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Abstract

Multi-modal generative models represent an important

family of deep models, whose goal is to facilitate represen-

tation learning on data with multiple views or modalities.

However, current deep multi-modal models focus on the in-

ference of shared representations, while neglecting the im-

portant private aspects of data within individual modali-

ties. In this paper, we introduce a disentangled multi-modal

variational autoencoder (DMVAE) that utilizes disentan-

gled VAE strategy to separate the private and shared latent

spaces of multiple modalities. We demonstrate the utility of

DMVAE two image modalities of MNIST and Google Street

View House Number (SVHN) datasets as well as image and

text modalities from the Oxford-102 Flowers dataset. Our

experiments indicate the essence of retaining the private

representation as well as the private-shared disentangle-

ment to effectively direct the information across multiple

analysis-synthesis conduits.

1. Introduction

Representation learning is a key step in the process of

data understanding, where the goal is to distill interpretable

factors associated with the data. Representation learning

approaches typically focus on data observed in a single

modality, such as text, images, or video. Nevertheless, most

real world data comes from processes that manifest itself in

multiple views or modalities. In computer vision, image-

based data is typically accompanied with text description

to promote understanding of its latent factors. For exam-

ple, in Fig. 1a, an image of a flower is augmented with cap-

tions describing the detailed characteristics of the flower. To

study about the flower, the background of the image is un-

necessary but the additional information of text description

is helpful. Therefore, accurate modeling of the underlying

data representation has to consider both the private aspects

of individual modalities as well as what those modalities

(a) Image and Attribute modalities

(b) Private and shared factors

Figure 1: (a) Example of bimodal data, where one modal-

ity, I, is an image of a flower and the other, T, represents

a textual caption describing the flower. (b) Only some of

the factors, here aligned with the caption for simplicity, are

shared by both modalities in Shared I ∩ T. Other fac-

tors are private to individual modalities, grouped in sepa-

rate Private spaces. By definition, the three spaces are

disentangled from each other.

share, as illustrated in Fig. 1b.

In this paper, we propose a generative variational model

that can learn both the private and the shared latent space

of each modality, with each latent variable attributed to

a disentangled representational factor. The model ex-

tends the well-known family of Variational AutoEncoders

(VAEs) [10] by introducing separate shared and private

spaces, whose representations are induced using pairs of

individual modality encoders and decoders. To create the

shared representation, we impose consistency of represen-

tations using a product-of-experts (PoE) [6] inference net-

work.
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While the shared latent representation can be used to

model the compatibility of the two modalities, the represen-

tation can also enable cross-reconstruction of one modality

from another. We demonstrate that this essential task can

and has to be effectively combined in an end-to-end learn-

ing framework with the private-shared disentangled VAE,

resulting in our novel disentangled multi-modal variational

autoencoder (DMVAE).

We apply the DMVAE to two multi-modal representa-

tion learning problems. In the first setting, we consider the

problem of learning the shared/private generative represen-

tations of digit images from two datasets of different styles,

where the shared property becomes the digit class and the

private property becomes the style of each dataset. In the

second setting, we generalize the modality types further into

images and text, aiming to model the joint representation of

flower appearance and the corresponding captions, which

describe the visual characteristics of the flower. We show

that DMVAE excels both as an analysis tool as well as the

(cross) synthesis generative model.

Our main contributions are as follows.

• We segregate the latent representation space into the

union of the private and the shared spaces. We show

that the private latent space is critical for modeling the

disjoint properties of each modality while the shared

latents enable linking and cross-synthesis across do-

mains, as signified in the experiments in Sec. 5.1 and

Sec. 5.3.

• We improve the compatibility between modalities by

introducing the cross-VAE task (loss), whose aim is the

cross-modal reconstruction through the shared latent

space. The impact of the cross-VAE direction, induced

by the properties of the linked datasets is examined in

the ablation study in Sec. 5.3.

• By applying our model to (image, text) as well as

(image, image) representation modeling problems, we

demonstrate the universal applicability and effective-

ness of the the DMVAE framework, across different

data types.

