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Abstract

Scene graph generation aims to provide a semantic and

structural description of an image, denoting the objects

(with nodes) and their relationships (with edges). The best

performing works to date are based on exploiting the con-

text surrounding objects or relations, e.g., by passing infor-

mation among objects. In these approaches, to transform

the representation of source objects is a critical process for

extracting information for the use by target objects. In this

paper, we argue that a source object should give what target

object needs and give different objects different information

rather than contributing common information to all targets.

To achieve this goal, we propose a Target-Tailored Source-

Transformation (TTST) method to propagate information

among object proposals and relations. Particularly, for a

source object proposal which will contribute information to

other target objects, we transform the source object feature

to the target object feature domain by simultaneously tak-

ing both the source and target into account. We further ex-

plore more powerful representation by integrating language

prior with visual context in the transformation for scene

graph generation. By doing so the target object is able to

extract target-specific information from source object and

source relation accordingly to refine its representation. Our

framework is validated on the Visual Genome benchmark

and demonstrated its state-of-the-art performance for the

scene graph generation. The experimental results show that

the performance of object detection and visual relationship

detection are promoted mutually by our method. The code

will be released upon acceptance.

1. Introduction

In recent years great successes have been witnessed on

vision perceptual tasks such as object detection [20] and

semantic segmentation [32]. However, such object-centric

visual perception is still far from the goal of visual scene
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Figure 1. Given an image: (a) objects are proposed; (b) Messages

are passed among objects to exploit context; (c) label the graph’s

nodes (objects) and edges (relations). In (b), we show the dif-

ference between the conventional message passing methods (top

graph) and our target-tailored source-transformation ones (bottom

graph). The arrows denote the message passing direction, the col-

ors indicate the passed information. Different colors indicate the

corresponding objects.

understanding which requires understanding the visual re-

lationships between objects. Some recent work [8, 9] pro-

posed to represent the visual scene as a scene graph which

models objects and their attributes as nodes, and their rela-

tionships as edges, as illustrated in Fig. 1. Scene graph has

been proved to be a promising alternative for many visual

tasks such as image retrieval [8], image caption [27], visual

question and answering [7].

A natural idea to generate scene graph is to detect ob-

jects using an off-the-shelf object detector, and then predict

their pairwise relationships separately [17, 31]. However,

these approaches ignore the exploration of visual context,

which could provide powerful inductive bias and strong reg-

ularities [30] that help detect objects and reason their re-

lations. For example, “keyboard” and “mouse” often co-

occur within a scene, and “man” tends to “ride” the “horse”.

Many works have exploited the visual context in different

ways to help scene graph generation [24, 29, 11, 13, 3, 30].

Particularly, modeling message passing among objects is

the most widely applied method for exploiting the visual

context and its effectiveness has been proved for scene

graph generation. In previous message passing methods, the

representation of a source object is first transformed, via a

learned shared transformation W before being remedied to



update the target object [25, 12, 13, 26]. To make the shared

transformation suitable for any target object, W is unfortu-

nately encouraged to learn information from source objects

which is commonly useful for different target objects.

We argue that two important elements are overlooked

in most of the existing message passing methods for scene

graph generation. First, the semantic dependencies between

target objects and source objects are ignored in the source-

transformation step because the shared transformation ma-

trix W is independent of the target object. For example as

shown in Fig. 1(b)(top), a “boot” will contribute the same

information to “person” as to ”horse” (edges are denoted

by the same color) with the shared transformation. Intu-

itively, a target-tailored information is more useful than a

common information for a specific target object. For ex-

ample, “boot” should contribute information of “wearing

things” to “person” while contributing information of “rid-

ing gear” to “horse” (See Fig. 1(b)(bottom) edges are de-

noted by different colors). Second, how to effectively cou-

ple the visual and language context into the learning process

has not attracted much attention. The visual appearance de-

termines the visual context while the language prior guides

how objects relate to each other in the linguistic domain.

