly. The above-mentioned

works can benefit from AIRStreams by incorporating extra

semantic streams, by training end-to-end, and learning the

importance of the loss contributions of each of the streams.

Some previous approaches have successfully used object

information for video understanding, e.g. [65, 26, 25, 44, 24,

61, 35, 1, 60]. Sigurdsson et al. [51] demonstrates the poten-

tial of using objects via object labels oracles. Other works

have explored mutli-steam networks with various inputs. For

example, PoTion [6] proposes a complementary pose repre-

sentation. Chained Multi-stream Networks [69] similar to

this work uses multiple different input features each opti-

mized for recognition. This paper instead uses other features,

like objects, to learn representations within the network so

that during inference they are not needed. While we are not

aware of prior work using semantics as a jointly optimized

separate stream, Diba et al. [9] is most related to ours. They

utilize a 2D stream which is built from image pretraining on

an independent dataset. It is infused into a 3D stream which

processes the main video information.

Multi-task learning approaches [10, 46, 67, 28, 18, 37]

train several tasks in parallel (each one to a corresponding

loss) and have been successfully shown to use multiple tasks

for mutual benefit, e.g., for joint feature embedding learning.

In another aspect of multi-task learning, various modalities

(or streams) are considered as tasks but the focus is on train-

ing towards separate output goals, usually called ‘heads’,

while maintaining shared representations, e.g., learning by

supervising for depth, surface normals etc., while learning

image segmentation. Other works also do joint optimiza-

tion in the video understanding context, e.g. SegFlow [5]

of optical flow and video object segmentation. Unlike the

multi-task learning approaches listed above, we train the in-

termediate representations to help the main action recogni-

tion task and have the main task be explicitly dependent of

the intermediate representations, not only indirectly depen-

dent through feature sharing. Previous works have found that

optimizing flow in conjunction with recognition improves

performance [39, 12].

Architecture search [70, 71, 31, 2, 32, 45, 19] has proven

to be highly successful for visual understanding. Recent

work on architecture search for videos [38, 41] has demon-



Figure 2. AIRStreams overview: The input RGB video gives rise to intermediate representations based on semantics (top stream), where

common objects are automatically segmented, and optical flow (middle stream). Together with the RGB stream (bottom stream), each of

the representations are passed into their own video recognition towers. Features extracted from the middle of each video recognition tower

are merged (highlighted with red borders) and passed through an additional convolutional tower to produce the final action recognition

prediction. The losses (highlighted in green) of each stream and the intermediate losses are simultaneously optimized for improving the

performance of the main video understanding task.

strated promise. Evolutionary search is also used for select-

ing a subset of losses for unsupervised feature learning [42].

Our work too uses evolutionary search for loss combinations,

where evolution is used as a versatile and easy-to-apply op-

timization technique, especially for non-differentiable tasks

such as ours. While other optimization techniques could

substitute evolution, we are not aware of prior work which

proposed to optimize intermediate representations for video

understanding and jointly optimize all representations con-

tributions to the final task.

3. Learning with adaptive intermediate repre-

sentations

In this section, we describe our video understanding

model, the different modules it consists of, and the loss func-

tions for training.

3.1. Model overview

The AIRStreams model consists of three independent

streams of computation (Figure 2). An RGB stream is op-

timized only towards the final action recognition task with-

out any intermediate constraints. The two other streams, in

addition to being optimized towards the final task, each pro-

duce an intermediate output: optical flow and semantic seg-

mentation. Here we first explain the overall model architec-

ture, the individual streams in detail, how the features from

the streams are merged together, what losses are used during

training and how these losses are weighted.

Model architecture. The RGB video input and each indi-

vidual intermediate representation are processed by a sep-

arate convolutional action recognition tower, e.g., (2+1)D

ResNet [54]. These towers are shown in Figure 2 in the mid-

dle section. Different tower backbones can be used and we

experiment with a lightweight alternative in this paper. Each

of the individual towers attempt to predict the final task and

are supervised by separate classification losses. The feature

maps of each of the towers are also fused together to produce

a merged stream, which has a classification loss as well. The

merged stream produces the final output that is used in eval-

uation. More advanced connectivity between the towers is

also possible, e.g., as in [14] or in RandWire Networks [63].

Since it is not immediately clear which configuration will

work well, we define below a set of losses (Section 3.2) and

propose to further optimize them automatically via evolution

(Section 3.3).

