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Abstract

We consider the problem of Visual Question Answering

(VQA). Given an image and a free-form, open-ended, ques-

tion, expressed in natural language, the goal of VQA system

is to provide accurate answer to this question with respect

to the image. The task is challenging because it requires si-

multaneous and intricate understanding of both visual and

textual information. Attention, which captures intra- and

inter-modal dependencies, has emerged as perhaps the most

widely used mechanism for addressing these challenges. In

this paper, we propose an improved attention-based archi-

tecture to solve VQA. We incorporate an Attention on At-

tention (AoA) module within encoder-decoder framework,

which is able to determine the relation between attention re-

sults and queries. Attention module generates weighted av-

erage for each query. On the other hand, AoA module first

generates an information vector and an attention gate using

attention results and current context; and then adds another

attention to generate final attended information by multiply-

ing the two. We also propose multimodal fusion module to

combine both visual and textual information. The goal of

this fusion module is to dynamically decide how much in-

formation should be considered from each modality. Exten-

sive experiments on VQA-v2 benchmark dataset show that

our method achieves better performance than the baseline

method.

1. Introduction

Different perceptual modalities can capture complemen-

tary information about aspects of an object, event or activity.

As a result, multimodal representations are often shown to

perform better in inference. Multimodal learning is widely

used in the computer vision and forms basis for many

visuo-lingual tasks, including image captioning [1, 23, 32],

image-text matching [14, 30] and visual question answer-

ing [2, 17]). Visual question answering (VQA) is perhaps

the most challenging, requiring detailed and intricate im-

age and textual understanding (see Figure 1). Moreover,
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Figure 1: Illustration of our proposed framework. Given

an image and a query question, we first extract visual and

language features respectively. Our proposed Modular Co-

Attention on Attention Network (MCAoAN) takes the fea-

tures as inputs and refines both features jointly. The multi-

modal attention fusion fuses the refined visual and language

features and then predicts final answer.

questions can be free-form and open-ended which requires

VQA system to perform, simultaneously, a large collection

of artificial intelligence tasks (e.g., fine-grained recognition,

object detection, activity recognition and visual common

sense reasoning) to predict an accurate answer [2]. The an-

swer format can also take different forms: a word, a phrase,

yes/no, multiple choice, or a fill in the blank [28].

Inspired by the recent advantages of deep neural net-

work, attention based approaches are widely used to solve

many computer vision problems including VQA [1, 2, 36].

An attention based approach for VQA was first introduced

by Shih et al. [27] and nowadays it has become an es-

sential component in most of the architectures. Recent

works [17, 36] include co-attention architecture to gener-

ate simultaneous attention in both visual and textual modal-

ity which increases prediction accuracy. The limitation of

these, more global, co-attention methods, is their inability

to model interactions and attention among individual image

regions and segments of text (e.g., at the word token level).

To address this problem, dense co-attention networks

(e.g., BAN [11], DCN [21]) have been proposed, where

each image region is able to interact with any (and all)

words in the question. As a result, the models can get bet-

ter understanding and reason about the image-question re-

lationships; this, in turn, results in improved VQA perfor-
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mance. However, the bottleneck of these dense co-attention

networks is the lack of self-attention within each modality,

e.g., region-to-region relationships in the image and word-

to-word relationships in the question [34].

To overcome this, Yu et al. [34] proposed a deep Modu-

lar Co-Attention Network (MCAN) which consists of cas-

caded Modular Co-Attention (MCA) layers. MCA layer is

obtained by combining two general attention units: self-

attention (SA) and guided attention (GA). SA is able to

capture intra-modal interactions (e.g., region-to-region and

word-to-word) while GA can capture cross-modal interac-

tions (e.g., word-to-region and region-to-word) by using

multi-head attention architecture. While expressive and

highly flexible, this form of attention still has a limitations.

Specifically, the result is always a weighted combination

of value pairs among which the model is attending. This

maybe problematic when there is no closely related context

over which the model is attending (e.g., a word for which

no context word or image region exists). In such a case at-

tention would result in a noisy or, worse, distracting output

vector that can negatively impact the performance.