For instance, when we see “person on a motor” (visual con-

text), we humans spontaneously infer the relation as “ride”

rather than “on” or “sit” (language prior). These two modal-

ities should be compatible and mutually promotive rather

than implemented separately.

Motivated by these observations, we propose a target-

tailored source-transformation (TTST) method for mes-

sage passing to exploit context for scene graph generation.

“Target-tailored” means that when a source contributes in-

formation to different targets, we expect it to deliver target

specific information, i.e., give as exactly as possible what

the target needs. To achieve this goal, the source and target

are simultaneously considered in the transformation of the

source information to the target domain. Furthermore, we

propose to integrate the language priors with visual context

in the transformation process. By doing so, messages are

propagated through the graph more effective and the learned

representations are more powerful.

Our framework is depicted in Fig. 2. It builds on the

Faster R-CNN detector [20] to generate object proposals

(Fig. 2(a)). Then, a graph is initialized by connecting each

pair of objects. We introduce a learned semantic relation-

ship filter (SRF, see Sec. 3.2) to prune the spurious con-

nections between objects (Fig. 2(b)) to facilitate the subse-

quent message passing processes. Then, we apply message

passing through the graph while considering the semantic

dependencies between the source and the target objects and

relationships (see Sec. 3.3, Fig. 2(c)(e)). Finally, the labels

of graph nodes are predicted with the context-rich features,

and the edge labels are inferred by using the refined rela-

tionship features along with the semantic information of the

connected object nodes (Fig. 2(d)).

Summary of Contributions. Our work has two major

contributions:

• A novel target-tailored source-transformation method

for message passing, which explores information from

source object by considering the source object and tar-

get object simultaneously.

• Language context is utilized to help message passing

and integrated with visual context to learn powerful

representation for scene graph generation.

Our method reports the state-of-the-art results on the VG

benchmark dataset for scene graph generation. Moreover,

the experimental results show the mutual improvements of

object detection and relationship detection via our method.

2. Related Works

Context for Visual Reasoning. Context has been ex-

plored to improve different scene understanding tasks for

decades [4, 10, 28, 6, 16]. However, context for improving

scene graph generation is still under explored. A number

of works attempt to capture object context from an image

in the message passing mechanism, such as through a graph

model [12, 26], implementing RNN [30, 1, 22], or in an

iterative refinement process [24].

Besides visual context, context from language priors [18]

has been proved to be helpful for visual relationships detec-

tion and scene graph generation [17, 29, 13]. Lu et al. [17]

utilized language priors to improve the detection of mean-

ingful relationships between objects. Li et al. exploited

language priors from region captions for scene graph gen-

eration by predicting image caption and detecting visual

relationships in parallel. Yu et al. [29] distilled linguis-

tic knowledge by training a parallel language branch as a

teacher network to help the visual network (student) predict

visual relationships. In contrast to above works that utilize

language prior separately, we integrate the language priors

with visual context in the transformation step to help mes-

sage passing and learn better semantic representations.

Scene Graph Generation. Scene graph was first pro-

posed in [8]. It generalizes the task of detecting object to

also detecting their attributes and reasoning relationships

between them. Scene graph generation which includes ob-

ject detection and visual relationship detection are attract-

ing increasing attention in computer vision [13, 3, 14, 33,

12, 30, 23, 22, 1, 2]. Context has been proved to be use-

ful for scene graph generation and many works resort to

message passing to capture the context of the two related

objects [11, 30, 2, 22], or of the objects and their relation-

ships [24, 13, 12, 26]. A key process for message passing

is first to transform the representation of source objects into
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Figure 2. The pipeline of our framework. Given an image, (a) Faster R-CNN is implemented to propose object candidates and extract

visual features, (b) then our semantic relation filter (SRF) prunes the connection between a pair of objects that are semantically weakly

dependent (pointed lines). (c) Target-tailored source-transformation (depicted in (e)) is applied to learn context from connected nodes and

edges across the graph. (4) After predicting the objects using the refined object features, their predicted label information are embedded

to serve as subject or object in a relationship for relationships inferring. Finally, scene graph is generated. The colors indicate different

objects. Circles denote objects and rectangles denote relationships.

a common domain by training a shared transformation ma-

trix. Nevertheless, all existing transformation methods do

not take the target into account. Consequently, to any tar-

get, the source contributes identical information. For in-

stance, “horse” contributes the same content to “human”

and “grass” after the transformation, even though an atten-

tion mechanism is used to weight the contribution. How-

ever, intuitively, the transformed content should be depen-

dent on both the target and source. Our TTST for message

passing is essentially different from previous works by con-

sidering the source objects and target object simultaneously.