The way in which each intermediate representation is pro-

duced is specific to the representation. The framework is ex-

tendable to a variety of different representations, which can

be unsupervised or supervised. Below, we describe the com-

putation of the intermediate representations in detail.

RGB Stream. The RGB stream takes as input a sequence

of RGB images from a video and applies a convolutional

tower to it. This is the standard approach for many video

understanding tasks.

Segmentation Stream. One of the key aspects of

AIRStreams is using semantic segmentation as an interme-



diate representation. Our rationale is that the presence and

location of people and semantic objects hold key informa-

tion for the activities at hand. Importantly, the interaction

of the features with others (flow or RGB) as a result of the

presence of the semantic stream in the AIRStreams architec-

ture will provide opportunity for better learning of the final

actions.

To produce the semantic segmentation representation, we

use a Dilated ResNet-18 [66] with output stride 16 applied

frame-by-frame on the input RGB sequence. We use pix-

elwise softmax cross-entropy as the semantic segmentation

loss using model-generated annotations as ground truth as

explained below. The pre-softmax activations of the seman-

tic segmentation network are then used as the input to a sub-

sequent representation-specific action recognition tower.

Frame-by-frame annotation of object segments is very ex-

pensive and therefore large-scale action recognition datasets

do not provide such annotations. The semantic annotations

used to supervise the network explained above are obtained

with an off-the-shelf algorithm (trained on an independent

dataset of static images, e.g., on MS-COCO dataset [30]),

which are readily available, and incurs no further labeling

effort or cost. Notably, this teacher model used to gener-

ate the semantic segmentation annotations is a much larger

and much more complicated Mask R-CNN model [17] com-

pared to the network generating semantic segmentation in-

side AIRStreams.

Many of the classes present in MS-COCO are likely not

encountered in action recognition datasets, e.g., giraffe, kite,

etc., but a handful of classes will be useful and prevalent

in the videos such as people, furniture and objects of daily

life. We conjecture that the semantic features will encode

valuable information, as well as directly transfer information

for some of the classes that are jointly encountered - e.g.,

person, chair, etc.

Optical Flow Stream. While many video understanding

models use a single-stream, two-stream models [52, 4] (RGB

and optical flow), have become increasingly popular. The ra-

tionale is that flow directly provides information about mo-

tion in a much more efficient way than extracting it from

the raw RGB sequence. This approach has been shown to be

very beneficial. Our approach includes an optical-flow based

intermediate representation as well.

Our use of optical flow has two key aspects. First, in or-

der to learn and fine-tune the flow representation for the final

task, we need a fully differentiable version of flow. We show

later in experiments that backpropagating from the final clas-

sification through the intermediate representation computa-

tions is important. For a fully differentiable flow we use

Representation Flow [43], which is trained on-the-fly and

can be backpropagated fully. Representation flow mimics

the implementation of the variational flow algorithms [3]

via fully differentiable learnable layers, minimizing the to-

tal variational energy. We chose this over approaches like

FlowNet/ActionFlowNet [22, 39] as this requires no pre-

training to obtain good flow representations.

Second, similar to the semantic segmentation representa-

tion, the optical flow is passed into its own action recognition

tower. Unlike regular two-stream towers, which all apply

late fusion, features from this video recognition tower are

fused early with the other video recognition towers as shown

in Figure 2 and supplementary materials, as well as given its

own video classification loss.

While we use representation flow for our experiments,

other versions of flow can be incorporated.

Merging streams. The features from each of the three ac-

tion recognition towers (flow, semantic segmentation and

RGB) are combined via averaging at a pre-defined level.

We merge after the 3rd block and our net has a total of 6
blocks. After the features have been merged, the rest of the

video recognition tower for the merged stream is identical in

structure for blocks 4 to 6 of the individual feature towers.

Similarly as for the feature action recognition towers, the

merged tower is supervised by the final action recognition

task. Merging at more than one levels (including the com-

mon late-fusion) is also possible and can easily be added to

the AIRStreams framework as separate losses.

3.2. Losses

In AIRStreams, we propose to use multiple

independently-weighted losses, described below.

Activity recognition losses. Each action recognition

tower, one consuming flow, one consuming semantic seg-

mentation, one consuming RGB and one consuming the

merged features, has an individual softmax cross-entropy

(SCE) loss Lrgb, Lflow, Lsemantic, Lmerged with respect to

the final action recognition target: L∗ = SCE(Y∗, Ytarget),
where Ytarget are the target labels for the final activity recog-

nition task, and the ∗ denotes each of the output streams’

logits, i.e. rgb, flow, semantic, merged.

