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Abstract

Recent years have seen a surge in finding association

between faces and voices within a cross-modal biometric

application along with speaker recognition. Inspired from

this, we introduce a challenging task in establishing asso-

ciation between faces and voices across multiple languages

spoken by the same set of persons. The aim of this paper

is to answer two closely related questions: “Is face-voice

association language independent?” and “Can a speaker

be recognized irrespective of the spoken language?”. These

two questions are important to understand effectiveness and

to boost development of multilingual biometric systems.

To answer these, we collected a Multilingual Audio-Visual

dataset, containing human speech clips of 154 identities

with 3 language annotations extracted from various videos

uploaded online. Extensive experiments on the two splits

of the proposed dataset have been performed to investigate

and answer these novel research questions that clearly point

out the relevance of the multilingual problem.

1. Introduction

Half of the world population is bilingual with people

often switching between their first and second language

while communicating [28]. Therefore it is essential to

investigate the effect of multiple languages on computer

vision and machine learning tasks. As introduced in Fig. 1,

this paper probes two closely related questions, which

deal with the recent introduction of cross-modal biometric

matching tasks in the wild:

Q1. Is face-voice association language independent?

Q2. Can a speaker be recognised irrespective of the spoken

*Equal contribution

Figure 1. Multimodal data may provide enriched understanding to

improve verification performance. Joaquin can wear make-up that

makes visual identification challenging but voice can still bring

enough cues to verify identity. In this work, we are interested

to understand the effect of multilingual input when processed by

audio-visual verification model (Q1) or just using the audio input

(Q2). Joaquin is a perfect English-Spanish bilingual, would the

system still be able to verify Joaquin when speaking Spanish even

if the system was trained with English audio only?

language?

Regarding the first question, a strong correlation has

been recently found between face and voice of a person

which has attracted significant research interest [18, 25,

31, 32, 35, 49, 50]. Though previous works have estab-

lished an association between faces and voices, however

none of these approaches investigate the effect of multi-

ple languages on this task. In addition, existing datasets

containing audio-visual information, VoxCeleb [33, 20, 34],

FVCeleb [18], FVMatching [25] do not provide language

level annotation. Therefore, we cannot deploy these

datasets to analyse the effect of multiple languages on as-
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sociation between faces and voices.

Thus, in order to answer both questions, we create a

new Multilingual Audio-Visual MAV-Celeb dataset com-

prising of video and audio recordings with a large num-

ber of celebrities speaking more than one language in the

wild. The proposed dataset paves the way to analyze the

impact of multiple languages on association between faces

and voices. Then, we propose a cross-modal verification

approach to answer Q1 by analyzing the effect of multiple

languages on face-voice association. In addition, the audio

part of the dataset supplies samples of 3 languages with an-

notations which serves as a foundation to answer Q2 with

speaker recognition baselines.

To summarise the paper main contributions are listed as fol-

lows:

– We first propose a cross-modal verification approach to

analyze the effect of multiple languages on face-voice

association;

– Likewise, we perform an analysis that highlights the

very same problem of multilingualism for speaker

recognition;

– We propose the MAV-Celeb dataset, containing 2, 182
language-annotated human speech clips with 41, 674
utterances of 154 celebrities, extracted from videos up-

loaded online.

The rest of the paper is structured as follows: Section 2

explores the related literature on the two introduced ques-

tions along with existing datasets. While Section 3 in-

troduces the nature of proposed dataset followed by ex-

perimental evidence to answer both questions in Section 4

and 5. Finally, conclusion is presented in Section 6.

2. Related Work

We summarize previous work relevant to the two ques-

tions raised in the introduction. Q1 falls under cross-modal

verification topic while Q2 deals with speaker recognition

task.

2.1. Cross­modal Verification Between Faces and
Voices

Last decade has witnessed an increasing use of multi-

modal data in challenging Computer Vision tasks including

visual question and answering [2, 3], image captioning [22,

47], classification [17, 24], cross-modal retrieval [36, 48]

and multimodal named entity recognition [5, 55]. Typically,

multimodal applications are built on image and text infor-

mation, however recent years have seen an increased inter-

est to leverage audio-visual information [19, 37, 45, 52].