By doing so, for a different target object, the source object

contributes different information, and thus the learned rep-

resentation of target object is more powerful.

3. Proposed Approach

An overview of our proposed model is depicted in Fig.

2. Our goal is to infer a scene graph G for a given image

I , which summaries the objects O as nodes and relations R

between every two objects as edges. The inferring process

can be formally defined as:

P (G|I) = P (B|I)P (O|B, I)P (R|B,Os, Oo, I) (1)

where B are locations of objects, Os, R,Oo stand for sub-

ject, relation (predicate), object respectively, and Os, Oo ∈
O. P denotes the inference probability. P (B|I) can be

modeled by an off-the-shelf object detector (Fig. 2(a)). We

will discuss each inference module of P (O|B, I) (Fig. 2(c))

and P (R|B,Os, Oo, I) (Fig. 2 (d)) in the following.

3.1. Object Proposals

Given an image, a set of object proposals O is detected

by Faster R-CNN [20] (Fig. 2(a)). Each object oi ∈ O is

associated with its located region bi = [xi, yi, wi, hi] ∈ B,

initially predicted label distribution over all C classes poi ∈
R

1×C , and the pooled visual feature vector xo
i .

3.2. Semantic Relationship Filter

With n object proposals, there are O(n2) edges in the

fully connected graph when considering every two objects

have a relation (Fig. 2(b)). It has been pointed out in many

previous works that most of the object pairs have no rela-

tionship due to the real-world regularities of objects inter-

action (dash edges in Fig. 2(b)). We have also observed that

information propagated from the unrelated objects could de-

teriorate the system’s performance because of the possible

noise and interfering information. Furthermore, message

passing through a fully connected graph is computationally

costly and of low efficiency. To make the message passing

processes more effective, we propose a semantic relation-

ship filter (SRF) to remove the unlikely relationships, simi-

lar to what is done in [26].

For oi, we compute its semantic representation by mul-

tiplying its estimated class distribution by the semantic se-

mantic word embeddings matrix We:

eoi = poi ·We. (2)

Each entry in We is an embedding vector for the corre-

sponding object class. It is learned from the region cap-



tion annotation of the VG dataset by adopting Glove [19].

A multi-layer perceptron (MLP) is trained to estimate a

semantic relatedness score between oi and oj by feeding

[eoi , b̃i, b̃j , e
o
j ]. Here, [·] denotes a concatenation operation

and b̃i is the normalization of bi with respect to the union

box of (oi, oj). Then, the object pairs with the top K relat-

edness scores which are also larger than an empirical thresh-

old, are retained and denoted as R.

A relationship of (oi, oj) is denoted as rij . The visual

feature is extracted from the union box of (oi, oj) and the

spatial feature is extracted by an MLP from two binary

masks, which indicates the places (with 1) of subject and

object respectively. Then, an MLP takes the concatenation

of the visual feature and the spatial feature as input to fuse

to extract the basic representation xij .

3.3. Target­Tailored Source­Transformation for
Message Passing

3.3.1 Message Passing Revisited

The general approach of passing message to nodes i from

its neighboring nodes N (i) at l + 1 step is defined as:

zl+1
i = σ(zli +Σj∈N (i)aijWzlj), (3)

where aij is the weight for node j and is computed using

attention mechanism typically. W is a shared learned trans-

formation matrix which is used to project the representation

of source objects to a common domain. σ(·) is a nonlinear

operation. After several iterations, a representation with a

high-order context is obtained and forwarded to the subse-

quent inference module. Wzj contributes the same infor-

mation to any target zi. Ideally, the transformation should

consider the semantic dependency between the target zi and

its source N (i). To this end, we propose the target-tailored

source-transformation (TTST) for message passing to ex-

plore context through the graph, which is depicted in Fig.