Intermediate representation losses. Additionally, each

intermediate representation can have its own loss that is op-

timized for the specific task. In this work, we have seman-

tic segmentation and optical flow as intermediate represen-

tations, from which only semantic segmentation requires its

own loss. We use standard pixelwise softmax cross-entropy

(SCE) between the logits Yinterm semantic and the ‘target’

semantic labels Ylabels semantic as the loss for semantic seg-

mentation Linterm. It is applied per frame. Note that the

‘ground truth’ labels used for this loss are generated by an

off-the-shelf segmentation model trained on the MS-COCO



dataset [30] with 90 classes. Therefore, we do not require

pixelwise labeling of the action recognition datasets.

Linterm = SCE(Yinterm semantic, Ylabels semantic). (1)

Final loss. Putting it all together, we have a number

of losses from each of the action recognition streams

(flow, semantic segmentation, RGB and merged) and an

intermediate representation loss for semantic segmenta-

tion. The losses are naturally weighted by parameters

λrgb, λflow, λsemantic, λmerged, λinterm which determine

the relative importance of each sub-task.

L = λrgbLrgb + λflowLflow + λsemanticLsemantic+

λmergedLmerged + λintermLinterm

(2)

3.3. Evolution of loss weighting

AIRStreams can be viewed as a collection of losses which

train jointly for the final action recognition task. With

that, its de-facto topology can depend on which losses are

switched on or off (via their weights). For example, pres-

ence or absence of certain losses can make a big difference,

as Section 4 shows accuracy of only 42.82 is achieved on

HMDB for uniform weights (all weights are 1s) vs. 50.02
when the flow loss and the semantic losses are both 0s (all

others 1s).

We propose to learn the combination of losses via evolu-

tion of weights for the purposes of achieving a higher per-

formance on the main task [42]. Evolution [16, 45] is a well

established technique in which a random set of individuals in

a population (here combination of weights) are generated, af-

ter which random mutations are applied. Their performance

is tested and the best performing combination of weights are

preserved for the next iterations.

For AIRStreams, we use a tournament selection evolu-

tionary strategy [16]. For this experiment, we use a popu-

lation size 10 and tournament size 3. At each evolutionary

step, we mutate an individual weighting by randomly select-

ing one weight and assigning it a random value between 0

and 1. The evolution evaluates 100 different loss weightings

in total.

This approach can be viewed as an automatic optimiza-

tion of weights, in lieu of parameter tuning. We note that the

number of losses is likely to increase with more advanced

tasks and representations, thus tuning them by hand or ex-

haustive search will be a prohibitively expensive task in such

scenarios.

3.4. Inference

We measure end-to-end performance for the final action

recognition task by using the output of the merged stream.

We note that RGB is the only input and no pre-computed

flow or semantics information is needed. Despite computing

multiple towers corresponding to ‘modalities’, our model is

very fast with 17 GFLOPs per frame, much fewer than Slow-

Fast [13] with 213 GFLOPs, and I3D [4] with 216 GFLOPs.

3.5. Network backbone

Instead of using a standard ResNet-50 or ResNet-101 ar-

chitectures, we here experimented with a more lightweight

model, so that we can take advantage of multiple towers.

The network architecture backbone we are using is a Tiny

Video Network [40], and open source code [21, 7], which is

comparable to a ResNet-18. The network architecture itself

contains 6 blocks with 1d convolution and spatial convolu-

tional layers, and efficient blocks, such as context gating [64]

and squeeze-and-excite [20]; it is described in more detail

in the supplementary materials. This model is of lesser ca-

pacity to standard architectures for video understanding e.g.,

ResNet-50, but it is more efficient to train so we prefer it for

faster convergence. Importantly, it allows us to perform well

without pre-training on small datasets. Of note is that it is

less powerful than a ResNet-50, as evidenced by the perfor-

mance without pre-training (see baseline models in Table 3).

Despite that, within the AIRStreams framework, it outper-

forms the best state-of-the-art approaches on very challeng-

ing datasets (as seen later, e.g., in Table 4).

4. Experiments and results

First we introduce the datasets we used. In the subsequent

sections, we investigate multiple ways intermediate repre-

sentations impact video classification tasks and how different

components contribute to the performance of AIRStreams.

4.1. Datasets

Moments in Time (MiT). The MiT dataset [36] is a large

scale dataset which consists of about 1M videos, each one

approximately 3 seconds long. It has 339 classes, 802,264

training, 33,900 test videos.