Previous works [1, 7] capitalize on natural synchronization

between audio and visual information to learn rich audio

representation via cross-modal distillation. More recently,

Nagrani et al. [32] leveraged audio and visual informa-

tion to establish an association between faces and voices

in a cross-modal biometric matching. Furthermore, recent

works [25, 31] introduced joint embedding to establish cor-

respondences between faces and voices. These methods ex-

tract audio and face embedding to minimize the distance

between embeddings of similar speakers while maximiz-

ing the distance among embeddings from different speakers.

The framework used speaker identity information to elim-

inate the need of pairwise or triplet supervision [31, 32].

Wen et al. [50] presents a disjoint mapping network to learn

a shared representation for audio and visual information by

mapping them individually to common covariates (gender,

nationality, identity). Similarly, Nawaz et al. [35] extracted

audio and visual information with a single stream network

to learn a shared deep latent space representation.

Our goal is similar to previous works [25, 31, 32, 50, 36],

however, we investigate a novel problem: To understand if

the association between faces and voices is language inde-

pendent.

2.2. Speaker Recognition

Speaker recognition dates back to 1960s when Sandra et

al. [40] laid the groundwork for speaker recognition systems

attempting to find a similarity measure between two speech

signals by using filter banks and digital spectrograms. In

the following we provide a brief overview of speaker recog-

nition methods as clustered in two main classes: Traditional

and deep learning methods.

Traditional Methods – For a long time, low dimensional

short-term representation of audio input has been basis

for speaker recognition tasks e.g. Mel Frequency Cep-

strum Coefficients (MFCC) and Linear Predictive Coding

(LPC) based features. These features are extracted using

short overlapping segments of audio samples. Reynolds

et al. [42] introduced speaker verification method based

on Gaussian Mixture Models using MFCCs. Differently,

Joint Factor Analysis (JFA) models speaker and channel

subspace separately [23]. Najim et al. [14] introduced

i-vectors which combines both JFA and Support Vector

Machines (SVM). Other works employed JFA as a fea-

ture extractor in order to train a SVM classifier. Further-

more, traditional methods have also been applied to ana-

lyze the effect of multiple languages on speaker recognition

tasks [6, 27, 30]. Though, traditional methods showed rea-

sonable performance on speaker recognition task, however

these methods suffer performance degradation in real-world

scenarios.

Deep Learning Methods – Neural Networks have provided

more efficient methods of speaker recognition. Therefore,

the community has experienced a shift from hand-crafted

features to deep neural networks. Ellis et al. [15] introduced

a system in which a Gaussian Mixture Model is trained from
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Dataset Condition Free Language annotations

The Mixer Corpus [13] Telephone, Microphone ✗ ✓

Vermobil [8] Telephone, Microphone ✗ ✓

Call My Net Corpus [21] Telephone ✓ ✓

Common Voice [4] Microphone ✓ ✓

SITW [29] Multimedia ✓ ✗

VoxCeleb [33, 20, 34] Multimedia ✓ ✗

MAV-Celeb (Proposed) Multimedia ✓ ✓

Table 1. Comparison of the proposed dataset with existing datasets.

Dataset EU EH

Languages U/E/EU H/E/EH

# of Celebrities 70 84

# of male celebrities 43 56

# of female celebrities 27 28

# of videos 560/406/966 546/668/1214

# of hours 59/32/91 48/60/109

# of utterances 11835/6550/18385 9974/13313/23287

Avg # of videos per celebrity 8/6/14 6/8/14

Avg # of utterances per celebrity 169/94/263 119/158/277

Avg length of utterances(s) 17.9/17.8/17.8 17.4/16.5/16.9

Table 2. Dataset statistics. The dataset is divided into 2 splits (EU, EH) containing audio samples from 3 languages, English(E), Hindi(H)

and Urdu (U).

embedding of hidden layers of a neural network. Salman et

al. [43] proposed a deep neural network which learn from

speaker-specific characteristics from MFCC features for

segmentation and clustering of speakers. Chen et.al. [11]

used a Siamese feed forward neural network which can

discriminatively compare two voices based on MFCC fea-

tures. Lei et al. [26] introduced a deep neural model with

i-vectors as input features for the task of automatic speaker

recognition. Nagrani et al. [34] proposed adapted convolu-

tional neural network (VGG-Vox) which aggregate frame-

level feature vectors to obtain a fixed length utterance-level

embedding. More recently, Xie et al. [53] improved this

frame-level aggregation with NetVLAD or GhostVLAD

layer. This paper has similarities with the previous work i.e.

speaker identification and verification, however the objec-

tive is different: We evaluate and provide an answer about

the effect of multiple languages on speaker identification

and verification strategies in the wild. To this end we pro-

pose a dataset instrumental for answering such questions.