2(c)(e) and discussed in the following.

3.3.2 TTST for Objects

To learn the context of objects and relationships at different

semantic levels, messages are passed from both the neigh-

boring objects No(i) and relationships Nr(i) to the target

object. This message passing is formulate as:

x̂i = σ(xi+
1

|N o(i)|

∑

j∈N o(i)

f (o→o)([xi, ei], [xj , ej ])

+
1

|N r(i)|

∑

j∈N r(i)

f (r→o)(xi, xij)).

(4)

Note that, the superscript l is removed for simplicity. The

superscript o and r represent object and relationship respec-

tively. f (→)(target, source) is our TTST operation and the

arrow indicates the message passing direction. It is worth

noting that ei is computed by Eq. (2) which contains lan-

guage prior. It is concatenated with the visual feature xi

as complete representation of object i. Therefore, f (o→o)

broadcasts the visual information as well as the language

prior among object nodes. Consequently, both the visual

context and the language prior between objects are learned

and integrated into the refined representations of target ob-

jects. Because the transformation f (→)(·) “sees” the tar-

get and object simultaneously, it is target-tailored source-

transformation. Moreover, the transformation is further bet-

ter guided by the implicit language prior in ei between dif-

ferent classes of objects. The ablation studies in Sec. 4.2

will show how the language prior affects the performance.

3.3.3 TTST for Relationships.

TTST is also applied to capture context for relationships

from its neighboring objects (i.e., the subject and object)

and neighboring relationships Nr(i, j) as follows:

x̂ij = σ(xij +
1

2
Σm∈[i,j]f

(o→r)(xij , xm)

+
1

|N r(i, j)|
Σxnm∈N r(i,j)f

(r→r)(xij , xnm)).
(5)

Nr(i, j) is defined as the set of relationships in which each

relationship involves either oi or oj . After the first iteration

in Eq. (4), xi and xj contain context of the language prior.

Consequently, f (o→r)(·) also integrates context of the lan-

guage prior to the relationship representation.

Each transformation f(·) is a separately learned MLP

(two fully connected (FC) layers followed by a Relu opera-

tion). Each of them is responsible for passing messages in

different directions and capturing different levels of context.

3.4. Inference

The inference module is depicted in Fig. 2(d). An ob-

ject classifier is trained to predict the label distribution p̂oi
of object proposal i using x̂i. Thus, P (O|B, I) in Eq. (1) is

achieved. To infer the graph edge label (i.e. relation class),

we semantically embed p̂oi and p̂oj to further explore context

information of (subject, relation, object).

esub = p̂osub ·W
sub
emb, eobj = p̂oobj ·W

obj
emb, (6)

where W sub and W obj denote the trainable embedding ma-

trix of subject and object respectively. Then, the relation-

ship is semantically represented as x̃ij = [esub, x̂ij , e
obj ].

Different from most of the previous works which simply

combine the visual features or predicted label distribution

of subject and object with the features of relationship, we

further explore their context information. Finally, an MLP

(consisting of two FC layers followed by a Relu and soft-

max operation sequentially) is trained to predict the relation



Table 1. Performance comparison with state-of-the-art on VG test set [24]. All numbers in %. We use the same object detection backbone

provided by [30] for fair comparison. Because MSDN, FacNet and DRNet use their own data split, the comparison is for reference only.

The results of VRD are taken from [24] which reimplemented VRD on VG dataset. The results of Graph R-CNN, KERN and Mem are

taken from the original papers.