2. Related Work

Several lines of related work can be linked to our pro-

posed DMVAE. Our modeling task is intimately related to

image-to-image translations problems, the task of translat-

ing between different representations of one image, such as

the sketch-photographic, summer-winter, etc., views of a vi-

sual object or a scene. We begin by reviewing relevant prior

work in this area, subsequently extending it to multi-modal

learning that can take any input data type.

Image-to-image translation. Multiple research efforts

have attempted to solve the image-to-image translation

(a) Full-modality (b) Missing-modality

Figure 2: Unrolled graphical model representation of DM-

VAE. The gray circles illustrate observed variables. zp1
, zp2

denote the private latents of modalities x1, x2. zs denotes

the shared latents between two modalities. x̃1, x̃2 denote

reconstructed views, which should match the observed data

in this unrolled generative model. (b) illustrates the missing

modality instance network, which is critical for test-time in-

ference of x2 from x1. We elaborate on the inference in the

missing modality in Sec. 4.2.

problem by framing it as a two-modality matching setup.

[23] utilize GAN [5] framework, which takes the image

from one modality as the fake sample against another

modality. They combine VAE into GAN so that the latent

space encodes information about the ground truth outputs,

rectifying the mode collapse problem. The diversity of the

output that the latent factor can provide is enhanced with the

latent regressor GAN, which tries to generate output from

randomly drawn latent factors and then attempts to recover

the latent code again.

[4] disentangles the latent representation into two parts;

the shared between the two modalities and the exclusive

within each modality. Using only the shared part of the

representation in the image translation, the domain-specific

variation is reduced. Furthermore, adding noise with the

shared latent factors for generation improves the diversity

in translation between images. However, the paired input

images are necessary to train these models. [12, 8] show

that cross-domain mapping and cross-cycle consistency en-

able an effective style transfer using unpaired data. They

separate a domain-invariant content and a domain-specific

attribute (style) latent space using an adversarial loss. [2]

separates private and shared networks in each domain utiliz-

ing DANN [16] to make it possible for the unlabeled target

domain to learn the transferred information from the labeled

source more effectively with only the latent codes from the

shared network. Although these methods are able to achieve

realistic and diverse image translation, they make use of the

strong within-image-modality conditioning, which may fail

when the modalities exhibit vastly different properties (e.g.,

text and image).

Multi-modal Learning. Several prior works have consid-

ered the problem of modeling multi-modal data using gen-
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erative VAE-inspired models. JMVAE [19] exploits the

joint inference network q(z|x1, x2) to learn the interaction

of two modalities, x1 and x2. To address the missing modal-

ity problem, where some of the data samples are not paired

(i.e., do not have both views present), they train inference

networks q(z|x1), q(z|x2) in addition to the bimodal infer-

ence model q(z|x1, x2), and then minimize the distance be-

tween uni- and multi-modal based latent distribution. JVAE

[20] adopts a product-of-expert (PoE) [6] for the joint pos-

terior q(z|x1, x2) of multi modalities in the inference net-

work. The approach leverages the unimodal inference net-

works, whose predictions are constrained and made con-

sistent through the PoE. JVAE trains the model with two-

stage process to handle both paired and missing modality

data. Due to this fact, the number of required inference

networks increases exponentially for more than two modal-

ities. To alleviate the inefficiency of JVAE, MVAE [21]

considers only partial combination of observed modalities.

This helps reduce the number of parameters and increase the

computational efficiency of learning. [18] applies Mixture-

of-Expert (MoE) to jointly learn the shared factors across

multi-modalities. Though they introduces the concept of

the private and shared information of multi-modalities, it is

implicitly conceived. Moreover, the use IWAE for the ap-

proximation makes the contribution of MoE vague.

However, the aforementioned prior works based on VAE

use a single latent space to represent the multi-modal data.

Although [2] attempt to separate the private and shared

networks, their method uses deterministic latent features.

Moreover, they require target label information to train their

model. Within one common latent space under the VAE

framework, modality-specific factors could be entangled

with the shared factors across all moralities, reducing the

ability of these generative models to represent the data and

infer the ”true” latent factors.