2.3. Related Datasets

There are various existing datasets for multilingual

speaker recognition task but they are not instrumental to

answer Q1/Q2 due to at least one of the following rea-

sons: i) they are obtained in constrained environment [13];

ii) they are manually annotated so limited in size; iii) not

freely available [8]; iv) not audio-visual [13, 21] v) missing

language annotations [33, 20, 34]. A comparison of these

dataset with our proposed MAV-Celeb dataset is provided

in Table 1.

3. Dataset Description

Multilingual Audio-Visual MAV-Celeb dataset provide

data of 154 celebrities in 3 languages (English, Hindi,

Urdu). These three languages have been selected because of

several factors: i) They represent approximately 1.4 Billion

bilingual/trilingual people; ii) The population is highly pro-

ficient in two or more languages; iii) There is a relevant cor-

pus of different media that can be extracted from available

online repositories (e.g. YouTube). The collected videos

cover a wide range of unconstrained, challenging multi-

speaker environment including political debates, press con-

ferences, outdoor interviews, quiet studio interviews, drama

and movie clips.

It is also interesting to note that the visual data spans

over a vast range of variations including poses, motion blur,

background clutter, video quality, occlusions and lighting

conditions. In addition, videos are degraded with real-world

noise like background chatter, music, overlapping speech

and compression artifacts. Fig. 2 shows some audio-visual

samples while Table 2 shows statistics of the dataset. The

dataset contains 2 splits English–Urdu (EU) and English–

Hindi (EH) to analyze performance measure across multiple

3



Figure 2. Audio-visual samples selected from proposed dataset. The visual data contains various variations such as pose, lighting condition

and motion. The green block contains information of celebrities speaking English and the red block presents data of the same celebrity in

Urdu.

languages. The pipeline followed in creating the dataset is

discussed in Appendix A.

4. Face-voice Association

We introduced a cross-modal verification approach to

analyze face-voice association across multiple languages

using MAV-Celeb dataset in order to answer the question:

Q1. Is face-voice association language independent?

For example, consider a model trained with faces and

voice samples of one language. At inference time, the

model is evaluated with faces and audio samples of same

language and a completely unheard language. This experi-

mental setup provides a foundation to analyze association

between faces and voices across languages to answer Q1

with a cross-modal verification method. Therefore, we

extract face and voice embedding from two subnetworks

trained on VGGFace [38] and voice samples from MAV-

Celeb dataset respectively. Previous works showed that

the faces and voices subnetworks can be trained jointly to

bridge the gap between the two [25, 31]. However, we built

a shallow architecture on top of face and voice embedding

to reduce the gap between them to establish baseline

on MAV-Celeb dataset. The approach is inspired from the

previous work on images and text [48]. The details of these

sub networks and shallow architecture are as follow:

Face Subnetwork – The face subnetwork is implemented

using the VGG-Face CNN descriptor [38]. The input to

the face subnetwork is an RGB image, cropped from the

source frame to include only the face region and resized to

256 × 256. The final fully connected layer of the network

produce embedding for every face input.

Voice Subnetwork – Nagrani et al. [34] introduced

VGG-Vox network to process audio information. The

network is trained with ‘softmax’ loss function in a typical

classification scenario. In the current work, we configure

the network to produce embedding from the fc7 layer.

Cross-modal Verification – Finally, we learn a face-voice

association for cross-modal verification approach using

a two stream neural network with two layers of nonlin-

earities on top of the face and voice embedding. Fig. 3

shows the Two-Branch shallow architecture along with the

pre-trained subnetworks. The shallow architecture consists

of two branches, each composed of fully connected layer

with weight matrices A1, V 1 and A2, V 2. In addition,

layers are separated by Rectified (ReLU ) followed by L2
normalization.

4



Figure 3. Cross-modal verification network configuration. The left side represents audio and face sub networks trained separately. After-

wards, audio and face embedding is extracted and fed to train a shallow architecture represented on the right side.