Motivated by Huang et al. [10], in this paper we lever-

age the idea of Attention on Attention (AoA) module to

address the above mentioned limitation. The AoA mod-

ule is cascaded several times to form a novel Modular

Co-Attention on Attention Network (MCAoAN) which is

an improved extension to Modular Co-Attention Network

(MCAN) [34]. The AoA module generates an information

vector and an attention gate by using two separate linear

transformations [10] which is similar to GLU [6]. Atten-

tion results and query context are concatenated together and

through a linear transformation we can obtain an informa-

tion vector. Similarly through another linear transformation

followed by a sigmoid activation function we can obtain an

attention gate. By applying element-wise multiplication, we

finally obtain attended information which builds relation be-

tween multiple attention heads and keep only the most re-

lated one discarding all irrelevant attention results. As a

result, the model is able to predict more accurate answer.

We also propose a multi-modal fusion mechanism to dy-

namically modulate modality importance while combining

image and language features.

Contributions. Our contributions are:

• We introduce an Attention on Attention module to

form a Modular Co-attention on Attention Network

(MCAoAN). MCAoAN captures intra- and inter-

modal attention within and among visual and language

modalities as well as able to mitigate information flow

from irrelevant context.

• We also present a multimodal attention-based fusion

mechanism to incorporate both image and question

features. Our fusion network dynamically decides how

to weight each modality to generate final feature rep-

resentation to predict the correct answer.

• Extensive experiments on the VQA-v2 benchmark

dataset [8] illustrate that the proposed method out-

performs competitors, establishing significantly better

performance than the baseline methods in visual ques-

tion answering.

2. Related Works

In this section, we first briefly describe existing ap-

proaches for visual question answering and later review

classical approaches to fuse image and question features.

2.1. Visual Question Answering

Antol et al. [2] first introduced the task of visual question

answering (VQA), by combining computer vision with nat-

ural language processing, to mimic human understanding

about a particular visual environment. The model used a

CNN for feature extraction and an LSTM for language pro-

cessing. The features were combined using element-wise

multiplication in service of classifying the answers.

Over the last few years, a large number of deep neu-

ral networks have been proposed to improve the perfor-

mance on VQA. Moreover, attention-based approaches be-

came widely used to solve various sequence learning tasks,

including VQA. The goal of attention module is to identify

the most relevant part of image or textual content. Yang et

al. [33] introduced an attention network to support multi-

step reasoning for the image question answering task. A

combination of bottom-up and top-down attention mech-

anism was presented in [1]. A set of salient image re-

gions were proposed by bottom-up attention mechanism us-

ing Faster R-CNN [24]. On the other hand, task specific

context was used to predict an attention distribution by top-

down mechanism over the image regions. A model-agnostic

framework is proposed by Shah et al. [26] which relies on

cycle consistency to learn VQA model. Their model not

only answers the posed question, but also generates diverse

and semantically similar variations of questions conditioned

on the answer. They enforce network to match the predicted

answer with the ground truth answer to the original ques-

tion. Wu et al. [31] propose a differential networks (DN),

a novel plug and play module where differences between

pair-wise features are used to reduce noise and learn inter-

dependency between features. To extract image and text

feature, Faster R-CNN [24] and GRU [5] are used respec-

tively. Both features are refined by a differential module

and finally combined to predict the answers.

Recently, co-attention based approaches are becoming

popular. The goal of co-attention model is to learn image

and question attention simultaneously. Lu et al. [17] intro-

duced a co-attention network that jointly reasons about im-
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age and question attention in a hierarchical fashion. Yu et

al. [36] proposed an architecture to reduce irrelevant fea-

tures by applying self attention for question embedding and

question conditioned attention for image embedding. Multi-

modal attention is proposed in [18, 25] to focus on images,

questions or answers feature simultaneously. Recently, bi-

linear attention is proposed in [7, 12, 35] to locate more ac-

curate objects. A multi-step dual attention for multimodal

reasoning and matching is presented in [20]. One major

limitation of these co-attention based approaches is lack of

dense interactions between different modalities. To over-

come this limitation, dense co-attention based methods are

proposed in [34, 11]. But dense co-attention can generate

irrelevant vector in scenarios where nothing is related to

the query. To overcome the problem, motivated by [10], in

this paper we combine Attention-on-Attention (AoA) mod-

ule with Modular co-attention network to improve existing

architecture. Our revised attention mechanism delivers sig-

nificantly better performance in VQA.