Method
SGGen SGCls PredCls

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

[2
4
]

sp
li

t

VRD [17] 0.3 0.5 11.8 14.1 27.9 35.0

IMP [24] 14.6 20.7 24.6 31.7 34.6 35.4 52.7 59.3 61.3

Graph R-CNN [26] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1

Mem [22] 7.7 11.4 13.9 23.3 27.8 29.5 42.1 53.2 57.9

KERN [2] - 27.1 29.8 - 36.7 37.4 - 65.8 67.6

MotifNet [30] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1

MotifNet-Freq 20.1 26.2 30.1 29.3 32.3 34.0 53.6 60.6 62.2

TTST (Ours) 23.8 32.3 35.4 35.1 38.6 39.7 60.3 64.2 66.4

o
th

er

sp
li

ts

MSDN [13] - 11.7 14.0 - 20.9 24.0 - 42.3 48.2

DRNet [3] - 20.8 33.8 - 23.9 27.6 - - -

FacNet [12] - 13.1 16.5 - 22.8 28.6 - - -

class distribution using x̃ij . Now, P (R|B,Os, Oo, I) in Eq.

(1) is achieved. The labels of objects and relations that max-

imize Eq. (1) are selected.

4. Experiments

In this section we firstly clarify the experimental settings

and implementation details. Then, we show quantitative and

qualitative results on VG dataset in terms of scene graph

generation. We compare our results with strong prior works.

We conduct extensive ablation study on each module of our

framework and discuss their effectiveness.

Datasets. The Visual Genome dataset [9] is the largest

and most popular benchmark dataset for the task of scene

graph generation. However, different works use different

data splits. For a fair comparison, we adopted the most

widely adopted ddataset split in [24]. In the data split, the

most-frequent 150 object categories and 50 predicate types

are selected. The dataset is split into training set with 75651
images and test set with 32422 images.

Implementation Details. Faster R-CNN [20] with

VGG16 [21] as backbone is implemented as our underly-

ing detector and basic visual feature extractor. The code-

base is provided by [30]. The input images are scaled and

then zero-padded to the size of 592 × 592. ROI-pooling

[5] is applied to extract features of nodes and edge from

the basic shared feature maps. In the SRF module, the em-

bedding matrix We is initialized with the 300-D Word2vec

provided by [17], and a two-layer MLP is trained to out-

put a 1-D vector which then goes through a sigmoid func-

tion to squash the predicted score in (0, 1). SRF retains at

most 128 relationship proposals with threshold empirically

set to 0.55 by considering the trade-off between high recall

and accuracy of correct relationships. Each feature trans-

formation f(·) in TTST is an MLP which consists of two

FC layers (each followed by Relu operation) and outputs

512-D feature vectors for objects and 4096-D feature vec-

tors for relationships, respectively. The embedding matrices

W sub
emb,W

obj
emb ∈ R

50×300 are randomly initialized, where

each row indicate an object class.

Training. We perform stage-wise training. The object

detector and the backbone are firstly fine tuned on VG and

then frozen. Then, the following modules are trained with

different supervision: SRF module is trained with logistic

loss, and the TTST message passing module is trained with

the sum of cross entropy for object classification and rela-

tion classification. SGD (lr = 5 × 10−3) is applied for

optimization with momentum 0.9.

Evaluation. We look into three universal evaluation

tasks for scene graph generation. (1) Predicate classifica-

tion (PredCls): given the ground truth bounding boxes and

labels of objects, predict edge (relation) labels. (2) Scene

graph classification (SGCls): given ground truth bounding

boxes of objects, predict node (objects) labels and edge la-

bels. (3) Scene graph detection (SGGen): predict boxes,

node labels and edge labels given an image. Only when the

predicted labels of the subject, relation, and object of a rela-

tionship match the ground truth annotation, and the boxes of

subject and object have more than 50% IoU with the ground

truth ones simultaneously, this detection is counted as cor-

rect. The recall@K metrics (K = [20, 50, 100]) for rela-

tions are used to evaluate the system performance.