Loss Function – Given a training face fi, let Y +

i and

Y −

i represent sets of positive and negative voice samples

respectively. We impose the distance between fi and each

positive voice sample yj to be smaller than the distance

between fi and each negative voice sample yk with margin

m:

d (fi, yj) +m < d (fi, yk) ∀yj ∈ Y +

i , ∀yk ∈ Y −

i . (1)

Eq. (1) is modified for a voice yi′ :

d (fj′ , yi′) +m < d (fk′ , yi′) ∀fj′ ∈ X+

i′ , ∀fk′ ∈ X−

i′ ,

(2)

where X+

i′ and X−

i′ represents the sets of positive and neg-

ative face for yi′ .

Finally, constraints are converted to the training objec-

tive using hinge loss. The resulting loss function is given

by:

L(X,Y ) =
∑

i,j,k

max [0,m+ d (fi, yj)− d (fi, yk)]

+ λ1

∑

i′,j′,k′

max [0,m+ d (fj′ , yi′)− d (fk′ , yi′)]

+ λ2

∑

i,j,k

max [0,m+ d (fi, xj)− d (fi, xk)]

+ λ3

∑

i′,j′,k′

max [0,m+ d (yi′ , yj′)− d (yi′ , yk′)] .

(3)

The shallow architecture configured with the loss func-

tion produce joint embedding of face and voice to study

face-voice association across multiple languages using the

proposed dataset. The hyperparameter λ1 is fixed to 2. Sim-

ilarly, λ2 and λ3 controls the neighborhood constraint and

values are set to 0.1 or 0.2 respectively [48]. The distance

d is fixed to be the Euclidean distance. In addition, triplets

are selected within the mini-batch only.

4.1. Experimental Protocol

We propose an evaluation protocol for a cross-modal ver-

ification method in order to answer Q1. The aim of cross-

modal verification task is to verify if an audio sample and

a face image belong to the same identity or not based on a

threshold value. We report performance on a standard veri-

fication metric i.e. Equal Error Rate (EER).

The MAV-Celeb dataset is divided into train and test

splits consisting of disjoint identities from the same

language typically known as unseen-unheard configura-

tion [31, 32]. Fig. 4 shows evaluation protocol during train-

ing and testing stages. At inference time, the network is

evaluated on a heard and completely unheard language.

The protocol is more challenging than previously known

unseen-unheard configuration due to the presence of an un-

heard language in addition to disjoint identities. The dataset

splits EU, EH contains 64–6, 78–6 identities for train and

test respectively.

4.2. Experiments and Results

In first set of experiments, we compare the performance

of the proposed Two-Branch network on a cross-modal ver-

ification application with previous state-of-the-art between

faces and voices [31, 35, 50]. We extracted face and voice

embedding from pretrained VGG-Face CNN descriptor and

VoxCeleb respectively. Finally, we train the Two-Branch

network for a cross-modal verification application on top

of face and voice embedding. Table 3 shows the result

along with previous state-of-the-art methods. It is clear that

the performance of our method is comparative with state-

of-the-art methods, therefore we configure the approach to

evaluate cross-modal verification method across multiple

languages on MAV-Celeb dataset to establish baseline re-

sults.

In the second set of experiments, we evaluate Two-

Branch network on cross-modal verification method be-

tween faces and voices to measure performance on heard

and unheard configurations of MAV-Celeb dataset. Table 4
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Figure 4. Evaluation protocol to analyze the impact of multiple languages on association between faces and voices. Green and the red

blocks represent training and testing strategies. At test time, the network is evaluated on unseen-unheard configuration from the same

language (English) heard during training along with a completely unheard language (Urdu).

Method EER

Two-Branch (Proposed) 29.0

Learnable Pins-Scratch [31] 39.2

Learnable Pins-Pretrain [31] 29.6

Single Stream Network [35] 29.5

DIMNet [50] 24.5

Table 3. Cross-modal verification results with unseen-unheard

configuration on VoxCeleb dataset. (EER: lower is better)

EU

Method Configuration Eng. test Urdu test

(EER) (EER)

Two-Branch (Proposed)
Eng. train 45.1 48.3↓7.1

Urdu train 47.0↓6.3 44.3

EH

Eng. test Hindi test

(EER) (EER)

Two-Branch (Proposed)
Eng. train 35.7 36.7↓2.8

Hindi train 38.9↓4.2 37.3

Table 4. Cross-modal verification between face and voice across

multiple language on various test configurations of MAV-Celeb

dataset. The down arrow(↓) represents percentage decrease in per-

formance. (EER: lower is better)

shows the result of face-voice association across multi-

ple languages using the proposed evaluation protocol. We

observed performance drop across 2 splits, which clearly

demonstrate that the association between faces and voices

is not language independent. We observed that the perfor-

mance degradation is due to different data distributions of

the two languages, typically known as domain shift [44].