In this paper, we address these challenges by explicitly

separating the shared from the disjoint private spaces, using

individual inference networks to achieve this goal. This is

illustrated in Fig. 2. In subsequent sections, we review the

core VAE framework, followed by the details of our DM-

VAE modeling approach, and the experimental evaluation.

3. Background

Our DMVAE framework builds upon the VAE model of

[10]. We first highlight the relevant aspects of VAE-based

models, which we then leverage to construct the DMVAE

in Sec. 4.

Variational Autoencoder. A variational autoencoder

(VAE) [10] implements variational inference for the la-

tent variable via autoencoder structure. The objec-

tive of the VAE is to maximize the marginal distribu-

tion p(x) =
∫

pθ(x|z)p(z)dx which is, however, in-

tractable. Thus, VAE introduces the evidence lower

bound (ELBO) which uses an approximated recognition

model qφ(z|x) instead of the intractable true posterior.

It maximizes Ez∼qφ(z|x) [log pθ(x|z)] while minimizing

KL(qφ(z|x), p(z)).

log p(x) ≥ Ep(x) [ELBO(x; θ, φ)]

= Ep(x)

[

Eqφ(z|x) [log pθ(x|z)]−KL(qφ(z|x)||p(z))
]

.(1)

qφ(z|x) and pθ(x|z) are represented as encoder and decoder

in the network with the learning parameter φ and θ, respec-

tively. The first term of ELBO (Eq. (1)) is the reconstruc-

tion error and the second term plays a role of regularizer not

to be far from the prior distribution p(z). We next discuss

in more detail the effect of the second term on disentangle-

ment.

4. DMVAE Framework

In this section, we introduce the new DMVAE model.

Sec. 4.1 describes the architecture of private and shared

latent spaces within the disentangled representation. In

Sec. 4.2 and Sec. 4.3, we define the DMVAE inference mod-

els, accompanied with the learning objective in Sec. 4.4.

4.1. Private / SharedDisentangled MultiModal
VAE

The assumption in this paper is that under the multi-

modal description of a concept, the latent space of the con-

cept is divided into a private space of each modality and

one shared space across all modalities1. Our goal is to ob-

tain well-separated private and shared spaces. This separa-

tion is critical; the shared latent space can only transfer the

information common across modalities, but it will fail to

model the individual aspects of the modalities. In a gener-

ative model, such as the VAE, modeling the private factors

is critical as those factors enable both the high fidelity of

the data reconstruction as well as the improved separation

(disentanglement) of the latent factors across modalities.

Our model is illustrated in Fig. 3 for the case of two

modalities. Given paired i.i.d. data {(x1, x2)}, we infer the

latents z1 ∼ qφ1
(z|x1), z2 ∼ qφ2

(z|x2), where φ1, φ2 are

the parameters of each individual modal inference network.

We assume the latents can be factorized into z1 = [zp1
, zs1 ]

and z2 = [zp2
, zs2 ], where zp1

, zp2
represent the private la-

tents of modalities x1, x2, respectively, and zs1 , zs2 repre-

sent the shared latents, which are to model the commonality

between the two modalities.

For the desired shared representation in zs1 , zs2 we seek

to effectively make zs1 = zs2 . We describe how to

accomplish this using a PoE-based consistency model in

Sec. 4.2, which approximates the shared inference network

p(zs|x1, x2).

1Other more intricate representations of private and shared spaces may

arise in the presence of more than two modalities. However, we do not
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Figure 3: Model architecture of DMVAE. Each modal-

ity is used to infer the shared latent representation of

that modality alone (subscripts s1 and s2) which are then

aligned by the product-of-expert (subscript s). Private

spaces (numeric-only/”p” subscripts) are left unaligned.

The dashed lines indicate sampling from respective distri-

butions.

4.2. Latent Space Inference

First, we define the latent space inference in our model.

