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Abstract

In this paper, we propose a novel multi-stage deep learn-

ing methodology to accurately tackle the problem of hand

pose estimation. More specifically, we initially propose a

disentanglement stage to differentiate the significant pose-

specific information from the irrelevant background noise

and illumination variations of RGB images. Then, we in-

troduce a variational alignment stage to accurately align

the latent spaces of the pose-specific and the true hand pose

information, effectively improving the discrimination abil-

ity of the proposed methodology. Finally, we propose the

use of two loss terms to impose physiological and geomet-

rical kinematic constraints to the predicted hand poses, em-

powering the proposed methodology to avoid non-plausible

poses. During all stages, a novel injection decoder is intro-

duced, improving significantly the decoding accuracy of the

latent space. Extensive experimentation on two well-known

datasets (i.e., RHD and STB) validate the ability of the pro-

posed methodology to achieve accurate hand pose estima-

tion results, overcoming current state-of-the-art methods.

1. Introduction

3D hand pose estimation involves the prediction of

the position and orientation of the hand and fingers rela-

tive to a coordinate system, given an RGB or depth im-

age. It plays a crucial role in a wide range of application

fields, such as gesture recognition [1, 17], augmented re-

ality (AR) [18, 29], virtual reality (VR) [3, 5], avatar an-

imation [16, 35] and human computer interaction (HCI)

[21, 34]. Moreover, 3D hand pose estimation can be bene-

ficiary to the Deaf community, by being incorporated in au-

tomated sign language recognition and translation systems

[2, 15, 27, 35].

Conventionally, 3D hand pose estimation is performed

by processing depth images [25, 26, 37, 45]. The employ-

ment of RGB images as input data for 3D hand pose es-
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timation has recently started to gain attention [12, 32, 33,

36, 41, 47], due to the availability of large annotated RGB

datasets and the recent advances in Deep Neural Networks

(DNNs). However, leveraging RGB data for 3D hand pose

estimation can be really challenging due to the inherent am-

biguities that are usually present in RGB images, such as

difficulties in depth estimation, self-occlusions and back-

ground and illumination variations. Such ambiguities can

significantly downgrade the accuracy of 3D hand pose esti-

mation methods, therefore, the use of deep neural networks

with high generalization abilities is imperative.

To this end, recent hand pose estimation methods uti-

lize generative networks, such as Variational Autoencoders

(VAEs) [14] and Generative Adversarial Networks (GANs)

[8] that demonstrate tremendous learning capacity and gen-

eralization capabilities. VAEs and GANs are capable of

constructing highly descriptive latent spaces that can accu-

rately model input data and generalize on unseen data.In

this context, literature works [33, 36] aim at aligning the

RGB latent space with the ground truth pose latent space,

improving the accuracy of hand pose estimation models.

Nevertheless, the presence of the RGB context information

(e.g., illumination and background variations) can severely

degrade the performance of such methods. To this end, re-

cent works [41, 9] attempt to differentiate the meaningful

hand pose information from the irrelevant RGB context in-

formation by proposing new latent subspaces. However, the

accurate extraction of the meaningful pose information is a

challenging task, due to the the highly entangled nature of

the RGB images, while there is also the issue of restricting

the predicted poses to the space of humanly plausible ones.

Motivated by the need for an accurate alignment between

the RGB image space and the ground truth 3D hand pose

information, we propose a novel multi-stage methodology

to accurately infer the 3D hand poses from RGB images.

At the first stage, we employ an adversarial network to dis-

entangle the input RGB images into the pose-specific and

the RGB context latent subspaces, thus discriminating the

significant from the irrelevant information. At the second

stage, we employ variational mappers to align the pose-
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specific and the ground truth pose latent spaces, enhancing

in this way the prediction performance of the pose-specific

latent space. At the third stage, we use two loss terms

that impose physiological and geometrical constraints on

the predicted hand poses to avoid non-plausible ones. Fi-

nally, this work proposes a novel injection decoder that is

employed during all stages to boost the discrimination abil-

ity (especially during disentanglement) and the decoding

accuracy of the constructed latent spaces. To summarise,

the main contributions of this work are:

• We introduce a novel multi-stage hand pose estima-

tion methodology that achieves improved cross-modal

alignment between RGB images and ground truth 3D

hand poses. A GAN network initially disentangles the

meaningful pose-specific information from the RGB

images before variational mappers align the extracted

pose-specific latent subspace with the true 3D hand

pose latent space.