Moreover, the model does not generalize well to other un-

heard language. However, the performance is still better

than random verification, which is not trivial considering

the challenging nature and configuration of the proposed

evaluation protocol.

5. Speaker Recognition

This section investigates the performance of speaker

recognition across multiple languages to answer the fol-

lowing question.

Q2. Can a speaker be recognised irrespective of the

spoken language?

For example, consider a model trained with voice

samples of one language. At inference time, the model

is evaluated with audio samples of the same language

and a completely unheard language of the same speaker.

Therefore, the experimental setup provides a foundation for

speaker recognition across multiple languages to answer

Q2.

5.1. Baselines

We employed following 3 methods to establish baseline

results for speaker recognition across multiple languages

using MAV-Celeb dataset to answer Q2.

VGG-Vox – Nagrani et al. [34] introduced VGG-Vox net-

work by modifying VGG-M [10] model to adapt to the spec-

trogram input. Specifically, the fully connected fc6 layer of

VGG-M is replaced by two layers – a fully connected layer

and an average pool layer.

Utterance Level – Xie et al. [53] presented a deep neural

network based on NetVLAD or GhostVLAD layer that is

used to aggregate thin-ResNet architecture frame features.

SincNet – Ravanelli et al. [41] presented a deep neural

model to process raw audio samples and learn features. The

approach is based on parameterized sinc function for band-

pass filtering that is used to convolve the wavefor to extract

basic low-level features to be later processed by the deeper

layers of the network.

5.2. Experimental Protocol

We proposed an evaluation protocol in order to analyze

the impact of multiple languages on speaker recognition to

answer Q2. The MAV-Celeb dataset is divided into typical
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Figure 5. Evaluation protocol to analyze the impact of multiple languages on speaker recognition. Green and the red blocks represent

training and testing strategies respectively. At test time, the network is evaluated on the same language heard during training along with

completely unheard language of the same identities.

EU

Method Configuration Eng. test Urdu test

(Top-1 ) (Top-1)

VGGVox-Scratch
Eng. train 56.1 37.7↓32.8

Urdu train 45.4↓19.9 56.7

VGGVox-Pretrain(VoxCeleb1)
Eng. train 41.0 38.0↓7.0

Urdu train 46.0↑6.8 43.0

SincNet
Eng. train 32.5 19.3↓40.6

Urdu train 21.3↓47.0 40.2

EH

Eng. test Hindi test

(Top-1%) (Top-1%)

VGGVox-Scratch
Eng. train 60.2 55.0↓8.6

Hindi train 47.5↓13.6 54.7

VGGVox-Pretrain(VoxCeleb1)
Eng. train 43.0 32.0↓25.5

Hindi train 43.0↓10.4 48.0

SincNet
Eng. train 23.9 8.7↓63.6

Hindi train 14.4 ↓43.0 25.3

Table 5. Speaker identification results across multiple languages

on test configurations of MAV-Celeb dataset. The down arrow(↓)

and up arrow(↑) represents percentage decrease and increase in

performance. (Top-1: higher is better)

classification scenario for speaker identification. However,

different voice tracks of the same person are used for train,

validation and test [34]. The network is trained with one

language and tested with the same language and a com-

pletely unheard language of same identities. Moreover,

the dataset is split into disjoint identities for speaker veri-

fication [34]. Fig. 5 shows evaluation protocol for speaker

recognition across multiple languages. The protocol is con-

sistent with previous studies on human subjects for speaker

identification [39]. For identification and verification, we

employed Top-1 accuracy and EER metrics to report per-

formance.

5.3. Experiments and Results

We evaluate the performance of speaker recognition

across multiple languages on 3 baseline methods. Table 5

shows speaker identification performance on 2 splits (EU,

EH) of MAV-Celeb dataset. We note that the performance

drop occurred on a completely unheard language across all

baseline methods for both splits. The speaker identification

models (VGG-Vox, SincNet) do not generalize well on un-

EU

Method Configuration Eng. test Urdu test

(EER) (EER)

VVGVox-Scratch
Eng. train 36.5 41.5↓13.7

Urdu train 40.3↓3.0 39.1

Utterance Level-Scratch
Eng. train 39.9 45.5↓14.0

Urdu train 42.5↓10.3 38.5

EH

Eng. test Hindi test

(EER) (EER)

VVGVox-Scratch
Eng. train 29.6 37.8↓27.7

Hindi train 32.7↓15.9 28.2

Utterance Level-Scratch
Eng. train 34.9 40.6↓16.3

Hindi train 42.7↓18.9 35.9

Table 6. Speaker verification results across multiple languages

on various test configurations of MAV-Celeb dataset. The down

arrow(↓) represents percentage decrease in performance. (EER:

lower is better)

heard language and is overfitted on a particular language.