Given N modalities x = (x1, . . . , xN ), each modality has

the posterior distribution p(zi|xi), approximated by infer-

ence networks q(zi|xi) = q(zpi
, zsi |xi). Since the shared

latent space should reflect the information shared across all

modalities, we require that the representation be consistent,

i.e., zsi = zs w.p.1, ∀i. Consequently, we separate the

private inference q(zpi
|xi) from the shared inference net-

work q(zs|x), defined using the product-of-experts (PoE)

model [6], adopted in [20, 21]:

q(zs|x) ∝ p(zs)
N
∏

i=1

q(zs|xi). (2)

In the case where all inference networks and priors as-

sume conditional Gaussian forms, p(z) = N (z|0, I) and

q(z|xi) = N (z|µi, Ci) of i-th Gaussian expert with the co-

variance Ci, the PoE shared inference network will have the

closed form of q(z|x) asN (z|µ,C) where C−1 =
∑

i C
−1
i

and µ = C
∑

i C
−1
i µi.

Missing-mode Inference. An important benefit of the PoE-

induced shared inference is that the individual modality

shared networks can also be used for inference in instances

when one (or more) of the modalities is missing. Specifi-

cally, as illustrated in the bi-modal case of Fig. 2b, under

the x2 missing, the shared latent space would be simply in-

ferred using the remaining modality shared inference net-

work q(zs|x1); and vice-versa for missing x1.

consider this setting in our current work.

4.3. Reconstruction Inference

In addition to inferring the latent factors, a key enabler in

VAE is the reconstruction inference, or encoding-decoding.

Specifically, we seek to infer p(x̃|x) =
∫

p(x̃, z|x)dz =
∫

p(x̃|z)p(z|x)dz = Ep(z|x)[p(x̃|z)] ≈ Eq(z|x)[p(x̃|z)].

The reconstruction inference in multi-modal settings,

much like the latent space inference, has to consider the

cases of complete and missing modality data. We as-

sume bi-modality without loss of generality. The first

case is the self-reconstruction within a single modal-

ity, Eq(zpi |xi)q(zs|xi)[p(x̃i|zpi
, zs)] for i = 1, 2. The

second form is the joint multi-modal reconstruction,

Eq(zpi |xi)q(zs|x1,x2)[p(x̃i|zpi
, zs)] for i = 1, 2. It is also

possible to consider the cross-modal reconstruction, e.g.,

p(x̃2|x1) = Ep(zp2 )q(zs|x1)[p(x̃2|zp2
, zs)], illustrated in

Fig. 2b. This instance, where x2 is missing, is facilitated

using the prior on the private space of x2, p(zp2
).

The different reconstruction inference modes are essen-

tial for model learning but also valuable for understanding

the model performance. For instance, one may seek to see

how successful the multi-modal DMVAE is in learning the

shared and private representations in the context of synthe-

sizing one modality from another. We highlight these cross-

synthesis experiments in Sec. 5.1 and Sec. 5.2.

4.4. Learning Objective

In general, for each data point x = (x1, x2, ..., xN ) and

N modalities, the learning objective assumes the form:

∑

i

Ep(xi)

[

λiEqφ(zpi ,|xi),qφ(zs,|x) [log pθ(xi|zpi
, zs)]

−KL(qφ(zpi
|xi)||p(zpi

))−KL(qφ(zs|x)||p(zs))

+
∑

j

(

λiEqφ(zpi ,|xi),qφ(zs,|xj) [log pθ(xi|zpi
, zs)]

−KL(qφ(zpi
|xi)||p(zpi

))−KL(qφ(zs|xj)||p(zs))
)

]

,

(3)

where λi balances the reconstruction across different

modalities. The first term models the accuracy of recon-

struction with the jointly learned shared latent factor, com-

pensated by the KL-divergence from the prior. The second

set of terms assesses the accuracy of the cross-modal re-

construction, xi ← xj for i 6= j and the accuracy of self-

reconstruction for i = j , again compensated by the diver-

gence.