4.1. Quantitative Comparisons

The quantitative results from different models are com-

pared in Tab. 1. Our method is compared with recent strong

models: MotifNet [30] that learns regularities using RNN,



Table 2. Ablation studies on our model with accuracy in %. TTST denotes whether pass message to capture context through the graph

using our proposed TTST message passing method. Language denotes using the language context in message passing. PredE denotes the

semantic embedding of subject and object of a relationship as defined in Eq. (6). SRF stands for the semantic relationship filter which is

trained to prune the spurious edges. The object detection performance (mAP) follows COCO metrics [15].

Model TTST Language PredE SRF
Detection SGGen SGCls PredCls

mAP R@50 R@100 R@50 R@100 R@50 R@100

1 - - - - 16.6 12.7 15.9 26.6 27.4 52.4 54.1

2 X - - - 18.5 17.1 19.9 29.7 32.4 58.3 60.4

3 X X - - 20.2 24.7 27.1 33.0 35.1 62.0 64.2

4 X X X - 20.4 29.3 33.1 37.3 38.3 66.5 67.7

5 X X X X 20.8 32.3 35.4 38.6 39.7 64.2 66.4

Table 3. Ablation study on how the number of iterations of message passing to update the representation of nodes and edges affects the

final performance. These are evaluated on our full model, which includes SRF, TTST, Language and PredE.

IteNr.
Object Detection SGGen SGCls PredCls

mAP R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

1 19.1 19.3 26.5 30.1 29.8 32.3 34.7 57.6 59.8 62.1

2 20.8 23.8 32.3 35.4 35.1 38.6 39.7 60.3 64.2 66.4

3 20.6 23.1 32.2 35.4 34.4 37.1 40.1 60.5 65.7 67.8

capturing context by message passing (IMP [24]), MSDN

[13], FacNet [12], Graph R-CNN [26], Mem [22]), CRF-

like work DRNet [3], VRD [17] which uses language prior,

KERN [2] that exploits statistical prior knowledge and the

strong frequency baseline MotifNet-Freq [30]. It is worth

noting that their basic object detectors are reported to have

20.4% in mAP@0.5, while our basic object detector has

16.6% in mAP@0.5, which means that we do not have ad-

vantage in the front-end object detector. Thus, the compar-

ison is not in favor of ours in terms of object detection.

As compared in Tab. 1, our method outperforms other

methods on all metrics (a little inferior to MotifNet and

KERN for PredCls. We will analyze the reasons in Sec. 4.2

). It demonstrates that our method improves scene graph

generation significantly. Our method outperforms MotifNet

and the strong frequency baseline MotifNet-Freq, which in-

dicates that our model not only learns the co-occurrence

statistics of combination (subject, relation, object) from

the training data but also explores the context in the given

scene. Specifically, our method is superior to FacNet, Graph

R-CNN and Mem which attempt to capture context us-

ing message passing approaches. It demonstrates that our

model is more efficient in message passing than the recent

state-of-the-art message passing models for scene graph

generation. Compared to VRD which explicitly exploits

language prior, our method shows significant improvement.

It suggests that, compared to using language prior sepa-

rately to predict the relationship labels, our model effec-

tively integrates it with the visual context and learns more

powerful representation.

4.2. Ablation Studies

Three modules are applied to boost the performance of

scene graph generation: SRF, TTST and an embedding

operation of subject and object for prediction relationship

(PredE). To study how each of them affects the final per-

formance, we perform several ablation experiments and

present the results in Tab. 2 and Tab. 4. Due to the limited

GPU memory, 128 object pairs are retained for the subse-

quent message passing. Thus, we define a confidence score

for an object pair as the product of the predicted label confi-

dences of subject and object. The object pairs with top 128

confidence scores are selected when SRF is not utilized.

TTST. Model 1 is the baseline which predicts the rela-

tionship labels by combining the features of subject, union

box, and object. Comparing Model 1 and Model 2, we find

that TTST boosts the overall performance significantly. It

indicates that TTST captures context cross the graph ef-

fectively and learn powerful representations. Such visual

context is clearly helpful for understanding the interaction

between objects and object detection (1.9% mAP gain).