2.2. Fusion Strategies for VQA

To combine multi-modal features, sophisticated fusion

technique is required. Depending on the type of fusion,

existing VQA models can be divided into two categories:

linear and bilinear [31]. Linear models use simple fusion

approaches to combine image and question features. Sim-

ple element-wise summation and element-wise multiplica-

tion are used in [17, 33] and [15, 20] respectively. On

the other hand, bilinear model uses more fine-grained ap-

proache to fuse image and question features. Fukui et al. [7]

used outer product to fuse multi-modal features. A low-

rank projection followed by an element-wise multiplication

is used by Kim et al. [12]. A Multi-modal Factorized Bi-

linear (MFB) pooling approach with co-attention learning

is proposed in [35]. Wu et al. [31] proposed a Differen-

tial Networks (DN) based Fusion (DF) approach which first

calculates differences between image and textual feature el-

ements and then combines the differential representations

to predict final answer.

In this paper, we propose an attention-based multi-modal

fusion to combine image and question features by dynam-

ically deciding how much weight to put on each modality;

the weighted features are used to predict final answer.

3. Our Approach

Motivated by [10], in this paper we present Modu-

lar Co-Attention on Attention Network (MCAoAN) mod-

ule which is an extension of Modular Co-Attention Net-

work (MCAN) [34]. MCAoAN consists of Modular Co-

Attention on Attention (MCAoA) layer which is a compo-

sition of two primary attention units: Self Attention on At-

tention (SAoA) and Guided Attention on Attention (GAoA)

unit. In this section, we first discuss SAoA and GAoA units

in Section 3.1 followed by Modular Co-Attention on At-

tention (MCAoA) layer in Section 3.2. Lastly we present

our MCAoAN with multimodal fusion mechanism in Sec-

tion 3.3 and Section 3.4 respectively.
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Figure 2: Illustration of the two basic attention units. (a)

Self Attention on Attention block (SAoA), which takes in-

put feature X and output attended feature Z for X; and (b)

Guided Attention on Attention block (GAoA),which takes

two input features X and Y and generate attended feature Z

for the input X guided by Y feature. Here X and Y repre-

sents image and question features respectively.
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Figure 3: Illustration of Modular Co-Attention on Atten-

tion (MCAoA) layer. It consists of two attention units: Self

Attention on Attention (SAoA) unit and Guided Attention

on Attention (GAoA) unit where Y and X denotes question

and image features respectively.

3.1. SAoA and GAoA Units

Our SAoA unit (see Figure 2(a)) is an extension of multi-

head self attention mechanism [34]. Multi-head attention

consists of N parallel heads where each head can be repre-

sented as a scaled dot product attention function as follows:

fatt = f(Q,K, V ) = Softmax

(

QK
√
d

)

V, (1)

where attention function f(Q,K, V ) operates on Q, K and V

corresponds to query, key and value respectively. The out-

put of this attention function is the weighted average vector

V ′. To do so, first we calculate the similarity scores be-

tween Q and K; and normalize the scores with Softmax.

The normalized scores are then used together with V to gen-

erate weighted average vector V ′. Here, d is the dimension

of Q and K; both dimensions are the same.

The multi-head attention module always generates

weighted vector, no matter whether it finds any relation be-

tween Q and K/V or not. So this approach can easily mis-

lead or generate wrong answer for VQA. Therefore, follow-

ing [10], we incorporate another attention function over

the multi-head attention module to measure the relation be-

tween attention results (V ′) and the query(Q). The final

AoA block will generate an information vector (I) and at-

tention gate (G) through two separate linear transformations

which can be represented as follows:

I = WQQ+WV′V′ + bI, (2)

G = σ(WGQ+WG′V′ + bG), (3)

Here, WQ, WV′ , WG, WG′ ∈ R
d×d and bI, bG ∈ R

d.

d is the dimension of Q and V ′ where V ′ = fatt and σ de-

notes sigmoid function. AoA block adds another attention

via element-wise multiplication between both information

vector and attention gate. Moreover, SAoA uses a point-

wise feed-forward layer after the AoA block, considering

only input features X = [x1, x2, ..., xm] ∈ R.