5. Experiments

We demonstrate the effectiveness of our proposed DM-

VAE framework on two experimental setup. In Sec. 5.1, we
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Table 1: Classification accuracy for cross-synthesized

MNIST and SVHN and joint matching accuracy

Model Cross(M→ S) Cross(S→ M) Joint

MVAE [21] 9.5 9.3 12.7

MMVAE [18] 86.4 69.1 42.1

DMVAE 88.1 83.7 44.7

show how DMVAE can learn the common latent representa-

tion given two image modalities of MNIST and street-view

house number (SVHN) datasets. We evaluate our model

both quantitatively and qualitatively by cross-synthesizing

images from one to another modality. Sec. 5.2 further in-

vestigates DMVAE on the image and text modalities using

the Oxford-102 Flowers dataset. We examine how well the

flower image and its descriptions are retrieved between two

modalities. Sec. 5.3 evaluates the effectiveness of different

model components in an ablation study. The code for our

DMVAE model and the experiments in this section is avail-

able at https://github.com/seqam-lab/DMVAE.

5.1. ImageImage Modality

As in MMVAE [18], we ground the bi-modal setup by

giving one modality as MNIST images and another modal-

ity as SVHN images. By assuming that the pair of (MNIST,

SVHN) images is constructed according to the digit iden-

tity {0, . . . , 9}, we expect the shared information between

the MNIST and SVHN modalities to be the digit identity

and each private latent space includes styles of of the digits,

such as width, tilt, background etc. We follow MMVAE to

create the paired data 2.

For MNIST, we assume one dimensional private space

while SVHN which has more diverse style requires four di-

mension for its private latent space. To model the ten class

factors as the shared latent representation, we set 10 dimen-

sional shared latent space. The details of the model (en-

coder/decoder) architectures and the optimization are de-

scribed in the Supplement.

Quantitative Evaluation. In order to assess whether the

desired shared latent representations are learned, we gen-

erate two kinds of images at test time. The first one is

prior-synthesized images. After sampling the shared latent

code from the prior distribution, we generate the MNIST

and SVHN images based on the same shared space sample.

Secondly, given an image of one modality, the shared latent

code is extracted and transferred to another modality in or-

der to synthesize an image. For both of the cases, we feed

the private latent factors sampled from the prior distribution

N (0, 1), which promotes the diversity of the generated im-

age. We use the same protocol as in MMVAE to evaluate

the cross-synthesized images. To predict the digit class, the

2The code for paired data generation is available at

https://github.com/iffsid/mmvae.

(a) (b)

(c) (d)

Figure 4: Cross-synthesis images from the opposite modal-

ity. (a) and (b) are results with DMVAE, (c) and (d) are re-

sults with MVAE. In each image, the first row is the ground

truth images from which the share latent code comes. The

following rows are the cross-synthesized images.

separate CNN classifiers are trained for MNIST and SVHN

using the code from MMVAE for the fair comparison. For

the prior-synthesized images, we compute the joint match-

ing frequency which means how often the prior-synthesized

images of MNIST and SVHN generated from the same prior

distribution sample correspond to each other. For cross-

synthesized images, the predicted labels based on the cross-

synthesized images are compared to the ground-truth labels.

Thus, the cross-modal inference in our generative model be-

comes the process of classification. We compare our results

against MVAE [21] and MMVAE in Tab. 1. We outperform

baselines in both direction of cross-synthesis, suggesting

the desired common latent code, which is the digit class,

is learned and transferred through the shared latent space.

Moreover, when a random shared latent code is fed to each

of MNIST and SVHN decoders, our model is able to gener-

ate the same class images of MNIST and SVHN with higher

probability than baselines models. These results underline

the ability of DMVAE to disentangle latent factors and distil

them into the shared factor representing the digit label and

the private factors surmising the image style. We investigate

further why DMVAE can achieve significant improvement

from SVHN to MNIST generation in Sec. 5.3 through the

ablation study.