Language context. Then, we add the language prior

into the TTST (Model 3) as described in Eq. (4). It reports

further improvement in the final performance. It demon-

strates that: 1) language prior helps explore the context

among objects and relationships, and 2) TTST effectively

integrates language prior with visual context through the

message passing rather than only using it as association in-

formation as in previous works, e.g., [17, 13].

Embedding. By embedding the predicted class infor-

mation of subject and object for predicting their relation, the



Table 4. Ablation study of how different message passing directions in the TTST modules affect the performance. “rel-obj” denotes passing

message from relationship to object, and the other notation are similar. The full model is implemented.

Model
Detection SGGen SGCls PredCls

obj-obj rel-obj obj-rel rel-rel mAP R@50 R@100 R@50 R@100 R@50 R@100

0 - - - - 16.6 14.1 18.5 27.7 30.5 54.2 58.4

1 - - X - 16.7 14.8 19.7 28.7 32.0 59.7 62.8

2 - - - X 16.6 14.7 19.6 27.9 31.4 58.2 61.3

3 - - X X 16.7 15.1 20.2 29.0 32.3 60.9 63.4

4 X - - - 19.8 25.5 28.1 32.5 36.8 55.8 59.7

5 - X - - 16.8 14.2 18.5 28.0 31.1 55.5 59.5

6 X X - - 20.2 26.4 28.6 33.8 37.7 56.1 59.8

7 X X X X 20.8 32.3 35.4 38.6 39.7 64.2 66.4
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Figure 3. Qualitative results from our model in the scene graph generation setting. Green boxes denote the correctly detected objects while

orange boxes denote the ground truth objects that are not detected. Green edges correspond to the correctly recognized relationships at

the R@20 setting while orange edges denote the ground truth relationships that are not recognized. The blue edges denote the recognized

relationships that however do not exist in the ground truth annotations.

performance is further improved, particularly in the PredCls

setting (4.5% gain in R@50 and 3.5% gain in R@100). It

indicates that to explicitly designate the role of the two ob-

jects involved in a relationship into subject and object sep-

arately helps learn the co-occurrence of relationship triplet

(subject, relation, object). Furthermore, the performance of

object detection is also slightly improved (0.2% mAP gain).

SRF. Finally, we apply SRF to prune the spurious edges

to get a sparsely connected graph (Model 5). We notice

that almost all performances are improved, except that Pred-

Cls is a bit inferior to Model 4 because SRF removes some

“good” candidates of relationship (w.r.t. the evaluation cri-

teria, e.g., what is ”good” for R@50 and R@100 may not be

”good” for R@20). This is also the reason why our model is

a little inferior to KERN and MotifNet for PredCls in Tab. 1.

The improvements for SGGen and SGCls demonstrates that

SRF is effective in selecting the object pairs which are likely

to have relationships, especially when the object proposals

are not good enough provided by the front-end object de-

tector. We also notice that SRF helps get better object de-

tection performance (0.4% mAP gain ). We analyze the

gain taken by SRF as follows. Even though deep learning

technologies enable the network to learn powerful features

from reasonable input, the learned features contain noise

or interfering information, because of the imperfect model,

training strategy, etc. If the input is preprocessed in order to

remove noise or interfering information, the model is likely

to learn better features. In our model, the spurious rela-

tions between objects broadcast the interference via mes-

sage passing through the graph and deteriorate the model

learning process. SRF effectively reduce such kind of inter-

ference by removing the spurious relations.

Iteration of Message Passing. TTST works in an iter-

ative way to update the representation of nodes and edges,

it is necessary to study how different numbers of iterations

affect the final performance. Our full model is trained in



different iterations of message passing and reports the re-

sults in Tab. 3. We notice that the overall performance in-

creases with more iterations of message passing and most

of the performance reaches the best after 2 iterations. After

3 iterations, some performances drop, especially object de-

tection. But the performance in the PredCls task setting is

still slightly improved. We analyze the reason as follows.