Following [34], we also propose another attention unit

called guided attention on attention (GAoA) unit (see Fig-

ure 2(b)). Unlike SAoA unit, GAoA uses AoA block and

a point-wise feed-forward layer along with two input fea-

tures X and Y = [y1, y2, ..., yn] ∈ R where X is guided

by Y . In both attention unit, feed forward layer takes

the output feature of AoA block and apply two fully con-

nected layers along with ReLU and dropout function (i.e.

FC(4d)− ReLU− dropout(0.1)− FC(d)).

3.2. MCAoA layers

Modular Co-Attention on Attention (MCAoA) layer (see

Figure 3) consists of two attention units discussed in Sec-

tion 3.1. Here X and Y represents image and question fea-

ture respectively. MCAoA layer is designed to handle mul-

timodal interactions. We use cascaded MCAoA layers, i.e.,

output from previous MCAoA is fed as input to the next

MCAoA layer. For both input features, MCAoA layer first

uses two separate SAoA units to caption intra-modal inter-

actions for X and Y separately and then uses GAoA unit

to capture inter-modal relationships where Y guides X fea-

ture.

3.3. MCAoAN

In this section, we discuss our proposed modular co-

attention on attention network (MCAoAN) (see Figure 4)

which is motivated by [34]. First we have to pre-process

the inputs (i.e., image and query question) into appropriate

feature representations. We use Faster R-CNN [24] with

ResNet-101 as its backbone which is pretrained on Visual

Genome dataset [13] to process input images. The inter-

mediate feature of the detected object from Faster R-CNN

is considered as visual feature representation. Following

[34], we also consider a threshold value to obtain dynamic

number of detected objects, e.g., xi is corresponds to i-th

object feature. The final image feature is represented by a

feature matrix X .

The input query question is first tokenized and later

trimmed to maximum 14 words. The pre-trained GloVe em-

bedding [22] is used to transformed each word into a vector

representation. This results a final representation of size

n× 300 for a sequence of words where n ∈ [1, 14] denotes

the number of word in the sequence. The word embedding

is fed to a one layer LSTM network [9] and generate final

query feature matrix Y by capturing the output features of

all words.

Both input features are passed to the encoder-decoder

module which contain cascaded MCAoA layers. Similar

to [34], encoder learns attention question features YL by

stacking L number of SAoA units. On the other hand,

decoder learns attended image features XL by stacking L
number of GAoA units by using query features YL.
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Figure 4: Illustration of overall architecture of proposed Modular Co-Attention on Attention Network (MCAoAN).

The network takes image and question feature as inputs. Image features are the intermediate features extracted from a Faster

R-CNN [24] model and each work from the question is transformed to a vector using 300-D GloVe word embedding [22]

followed by a LSTM unit [9]. Both features are fed to an Encoder-Decoder module consists of cascaded MCAoA layers

and generate XL and YL feature representations. XL and YL denotes image and question feature respectively and combined

together to generate desire answer by a multi-modal fusion module.

3.4. Multimodal Fusion.

The outputs (i.e image features XL = [x1, x2, ..., xm] ∈
R

m×d and question features YL = [y1, y2, ...., yn] ∈
R

n×d) from encoder-decoder contains attended informa-

tion about image and query regions. Therefore, we

need to apply an appropriate fusion mechanism to com-

bine both feature representation. In this paper, we pro-

pose two kind of multi-modal fusion networks (see Fig-

ure 5) to aggregate features of both modality: (1) Multi-

modal Attention Fusion and (2) Multi-modal Mutan Fu-

sion. Following [34], we first use two layers of MLP (i.e.