Qualitative Evaluation. Fig. 4 shows the cross-

synthesized images conditioned on the opposite modality

images. For one modality to be inferred by the generative

model, both its private and shared latent factors are neces-

sary. The shared factor is determined by the opposite condi-

tioning modality. The private image factor is sampled from

its prior distributionN (0, 1). Fig. 4 shows the results of our

model and MMVAE. In each of Fig. 4a, Fig. 4b, Fig. 4c, and

Fig. 4d, the first row is the ground-truth conditioning image

to transfer its shared latent code to another modality and
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(a) (b)

Figure 5: Visualization of 2-D embeddings of latent features of MNIST and SVHN, using tSNE. ’+’ and ’o’ represent the

MNIST and SVHN test data points respectively and each color associates with one of ten digit classes, {0, 1, ..., 9}. (a)

DMVAE embedding result. (b) MMVAE embedding result.

the following rows are the cross-synthesized images. For

DMVAE results Fig. 4a and Fig. 4b, cross-synthesized im-

ages require private latent code for the style. We generate

5 different rows of the synthesized images with 5 differ-

ent private factors which are depicted from the second row.

Though the private latent values can be sampled from the

Gaussian prior distribution, we pick those latent values that

can express ”extreme” styles to assess whether the visually

distinct style is kept. When SVHN image is synthesized

from MNIST image as in Fig. 4b, styles of SVHN such as

(dark / bright) (letter / background) color, or overall shadow,

or width of digit are reflected in the cross-synthesized im-

ages as well as the conditioning MNIST classes are kept. In

Fig. 4b, MNIST needs one dimensional private latent factor

to be generated using the SVHN shared latent factor. We

vary the private latent value from -1 to 3 to generate 5 dif-

ferent rows of the synthesized images. From top to bottom,

the synthesized MNIST images show the varied width and

slanted styles. Fig. 4c and Fig. 4d illustrate the results of

MMVAE with the same ground truth images as in those of

DMVAE. As well as the synthesized images cannot reflect

the digit identity from the ground truth images clearly, there

is no freedom of feeding diverse styles since MMVAE does

not separate private latent space aside from the shared latent

space.

In order to investigate how the shared latent space en-

codes each modality, we project the latent features inferred

by the encoders, on the test set, into a 2-D space with tSNE.

We use 400 randomly selected samples to plot the embed-

ded features. In Fig. 5a, even though our model is trained

without class label information, MNIST shared feature and

SVHN shared features are gathered nearby according to

the digit identity, which indicates DMVAE learns the digit

identity only with the paired data. In contrast to DMVAE

where MNIST and SVHN data points with the same class

are heading for the same direction, MMVAE embeddings

are clustered separately per dataset. This represents that

DMVAE is able to amplify the role of the shared features

by placing the styles aside into the private space, compared

to MMVAE baseline.

5.2. ImageText Modality

We further examine DMVAE on the Oxford-102 Flow-

ers dataset [15], where each flower image is paired with

ten captions that describe the visual characteristics of the

flower. This dataset consists of 102 classes of 8,189 flower

images, split into 62 training, 20 validation, and 20 test

classes. Since the categories of the test set are disjoint from

those of the training and validation sets, the problem falls

within the scope of zero-shot test-time tasks. For the fair

comparison with the prior works [1, 13, 22, 17], which uti-

lize the class label of the Flowers dataset during training,

we apply the following additional matching loss suggested

in [22, 17].

LI
M =

1

B

B
∑

m=1

B
∑

n=1

pm,n log
pm,n

qm,n + ǫ
, (4)

where pm,n =
exp(z⊤

SIm
z̃STn

)
∑

B
k=1

exp(z⊤

SIm
z̃
STk

)
is the probability of

matching the m-th image shared feature to the normalized

n-th text shared feature for m,n ∈ [1, B], with B the batch

size; zSIm
is the m-th image shared features, and z̃STn

is

the normalized n-th text shared feature, z̃STn
=

zSTn

||z
STn

|| .

qm,n =
Ym,n∑

B
k=1

Ym,k
is the normalized true matching proba-
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bility where Ym,n = 1 if the pair is matched and 0 other-

wise. LT
M , the matching loss from text shared feature to the

normalized image shared feature is computed in a similar

manner. These losses take the advantage of the class la-

bel information to construct matched and unmatched pairs

within a batch, in order to minimize the compatibility with

unmatched pairs.