However, its performance is quantitatively better than ran-

dom classification on unheard language. Based on these re-

sults, we conclude that speaker identification is a language

dependent task. Furthermore, these results are inline with

the previous studies which show that human’s speaker iden-

tification performance is higher on people speaking familiar

language than people speaking unknown language [39].

Similarly, Table 6 shows speaker verification perfor-

mance on 2 splits (EU, EH) of MAV-Celeb dataset. We

note that performance drop occurred on a completely un-

heard language for EU and EH across three baseline meth-

ods. Therefore, speaker verification is also not language

independent.

6. Conclusion

In this work, effect of language is explored on cross-

modal verification between faces and voices along with

speaker recognition tasks. A new audio-visual dataset con-

sisting of 154 celebrities is presented with language level

annotation. The dataset contains 2 splits having same set

of identities speaking English/Urdu and English/Hindi. In

the cross-modal verification experiment by changing train-
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Figure 6. Data collection pipeline. It consists of two blocks with upper block download static images while the bottom block download

and process videos from YouTube.

ing and test language, performance drop is observed indi-

cating that face-association is not language independent. In

case of speaker recognition, similar drop in performance is

observed, thus concludes that speaker recognition is also

language dependent task. The reason in performance is due

to the domain shift caused by two different languages.

A. Dataset Collection Pipeline

In this section we present a semi-automated pipeline in-

spired by Nagrani et al. [34] for collecting the proposed

dataset. The pipeline is shown in Fig. 6 and various stages

are discussed below.

Stage 1 – List of Persons of Interest: In this stage, candi-

date list of Persons of Interest (POIs) is generated by scrap-

ing Wikipedia. The POIs cover over a wide range of iden-

tities including sports persons, actors, actresses, politicians,

entrepreneurs and singers.

Stage 2 – Collecting list of YouTube links: In this

step we used crowd-sourcing to collect lists of YouTube

videos. Keywords like “Urdu interview”, “English Inter-

view”,“public speech English”, “public speech Urdu” are

appended to increase the likelihood that search results con-

tain an instance of POI speaking. The links of search results

are stored in text files. Videos are then automatically down-

loaded using the links from these text files.

Stage 3 – Face tracks: In this stage, we employed joint face

detection and alignment using Multi-task Cascaded Convo-

lutional Networks (MTCNN) for face detection and align-

ment [54]. MTCNN can detect faces in extreme conditions,

and different poses. After face detection and alignment,

shot boundaries are detected by comparing color histograms

across consecutive frames. Based on key frames from shot

boundaries and detected faces, face tracks are generated.

Stage 4 – Active speaker verification: The goal of this

stage is to determine the visible speaking faces. We carried

out this stage by using ‘SyncNet’ which estimates the corre-

lation between mouth motion and audio tracks [12]. Based

on scores from this model, face tracks with no visible speak-

ing faces, voice-over and background speech are rejected.

Stage 5 – Static Images: In this stage, static images are au-

tomatically downloaded using Google Custom Search API

based on list of POIs obtained from stage 1. MTCNN is

employed to detect and align static face images. A clus-

tering mechanism based on a popular density-based cluster-

ing algorithm DBSCAN [16] is used to remove false posi-

tives from the detected and aligned faces. Interestingly, DB-

SCAN does not require a priori specification of the number

of clusters in the data. Intuitively, the clustering algorithm

groups faces of an identity that are closely packed together.

Stage 6 – Face tracks classification: In this stage, active

speaker face tracks are classified if they belong to POI or

not. We trained an Inception ResNet V1 network [46] on

VGGFace2 dataset [9] with center loss [51] to extract dis-

criminative embedding from face tracks and static images.

A classifier is trained based on Support Vector Machine

with static face embedding. Finally, classification is per-

formed using a score with a threshold obtained from each

face track.
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