FC(d)- ReLU - Dropout(0.1) - FC(1)) for both XL and YL;

and generate attended features X ′ and Y ′ as follows:

X′ =

m
∑

i=1

Softmax(MLP(XL)) xi, (4)

and

Y′ =

n
∑

i=1

Softmax(MLP(YL)) yi, (5)

Now we have rich attended features from both modality

and at the same time each modality should use to gener-

ate attention with one another for better prediction. There-

fore, we have to decide, how much information should use

from each modality. Following [19], in multi-modal atten-

tion fusion, we apply concatenation on X′ and Y′ followed

by a series of fully-connected layers (i.e., FC(1024) −
Dropout(0.2) − FC(512) − Dropout(0.2) − FC(2) −
Softmax) (see Figure 5 (a)). The output of these opera-

tions is a 2-dimensional feature vector that corresponds to

the importance of two modality for answer prediction. Af-

ter that, we generate weighted average of attended feature

(i.e. A and B) for each modality similar to eq. 4 and 5. A
and B is combined with attended visual and textual features

X ′ and Y ′. Finally, fused feature is fed to a LayerNorm

L All Other Y/N Num

L = 2 81.88 74.47 96.11 69.00

L = 4 83.34 76.48 96.65 71.00

L = 6 83.45 76.45 96.83 71.44

L = 8 82.20 75.42 95.87 68.53

Table 1: Experimental results with different L. Here we

use a range of values from 2 to 8 on validation set. Best

performance is achieved with L = 6. Therefore, in this

paper we choose L = 6 for our work.

to stabilize the training followed by a fully connected layer

and sigmoid activation to generate predicted answer Z. We

use binary cross-entropy loss (BCE) to train the network.

On the other hand, we also leverage a powerful fusion

technique, MUTAN fusion [3], to integrate image and ques-

tion features (see figure 5 (b)) in multi-modal mutan fusion.

The network is similar to the above model but replacing the

concatenation to MUTAN fusion with fully-connected lay-

ers (i.e., Dropout(0.2)− FC(2)− Softmax).

4. Experiments

In this section we first describe the dataset (see Sec-

tion 4.1) used in our experiments. Then we present experi-

mental setup and implementation details in Section 4.2. In

Section 4.3, we include a number of ablations to show the

effectiveness of our proposed model. Lastly, we discuss ex-

perimental results in Section 4.4.

4.1. Datasets

To evaluate our method, in this paper we use VQA-v2

benchmark dataset [8] which consists of images from MS-

COCO dataset [16] with human annotated question-answer

pairs. There are 3 questions for each image and 10 answers
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Figure 5: Illustration of proposed multimodal fusion network. (a) Multi-modal attention fusion where we apply simple

concatenation to combine initial attended features from both image and language modalities and apply series of fully con-

nected layer to generate weighted features. The final weighted features represents how much importance should we give on

each modality. (b) Multi-modal mutan fusion, another version of multi-modal fusion where we incorporate mutan fusion

instead of concatenation keeping rest of the network similar to multi-modal attention fusion.

Methods All Other Y/N Num

MCAN [34] 81.20 73.73 95.86 67.30

Ours (MCAoAN) 82.91 75.92 96.47 70.38

Ours (MCAoAN + Mutan) 83.00 76.13 96.36 70.42

Ours (MCAoAN + Multi-modal Attention Fusion) 83.25 76.51 96.58 70.40

Table 2: Visual Question Answering results using VQA-v2 dataset. Comparison of our proposed approach with state-

of-the-art method on validation set. Here we also show each component in our proposed method contribute to increase the

performance of VQA system.

Methods All Other Y/N Num

Bottom-up [29] 65.32 56.05 81.82 44.21

MFH [36] 68.76 59.89 84.27 49.56

BAN [11] 69.52 60.26 85.31 50.93

BAN+Counter [11] 70.04 60.52 85.42 54.04

MuRel [4] 68.03 57.85 84.77 49.84

MCAN [34] 70.63 60.72 86.82 53.26

Ours (MCAoA) 70.90 60.97 87.05 53.81

Table 3: Experimental results with other state-of-the-art

models on Test-dev.

Methods All Other Y/N Num

Bottom-up [29] 65.67 56.26 82.20 43.90

BAN+Counter [11] 70.35 - - -

MuRel [4] 68.41 - - -

MCAN [34] 70.90 - - -

Ours (MCAoA) 71.14 61.18 87.25 53.36

Table 4: Experimental results with other state-of-the-art

models on Test-std.

per questions. The dataset has three parts: train set (80k im-

ages with 444k QA pairs), validation set (40k images with

214k QA pairs) and test set (80k images with 448k QA

pairs). Moreover, test set is splited into two subsets: test-

dev and test-standard where both are used for online eval-

uation performance. For measuring the overall accuracy,

three types of answer are considered: Number, Yes/No and

other.