Given a 224× 224× 3 dimensional input image, we first

apply pre-trained ResNet-101 to generate 7× 7× 2048 di-

mensional features. After global-average pooling layer, a

FC layer is used to extract 64d shared latent feature and

3d private latent feature. For the simplicity of the network,

our generative model decodes the 2048d feature, the recon-

struction of the feature produced from the global-average

pooling layer in the encoder, instead of the ambient image.

For the caption, we first extract the sequence of the word

embedding using the BERT [3] tokenizer and the BERT

base model, pre-trained on the uncased book corpus and En-

glish Wikipedia datasets, where the maximum length of the

sequence is 30. A sequence whose length is less than 30

is padded by zeros. Given the 768d caption embedding in

the BERT base model, we construct our text inference net-

work using a bidirectional LSTM [7] of hidden dimension

512, followed by a max pooling layer and a FC layer to cre-

ate the final 64d shared feature and the 3d private feature.

For the same reasons as the image modality, the text modal-

ity decoder produces 1024d features corresponding to the

output of max pooling in the text encoder. We use Adam

optimizer [9] with batch size 64.

Quantitative Evaluation. As suggested in [1, 13, 22, 17],

we evaluate the compatibility of image and text modalities

in terms of recognition and retrieval on the shared latent

space. The shared features of the text modality are aver-

aged per class for the evaluation in both directions. For

image-to-text cross generation, recognition is assessed with

the Rank1 score and for text-to-image cross generation, re-

trieval is measured with AP@50. To compute Rank1, after

ranking the cosine similarity between a given query image

feature and all per-class-averaged text features, we assert

whether the closest text feature shares same label with the

query image. To compute AP@50, images are first ranked

according to their cosine similarity with a given query text

feature, averaged per class, assessing the fraction of the

closest 50 images with the same class label as the query text,

finally averaged over all classes. Tab. 2 shows the recogni-

tion and retrieval evaluation results. DMVAE outperforms

competition on the image-to-text cross-recognition while

achieving identical performance on text-to-image retrieval

task.

Qualitative Evaluation. In Fig. 6, each row depicts the

top3 retrieved captions given a query image according to the

cosine similarity in the shared latent space. All the retrieved

captions have the same class label as the query image except

Table 2: Recognition and retrieval results on the Oxford-

102 Flowers dataset.

Model Img2Txt (Rank1) Txt2Img (AP@50)

Word2Vec [14] 54.2 52.1

GMM+HGLMM [11] 54.8 52.8

Word CNN [1] 60.7 56.3

Word CNN-RNN [1] 65.6 59.6

Triplet [13] 64.3 64.9

IATV [13] 68.9 69.7

CMPM+CMPC [22] 68.4 70.1

TIMAM [17] 70.6 73.7

DMVAE 73.3 73.6

Query Rank1 Rank2 Rank3

this flower has

smooth white petals,

two which are

rounded and three

which are oblong

a flower with five

white petals and a

yellow pistil

this flower has five

very smooth white

petals with rounded

edges

this flower has or-

ange upright petals

that have pointed

tips

this flower has a

lightly multicolored

pedicel that holds

the upright sharply

pointed orange

petals

this flower has knife

like orange petals

that stick up verti-

cally

the petals on this

flower are long and

droopy with an or-

ange color to them

the petals are curled,

orange, and covered

with dark red spots

a bird shaped flower

with shiny orange

petals that sprout out

of it’s pedicel

Figure 6: Given a query image, captions are retrieved. The

red colored caption represents the incorrect retrieval.

Query Rank1 Rank2 Rank3

this unique flower has long

thin pink petals with a big

fussy stigma

this flower has five elon-

gated triangle shaped pur-

ple petals surrounding yel-

low stamen

this flower has white petals

with purple stripes and

long pink stamen

Figure 7: Given a query caption, images are retrieved. The

red bounding box on the image represents the incorrect re-

trieval.

for the red colored caption in the last row, where the class

is that of the image in the second row. In spite of the incor-

rectly retrieved caption, we can observe that the description
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Original query
this unique flower has long thin pink

petals with a big fussy stigma.