Charades dataset. The Charades [50] dataset is a multi-

class multi-label dataset of 157 activities. It has 7,985 train-

ing and 1,863 test videos. We follow the standard protocols

for evaluation for multi-class multi-label setting and thus

use a multi-class sigmoid cross-entropy classification loss in-

stead of a softmax cross-entropy loss for this dataset.

Toyota Smarthomes dataset The Toyota Smarthomes

dataset [8] consists of daily lives activities, e.g., making cof-

fee, reading, watching TV. It contains 16,115 videos and 31

action classes.

HMDB Video dataset. HMDB [29] is a smaller video

recognition dataset with about 7,000 videos and 51 activi-

ties. We use this dataset for our ablation experiments.

4.2. Analysis of AIRStreams

We start by investigating various aspects of learning adap-

tive intermediate representations for AIRStreams.



4.2.1 Intermediate representations help the final task

We first examine how additional intermediate representa-

tions help in the action recognition task. We evaluate the use

of flow, semantics and both, in addition to an RGB stream.

Table 1 shows the results. We can see that each of the

intermediate representations help, and that the use of each of

the streams alone is highly beneficial. When combined, they

increase the overall performance even further for an overall

improvement of above 8.3% in absolute value, which con-

stitutes about 20% relative improvement. These results are

obtained when respective intermediate representation are op-

timized for the downstream task at hand. They are also con-

ducted without pre-training from another dataset. Interest-

ingly, we can see that the effects of the semantic stream are

very positive, despite the fact that the semantic labels are

trained on an independent dataset from an off-the-shelf algo-

rithm, and not related to the data on hand.

4.2.2 Intermediate representations should be optimized

for the final task

One of the key aspects of the AIRStreams architecture is

learning adaptive intermediate representations jointly with

the task at hand. This is in contrast to many prior works,

which use pre-computed versions of flow. In this section we

investigate whether optimizing intermediate representations

for the final task is of importance. In order to evaluate this,

we test two configurations. In both configurations, we train

the intermediate representations jointly with the main task.

However, in one configuration, we don’t let gradients prop-

agate from the final action recognition classification losses

through the intermediate representation computations. This

means that the intermediate representations are independent

from final task and, for example, the semantic segmentation

network is only optimizing towards the semantic segmenta-

tion pixelwise cross-entropy loss. In the other configuration,

we let gradients propagate freely. This means that the in-

termediate representations are allowed to adjust for the final

task, balancing the rigidity of the intermediate form with the

needs of the downstream task.

Table 2 shows the corresponding ablation study. We see

that full optimization of the intermediate representations (or

combination of them) for the task at hand is better than using

pre-computed intermediate representations. Each task is able

to gain from aligning its intermediate features to the final

task at hand. While this result is not surprising, it solidifies

the insight that one needs to optimize jointly, rather than pre-

compute. Importantly, backpropagating with the semantics

labels brings more improvements, even though the semantic

information is transferred from another task. Figure 4 shows

why – some objects which were missed by the segmentation

model, can be recovered during training.

Method Acc. (%) Improvement

RGB 41.72 -

RGB + Semantics 46.32 +4.6

RGB + Flow 47.66 +5.94

RGB + Semantics + Flow 50.02 +8.3

Table 1. Ablation study. Intermediate representations improve per-

formance, for both semantics and flow intermediate representations.

Combining them helps most, with an 8.3% improvement. HMDB

dataset, training is done from raw data (no pretraining), to isolate

other effects. The middle column shows classification accuracy on

the dataset. The right column shows the corresponding improve-

ments from RGB only.

Learning mode
Stop gradient

at interm. repr.

Propagate

gradient

RGB (no interm. repr.) 41.72 -

RGB + Semantics 43.57 46.32

RGB + Flow 46.84 47.66

RGB + Semantics + Flow 47.76 50.02

Table 2. Ablation study for intermediate representations for HMDB

All intermediate representations are beneficial (compare column-

wise to RGB only). For every intermediate representation, allow-

ing it to be learned end-to-end is more beneficial than using a pre-

specified representation (compare row-wise). Accuracy in % shown

for both columns.

Dataset
No aux.

losses

Fixed

weights

Evolved

weights

HMDB (no pretr.) 41.72 50.02 50.53

Charades (no pretr.) 28.56 35.05 35.45

Table 3. Ablation study: Performance when evolving weights for

balancing all losses from all intermediate representations, com-

pared to manually tuned loss combinations. Accuracy(%) for

HMDB and mAP(%) for Charades are shown.