4.2. Experiment and Implementation Details

To evaluate our method, we follow the experimental pro-

tocol proposed by [34]. The number of head in multi-head

attention is 8. The latent dimension for both multi-head and

AoA block is 512. Therefore, the dimension of each head is

512/8 = 64. The size of the answer vocabulary is 3129.

To train the MCAoA network we use Adam solver

with β1 = 0.9 and β2 = 0.98. We train our network

up to 13 epoch with batch size 64 which takes around

24hrs to complete the training. The learning rate set to

min(2.5Te−5, 1e−4) where T represents current epoch.

Learning rate starts to decay by 1/5 every 2 epochs when

10 ≤ T .

4.3. Ablation studies

We run a number of experiments to show the effective-

ness of our proposed method and results of these experi-

ments are presented in Table 1 and 2.

Number of Cascaded Layer (L): MCAoA layers consist

of L number of stacked SAoA and GAoA units. From Ta-

ble 1, we can see, initially, with the increasing value of L,

performance of the model is also increasing – up to L = 6.

After that the performance is saturated. We use L = 6 in

our final model. We use validation set for this experiment

with the default hyperparameters of [34].
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                   GT
Q: What color is the building
the background?
A: Gray
Q: What time is it?
A: 7:35
Q: Are there a lot of people
milling around?
A: No
                 MCAN [34]
Q:  What color is the building
the background?
A: White
Q: What time is it?
A: Noon
Q: Are there a lot of people
milling around?
A: No
                  Ours
Q: What color is the building
the background?
A: Gray
Q: What time is it?
A: Afternoon
Q: Are there a lot of people
milling around?
A: No

                  GT
Q: How big is the plane?
A: Fairly large
Q: Is that an airplane in the
image?
A: Yes
Q: Is the water rippling?
A: No

                 MCAN [34]
Q: How big is the plane?
A: Small
Q: Is that an airplane in the
image?
A: Yes
Q: Is the water rippling?
A: No

                  Ours
Q: How big is the plane?
A: Large
Q: Is that an airplane in the
image?
A: Yes
Q: Is the water rippling?
A: No

                  GT
Q: What is the metal object on the
man's left shirt sleeve?
A: Ring
Q: What color is the man's
jacket?
A: Black
Q: How many buttons are on his
sleeve?
A: 2
                 MCAN [34]
Q: What is the metal object on the
man's left shirt sleeve?
A: Tie
Q: What color is the man's
jacket?
A: Black
Q: How many buttons are on his
sleeve?
A: 2
                  Ours
Q: What is the metal object on the
man's left shirt sleeve?
A: Ring
Q: What color is the man's
jacket?
A: Black
Q: How many buttons are on his
sleeve?
A: 2

                  GT
Q: What are these made of?
A: Cloth
Q: Is the bear in its pajama's?
A: Yes
Q: Where is the jug with the
stopper?
A: In bears' arms

                 MCAN [34]
Q: What are these made of?
A: Cotton
Q: Is the bear in its pajama's?
A: Yes
Q: Where is the jug with the
stopper?
A: On table

                  Ours
Q: What are these made of?
A: Cloth
Q: Is the bear in its pajama's?
A: Yes
Q: Where is the jug with the
stopper?
A: On table

                  GT
Q: What is in the stacked
containers?
A: Mustard
Q: What is the fork made of?
A: Plastic
Q: Was this food packed to be
eaten later?
A: Yes

                 MCAN [34]
Q: What is in the stacked
containers?
A: Food
Q: What is the fork made of?
A: Plastic
Q: Was this food packed to be
eaten later?
A: Yes

                  Ours
Q: What is in the stacked
containers?
A: Mustard
Q: What is the fork made of?A:
Plastic
Q: Was this food packed to be
eaten later?
A: Yes

Figure 6: Illustration of some qualitative results from validation set using MCAN [34] and our method. First we present

ground-truth (GT) annotations followed by the predicted answers of state-of-the-art method and our proposed method. Here

Q and A represents query question and generated answer respectively. Moreover, red text indicates predicted wrong answer

for the corresponding question.