• We use two loss terms to refine the predicted hand

poses by imposing physiological and geometrical kine-

matic constraints. The first loss is based on the well-

known KCS representation [38, 39] and aims to regu-

late the predicted poses based on the length of the hand

bones, whereas the second loss imposes restrictions on

the relative position among the joints.

• We implement a novel injection decoder that can be

employed in any VAE framework to enhance the dis-

entanglement process, the discrimination ability of the

model and the decoding accuracy of the latent space.

The proposed decoder uses residual connections to

pass the latent space sample to the intermediate layers

of the decoder, improving the gradient flow.

• We conduct thorough experiments on two well-known

publicly available RGB datasets, RHD [47] and STB

[42], showcasing the superiority of the proposed

methodology against other state-of-the-art RGB-based

hand pose estimation methods.

2. Related Work

Methods on 3D hand pose estimation can be classified

into the following categories, depending on the employed

input modalities [6]: (i) Depth-based [20, 22, 30], (ii) RGB-

based [33, 36, 44] and (iii) Multimodal [7, 40, 46] ones.

In addition, hand pose estimation approaches can be fur-

ther subdivided into (a) Model-based [4, 11, 44] and (b)

Model-free [12, 33, 36] methods. Model-based approaches

attempt to fit the detected 3D hand points to a predefined

hand model (i.e., define the hand model parameters), while

Model-free approaches output raw 3d hand points. In this

work, we only focus on Model-free RGB-based approaches,

thus the remaining section reviews related previous works

that fall under this category.

Zimmerman et al. [47] introduced one of the first deep-

learning based methods to estimate 3D hand joint locations

from RGB images. Their framework consisted of three el-

ementary units: the first unit was responsible to locate the

hand region (HandSegNet), the second unit generated score

maps for each 2D keypoint (PoseNet) and the last unit re-

gressed 3D joint locations from the predicted 2D ones.

On the other hand, Iqbal et al. [12] presented a novel

2.5D pose representation. They employed an Hourglass net-

work [24] to extract latent 2D heatmaps and depth maps for

each keypoint in order to better address the depth ambigui-

ties residing in RGB images. In a similar manner, Moon et

al. [23] employed a ResNet network [10] to extract image

features and two upsamplers to estimate a 2.5D pose repre-

sentation for each hand, which then used to reconstruct the

3D hand pose.

Identifying the need for better generalization in hand

pose estimation, several authors employed generative net-

works for their excellent generalization and descriptive ca-

pabilities. Spurr et al. [33] proposed a cross-modal VAE-

based framework to regress 3D hand joint locations from

RGB images by iteratively training encoder-decoder inde-

pendent pairs. Theodoridis et al. [36] introduced a novel

multi-stage variational framework to map the latent spaces

generated from RGB-to-Pose and Pose-to-Pose VAE net-

works. Initially, they trained the above networks indepen-

dently prior to the use of a VAE mapper component to map

the cross-modal latent space to the more descriptive single-

modal one.

While the previous works modeled the entire RGB im-

age into a latent space distribution, other works engaged in

identifying the meaningful 3D hand pose information and

differentiating it from the RGB context. Yang et al. [41]

presented a disentangled VAE network (dVAE) that created

a common latent space. They learned disentangled repre-

sentations of RGB images and 3D keypoint locations, en-

abling for specific sampling and inference of various fac-

tors, such as background, viewpoint, etc. Gu et al. [9]

proposed a VAE-based framework to disentangle the 3D

hand pose from the latent space. To achieve this, the au-

thors applied adversarial training to bisect each of the RGB-

to-RGB and Pose-to-Pose spaces into two subspaces and a

network consisting of fully connected layers to translate the

modality-context subspaces. To encourage the predicted 3D

hand poses to be more anatomically valid, Spurr et al. [32]

proposed a weakly supervised 3D hand pose estimation ap-

proach that correct the joint predictions using biomechani-

cal constraints.

In this paper, we propose a novel cross-modal alignment

method to create a pose-specific latent space that is well-

separated from the RGB context and fully aligned with the
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latent space of the true hand poses. The accuracy of the

proposed method is further boosted by two kinematic losses

that refine the predicted hand poses and a novel injection

decoder that improves the decoding of the latent spaces.

3. Methodology

The proposed hand pose estimation methodology aims at

achieving an improved alignment between the RGB images

and the ground truth hand poses. A GAN architecture is

initially employed to disentangle the relevant pose-specific

information of the RGB images from the irrelevant RGB

context, effectively limiting its impact on the predictions.