4.2.3 Learning how to combine intermediate feature

representations.

From the above-mentioned ablation results, we learned that

(i) intermediate representation are beneficial and their com-

bination is of highest value and (ii) they should be optimized

jointly with the final task. The above experiments are run

with fixed weights of 1 on ‘merged’, ‘interm’ and ‘RGB’

and 0s for flow and semantic tower, which is already a very

successful model (close to the evolved coefficients). In this

subsection, we run ablation experiments to evaluate the evo-

lution of the weights of auxiliary losses via the evolution pro-

cedure. More specifically we compare: the baseline model

without intermediate representations, the model with all in-



Figure 3. Samples from the learned intermediate representations for

optical flow. The optical flow is learned as a part of the overall

training process and gradients are backprogated from video classi-

fication losses allowing the flow to be tuned for the end task.

termediate representations with fixed loss weights, and the

full AIRStreams evolved model, where the weights are addi-

tionally evolved for the task at hand.

Table 3 compares the performance from weights obtained

by evolution vs fixed weights vs a baseline with no inter-

mediate weights. Here the gradients are allowed to flow so

that full learning and optimization is done. We observe that

the evolved weights give further boost, obtaining the best

performance. The improvement by evolution is small but

consistent, as also observed across our experiments. This

is due to the initial good choice of fixed coefficients; other

trivial combinations are not as good, for example using uni-

form weights, achieves 42.82 on HMDB, which is above

the baseline, but much worse than 50.02 and 50.53, with

evolution. We note that the evolved weights applied to the

Charades dataset are evolved on a different dataset (MiT).

In summary, for both datasets, AIRStreams improves perfor-

mance over the baseline by large margins. The best evolved

loss weights are displayed in Figure 5.

4.2.4 Model visualizations

Figures 3 and 4 visualize the learned intermediate represen-

tations. Figure 4 shows intermediate representations for se-

mantics. The visualization shows the output of the teacher

model as well as the intermediate representations learned as

a part of the AIRStreams training. In order to show the vi-

sualization, we use an argmax over the logits, whereas dur-

ing training, actual logits are passed to the video recogni-

tion network. We observe that the learned representations

are often less sharp, but in some cases the training is able

to correct errors in the segmentation algorithm (mostly by

proposing a missing segment, as in the bottom left exam-

ple). We conjecture that letting gradients flow through from

the final action recognition task, the network is able to learn

additional elements not present in the frame-by-frame data

from the teacher model.

Figure 5 visualizes the loss coefficients learned from the

evolutionary search. The figure shows the learned top-5 co-

Figure 4. Samples from the learned intermediate representations for

semantics. These are the class labels perceived at the input point of

the semantic tower. Each panel contains image, learned segmenta-

tion, and ‘ground truth’, the latter being trained on another dataset

and may miss objects or be incorrect. The learned segments are less

sharp, but end-to-end training is able to correct errors in the ‘ground

truth’ by recovering full segments, e.g., bottom left. Interestingly,

the majority of segments are persons (dark blue), other classes may

appear too. Best viewed in color.

Figure 5. Learned best coefficients after evolution. Evolved on MiT

(left), HMDB (right).

efficients on HMDB and MiT. As seen, the evolution tends

to assign larger weights to merged and the main RGB tow-

ers, and to the semantics intermediate representation loss,

whereas smaller weights to the flow and semantics action

recognition towers. While multiple evolution runs will pro-

duce different sets of coefficients, the final performance is

similar for top performing evolved coefficients. For exam-

ple, accuracy on MiT with top coefficients evolved on MiT

is 34.51 vs 34.44 when evolved on HMDB.

4.3. Comparison to previous methods

Here we compare AIRStreams to the state-of-the-art on

various action recognition datasets.

4.3.1 Moments in Time dataset

We evaluate on the challenging large-scale Moments-in-

time dataset [36], comparing to prior methods including 2-

stream methods (RGB and flow), most of which use pre-

training (Table 4). Our approach, without using pretrain-

ing, outperforms all state-of-the-art methods. We further

note that AIRStreams outperforms the powerful Assem-

bleNet [47] which additionally pre-trained from the large

Kinetics video dataset, whereas our semantics stream is

obtained from a non-related image dataset. For direct

comparison we also show (RGB+Flow)-only AIRStreams,



Method Mode Acc.(%)