Synthesized query Rank1 Rank2 Rank3

this unique flower has long

thin yellow petals with a

big fussy stigma

this unique flower has

short pink petals with a

long white stamen

this unique flower has

round blue petals with red

spots

Figure 8: Given an original caption, captions are synthe-

sized by swapping some words with the blue colored words

that can represent different visual characteristics. Images

are retrieved for each synthesized query. The retrieved im-

ages for the original query can be found in Fig. 7.

is closely related to the query image. Fig. 7 illustrates the

reverse retrieval. Given a query caption, top3 images are re-

trieved. We provide the incorrect retrieval case at the rank3

of the first row, indicated by the red bounding box. It has

the fussy stigma and the color similar with flowers of the

correct class (Rank1 and Rank2 images), however it shows

a different petal shape and a larger center.

We further examine what images the synthesized text re-

trieves in Fig. 8. From the original text query at the first

row of the Fig. 7, we synthesize a new caption by swapping

some words that can represent different visual characteris-

tics. We mark those words with blue color in Fig. 8. In

the first row, we observe that the retrieved images are yel-

low colored and with the characteristic of a fussy stigma.

In the third row, no image exists in the test set that the

synthesized caption describes. Thus, the similar images

with round shaped and blue colored but no red spots are

retrieved. This suggests that DMVAE learns a sufficiently

meaningful shared latent space that allows retrieving be-

tween the image and text modalities.

5.3. Ablation Study

We examine the effectiveness of each component of DM-

VAE on MNIST and SVHN paired datasets in Tab. 3. pM

and pS represent the private space of MNIST and that of

SVHN respectively. Thus, pM and pS columns indicate the

absence (x) or presence (o) of the private space for MNIST

and SVHN, respectively. crVAE indicates the cross-VAE

loss where M2S means the cross-reconstruction is con-

ducted by transferring MNIST shared latent code to SVHN

shared latent code; and vice-versa for crVAE S2M. For ex-

ample, in the third row, the “x” of crVAE (M2S) implies no

cross VAE loss in Eq. 3 for transfer from MNIST to SVHN.

In the second row of Tab. 3, without PoE, the align-

ment between two modalities becomes weaker, leading to

lower performance in both cross-generation tasks. In terms

of cross-VAE from the 3rd to the 5th rows, we can ob-

serve that the role of S2M cross-VAE is critical in order

to achieve meaningful accuracy on SVHN to MNIST cross

generation. SVHN alone is not able to learn the latent rep-

resentation sufficient enough to classify each digit identity

because the SVHN images are challenging for digit iden-

tity analysis. While trying to learn to generate MNIST, a

simpler domain to recognize the digit classes, the SVHN

shared latent space can obtain the knowledge about the digit

identity. On the other hand, the performance on MNIST-

to-SVHN cross-generation is improved significantly by the

presence of the private space. This is because the variety of

the SVHN styles cannot be expressed within the shared la-

tent code from MNIST. These results provide the evidence

of the ability of each component in DMVAE to disentangle

latent factors into the shared factor and the private factor

components.

Table 3: Ablation study on MNIST and SVHN modalities

to analyze each component of DMVAE. pM and pS repre-

sent private space of MNIST and private space of SVHN

respectively. crVAE indicates the cross-VAE loss.

Components Accuracy

pM pS crVAE (M2S) crVAE (S2M) PoE M → S S → M

o o o o o 88.13 83.73

o o o o x 87.33 77.33

o o x o o 87.85 82.83

o o o x o 82.7 17.03

o o x x o 83.19 12.75

x x o o o 12.38 82.72

6. Conclusion

In this paper, we introduce a novel multi-modal VAE

model with separated private and shared spaces. We ver-

ify that having a private space per modality as well as the

common shared space can significantly impact the repre-

sentational performance of multimodal VAE models. We

also demonstrate that VAE with the cross-reconstruction is

important for separation of factors across the two sets of

spaces. Application to image-to-image and image-to-text

modeling tasks demonstrates the universal properties and

effectiveness of DMVAE across different data types.
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