The context is captured by passing message to the neigh-

bors via TTST. In one iteration the message is broadcast to

its neighboring nodes. More iterations will broadcast the

message to further nodes (edges) and capture wider context.

Therefore, overall performance is improved. However, the

noise and interfering information are also broadcast through

the graph. With more iterations, each node/edge accumu-

lates such harmful information in parallel with collecting

context from others. Normally, a graph for an image is not

large and information will go through the graph within 2

steps starting from any node (see Fig. 3). Thus, the context

is already extracted sufficiently in two iterations and harm-

ful information keeps accumulating with more iterations.

Consequently, the model performance becomes worse with

the deteriorated performance in object detection. Other ex-

isting works which pass messages iteratively also reported

similar problem [13, 16, 12]. However, slight gains are ob-

tained for PredCls which isolates the performance of ob-

ject detection. It is because the relation representations are

more complex and difficult than that of an individual object.

More iterations will help refine the relation representations.

The weaker object detection decreases the performance of

SGGen and SGCls. Based on this study, we use 2 iterations

in our final scheme.

Message Passing Direction As formulated in Eq. (4)(5),

message are propagated in four directions in TTST mod-

ules: obj-obj, rel-obj, obj-rel and rel-rel. We evaluated

how each of the message passing direction affects the per-

formance of our model. The results presented in Tab. 4

shows that any direction of message passing improves the

performance of the framework (compared with Model 0)

and the full message passing model has the best perfor-

mance (Model 7). By comparing Model 1-3 with Model

4-6 correspondingly, we notice that passing message to ob-

jects (Eq. (4)) improves the performance of object detection

(mAP is improved from 16.6% to 20.2%). Consequently,

the performance of SGGen (from 14.1% to 26.4%) and

SGCls (from 27.2% to 33.8%) are improved significantly.

When information is propagated to relationships (Eq. (5)),

the performance of PredCls is improved from 54.2% to

60.9% (12.4% relative gain). Consequently, the overall per-

formance is improved. Compared with those improvements

from *-obj and *-rel separately, the full model shows further

overall improvement. It demonstrates that the TTST mod-

ules learn the context by propagating information among

objects and relationships effectively and benefit the mutual

promotion of object detection and relationship detection.

Improvements on Object Detection. As shown in

Tab. 2 and Tab. 4, TTST modules not only improve the per-

formance of visual relationship detection but also the per-

formance of object detection, which is one of the most im-

portant tasks for visual scene understanding and critically

affects the overall performance of scene graph generation.

We achieve the goal of mutual promotion of visual relation-

ship detection and objects detection.

4.3. Qualitative Results

Fig. 3 shows scene graphs generated by our model from

the test set. We can see that our model is able to infer

relationships between object pairs correctly (green edges)

and generate high-quality scene graphs. Some true relation-

ships that are not annotated in the ground truth also can be

inferred correctly (blue edges), e.g.“man-wearing-jeans” in

the first image. It implies that our model works even better

than what the quantitative results demonstrate because the

unannotated but correctly predicted relationships would de-

teriorate the performance under current evaluation metrics.

From the examples, we notice that when the detector

fails, all the inference of edges to the object will be false,

and this situation often occurs when detecting small ob-

jects. For example in the right image of the first row, many

small or occluded objects are not correctly detected (orange

boxes) and all edges connecting them are not recognized

correctly. Another common failure case is caused by the

ambiguity of relation types, e.g. ”wear” vs. “wearing”.

5. Conclusion

This paper proposes a novel and effective target-tailored

source-transformation (TTST) for message passing to gen-

erate scene graph. Our model includes a SRF that effec-

tively prunes the spurious connections between objects, and

TTST modules that learn context by simultaneously “see-

ing” the target and source objects. Language prior is used

to help message passing and integrated with visual context

to learn powerful representations. The experimental results

show that our method significantly outperforms the state-of-

the-art methods for scene graph generation and meanwhile

the performance of object detection is improved. The exten-

sive ablation studies demonstrate the contribution of each

proposed module to the framework.
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