TSN [58] RGB 24.11

ResNet50-ImageNet [4] (RN50) RGB 27.16

TRN-Multiscale [68] RGB 27.20

Spatio-temporal attention[34] RGB 27.86

TSN-2Stream [58] RGB+Flow 25.32

TRN-Multiscale [68] RGB+Flow 28.27

I3D [4] RGB+Flow 29.51

EvaNet [41] RGB+Flow 30.5

EvaNet [41] (Ensemble) RGB+Flow 31.8

AssembleNet [47] RN50 RGB+Flow 31.41

AssembleNet [47] RN50 RGB+Flow (+Kin.) 33.91

AssembleNet [47] RN101 RGB+Flow (+Kin.) 34.27

AIRStreams (Ours) RGB+Flow 33.53

AIRStreams (Ours) RGB+Flow+Sem. 34.51

Table 4. Performance on the Moments-in-Time (MiT) dataset.

AIRStreams is able to outperform the SOTA (state-of-the-art) on

this challenging dataset, both with flow-only and with seman-

tics+flow, and without using any pre-training.

which outperforms 4-stream AssembleNet [47] when both

are trained from scratch (33.53 for AIRStreams vs 31.41 for

AssembleNet); (RGB+Flow)-only AIRStreams without pre-

training also outperforms the other 2-stream methods.

4.3.2 Charades dataset

Charades dataset is also a challenging dataset of longer video

sequences in which multiple labels are provided per video

clip, i.e., a multi-class multi-label setting. We use the stan-

dard evaluation protocols, and since the data is small com-

pared to the number of classes available, we use MiT pre-

training. AIRStreams works very well (Table 5) compared

to the prior state-of-the-art on this dataset which also used

pre-training. It outperforms all methods, including Slow-

Fast [13] and video architecture search EvaNet [41], with the

exception of the powerful 4-stream AssembleNet with con-

nection learning between streams [47], which on this dataset

performs best. This may be due to the longer duration of

videos in Charades for which the architecture searched con-

nectivity of AssembleNet is more beneficial.

4.3.3 Toyota Smarthome dataset

We further evaluate on the Toyota Smarthome dataset [8]

which contains activities within peoples’ homes. We use

the standard protocol in prior work [8] and report both the

activity classification accuracy (%) and the ‘mean per-class’

accuracy (%). Table 6 shows the results for the more chal-

lenging ‘Cross-Subject’ (CS) evaluation setting. As seen,

AIRStreams, without pretraining, outperforms notably pre-

vious work which used pre-training (some from Kinetics)

and additional 3D human joints information [8]. More

specifically, it outperforms the best prior work by 3% and 8%

Method mAP(%)

BatchNorm Inception [23] 11.6

TSN-Flow [58] 15.7

Two-stream [52] (from [49]) 18.6

Asyn-TF [49] 22.4

CoViAR [62] 21.9

TRN [68] 25.2

I3D [4] 32.9

I3D [4] (from [59]) 35.5

EvaNet [41] 38.1

SlowFast [13] 45.2

Two-stream (2+1)D ResNet50 (Baseline) 46.5

AssembleNet [47] (MiT pretraining) 53.0

AIRStreams (Ours, MiT pretraining) 50.1

Table 5. Performance on Charades. AIRStreams is able to outper-

form other methods with the exception of powerful AssembleNet,

which uses architecture search for learning connectivity.

Method
Uses

pose

Uses

pretr.

Classif.

%

Mean

per-cls. %

LSTM [33] Yes No - 42.5

Dense Trajectories [56] No No - 41.9

I3D [4] No Yes 72.0 53.4

NonLocal [59] No Yes - 53.6

Separable STA [8] Yes Yes 75.3 54.2

AIRStreams (Ours) No No 78.28 62.11

Table 6. Classification and mean per-class accuracies on Toyota

Smarthome. The pose column indicates whether the precomputed

pose was used and the pretraining column indicates whether pre-

training on another video dataset was used. AIRStreams does not

use pre-training. Some prior methods are reported by [8].

for the classification and mean per-class accuracy, respec-

tively, which indicates it is performing very well on under-

represented classes.

5. Conclusion

We present the ‘AIRStreams’ approach for video under-

standing which introduces semantic segmentation as an in-

termediate representation, alongside with flow, and jointly

optimizes both the representations themselves and their im-

portance for the final task. AIRStreams extends the current

2-stream models. By incorporating semantics and training

jointly, it outperforms or is competitive to the best SOTA

models SlowFast and AssembleNet. Our work may encour-

age researchers to incorporate other intermediate represen-

tations, which will help tackle even more challenging and

more fine-grained activity recognition tasks.
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