Effectiveness of Each Individual Component: In this

paper, our improved architecture has two important com-

ponents: (1) MCAoAN network which consists of SAoA

module and GAoA module and (2) Multi-modal fusion to

incorporate image and language features. Here, we describe

two different fusion mechanism : Mutan fusion and Multi-

modal attention fusion. Table 2 shows experimental results

of these individual components and compare with existing

MCAN [34] on validation set. From the table, we see that

incorporating SAoA and GAoA module with MCAN im-

proves the performance of VQA system.

Moreover, we argue that a sophisticated way to aggre-

gate language and visual features to support multi-modal

reasoning is essential to further boost the performance. Ta-

ble 2 also shows the comparison of different fusions with

the MCAoA only where the former achieves better perfor-

mance. More specifically, our proposed MCAoAN with

both multi-modal fusion modules outperforms the baseline

about 2% accuracy on the whole validation set. This shows

that the fusion module is important to combine vision and

language representations. The proposed both fusion mod-

ules are suitable for VQA tasks. Among them multi-modal

attention fusion performs the best. Beside that, Table 2 also

shows that each individual component within our proposed

method is important to increase the performance of VQA

system.

4.4. Experimental Results

We evaluate our model on VQA-v2 dataset and compare

with other state-of-the-art methods. We re-run the PyTorch

implementation provided by [34]1 and compare the results

with our proposed method. Table 3 and 4 shows experi-

mental results using test-dev and test-std respectively us-

ing online evaluation 2. Offline evaluation only supports on

validation split (see table 2). Figure 6, shows some quali-

tative results using our method on validation set. From the

experimental results, we can see that our proposed method

1https://github.com/MILVLG/mcan-vqa
2https : / / evalai . cloudcv . org / web / challenges /

challenge-page/163/overview
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Does the end table have
room on it? yes

0.999
0.001

Does the end table have
room on it? yes

0.5
0.5

Does the end table have room on it?
yes

Is the man smiling? yes
~1
~0

Is the man smiling? yes
0.5
0.5

Is the man smiling? yes

Is the little yellow vehicle a truck? no
~1
~0

Is the little yellow vehicle a truck? yes
0.5
0.5

Is the little yellow vehicle a truck? no

What type of bird is on the branch?
blue

0.01
0.99

What type of bird is on the branch?
blue joy

0.5
0.5

What type of bird is on the branch? blue

Figure 7: Qualitative results with multi-modal fusion. The first row is the input images, questions and ground truth

answers. The second row is the baseline model MCAN [34]. The third row is the proposed model, MCAoAN w/ multi-

modal fusion. The probabilities on the image and in front of the question represent the weight from each modality. We also

show the attention across bounding boxes and words. In the image, the brighter area with green bbox has higher weight. For

questions, the darker color of the word, the higher attention score.

Q: How many are there?
A: 7

Q: How many lights are on
the ceiling? 
A: 8

Q: What US state is on the wall
in the form of a plaque?
A:  california

Q: What is the cat trying to
catch? 
A: bird

Q: How many types of
vegetables are on the plate? 
A: 2

Figure 8: Illustration of some failure cases using our method. Here Q and A represents query question and predicted

wrong answer (mark as red) respectively.

outperforms other baseline methods on VQA. In Figure 7,

we also visualize multi-modal fusion to compare how cor-

rectly MCAN [34] and our proposed multi-modal attention

fusion can able to focus on image and question elements.

The brighter bounding-box along with green color within

the image and darker color in question represents higher

attention score. We can see that our proposed method is

able to focus more on correct answer. Beside that, Figure 8

shows typical failure cases using our method.

5. Conclusion

In this paper, we propose an improved end-to-end at-

tention based architecture for visual question answering.

Our proposed method includes modular co-attention on at-

tention module with multi-modal fusion architecture. In

this paper, we propose two version of multi-modal fu-

sion : multi-modal attention fusion and multi-modal mu-

tan fusion. Experimental results show that each component

within our model improve the performance of VQA sys-

tem. Moreover, The final network achieves significant per-

formance on VQA-v2 dataset.
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