Then, two variational mappers are responsible for bringing

the disentangled pose information closer to the ground truth

3D hand pose information. Finally, kinematic physiolog-

ical and geometrical constraints are introduced to ensure

that the predicted hand poses are plausible and there are

no finger deformations. A novel injection decoder is also

introduced to the proposed VAE network architectures to

inject the latent space sample at each decoder layer through

residual connections, thus creating a more discriminative la-

tent space (especially during the disentanglement stage) and

boosting the decoding accuracy of the VAE networks. An

illustration of the proposed multi-stage hand pose estima-

tion methodology is presented in Figure 1.

3.1. Crossmodal alignment

This section describes the novel cross-modal alignment

strategy that consists of the disentanglement stage, aim-

ing at differentiating the RGB context information from

the pose-specific information, and the variational alignment

stage, aiming at aligning the pose-specific and the true 3D

hand pose latent spaces.

3.1.1 Disentanglement stage

The first stage aims at disentangling the information embed-

ded in the input data (i.e., RGB images) to two latent sub-

spaces that model the significant pose-specific information

and the irrelevant RGB context information, respectively.

In this way, we aim at improving the robustness of the pro-

posed hand pose estimation method to the effects of illumi-

nation variations and background colour and texture.

To this end, an RGB-to-Pose VAE is trained along-

side a Pose-to-Pose VAE, while a discriminator is em-

ployed to disentangle, in an adversarial manner, the la-

tent space of the RGB-to-Pose VAE. More specifically, the

cross-modal encoder ERGB , encodes input images X into

pairs of mean and variance fixed-vectors, (µRGB
cont , σ

RGB
cont )

and (µRGB
pose , σRGB

pose ) that model the RGB context and pose-

specific information, respectively. These vectors approxi-

mate two Gaussian distributions for each disentangled la-

tent subspace. On the other hand, the uni-modal encoder,

Epose, encodes the 3D joint coordinates J ∈ R
N×3 into

(µtrue
pose, σ

true
pose), generating the true posterior distribution of

the 3D hand poses ztruepose .

Subsequently, a generative adversarial network is

formed, in which the cross-modal encoder ERGB acts as

the generator that produces plausible hand poses, while

the discriminator Dis tries to distinguish between the pre-

dicted poses and the ground truth poses. In this adversarial

context, the discriminator is trained to bridge the gap be-

tween the pose-specific zRGB
pose and the unimodal ztruepose la-

tent spaces, thus effectively isolating the factors related to

the hand pose from the latent space of the RGB image in-

formation. The discriminator’s objective is therefore:

LDis = 1/2(LBCE(Dis(zRGB
pose ), 0))+

1/2(LBCE(Dis(ztruepose), 1)), (1)

where LBCE is the common binary cross entropy loss.

Afterwards, a sample is stochastically drawn from the

pose-specific latent subspace zRGB
pose and fed into IDRGB to

infer the 3D joint coordinates. As far as the uni-modal VAE

is concerned, a sample is passed from the ztruepose to IDpose.

In order to train end-to-end the disentangled framework,

the common VAE loss is optimized for both the cross-modal

and the uni-modal VAE, where:

Lcross
V AE = LMSE(J, IDRGB(z

RGB
pose ))−

βcross
V AELKL(ERGB(z

RGB
cont |X)||p(z))−

βcross
V AELKL(ERGB(z

RGB
pose |X)||p(z)) (2)

is the cross-modal VAE objective and

Luni
V AE = LMSE(J, IDpose(z

true
pose))−

βuni
V AELKL(Epose(z

true
pose|J)||p(z)) (3)

is the uni-modal VAE objective. The terms LMSE , LKL

denote the MSE loss and the Kullback–Leibler divergence

[14], respectively. The parameters β control the weight of

the KL divergence. The overall objective of our model dur-

ing this training stage is formulated as:

Ldisentangle = Lcross
V AE + Luni

V AE + LDis (4)

3.1.2 Variational alignment stage

This stage is concerned with finding an effective way to

align the disentangled pose-specific and the uni-modal la-

tent spaces, since the latest contains more accurate infor-

mation about the 3D hand poses. In this way, we aim at

leveraging the ground truth pose information to construct

a highly descriptive RGB latent space to achieve improved

hand pose estimation results.
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Figure 1: An overview of the proposed multi-stage hand pose estimation methodology. (a) The disentanglement stage extracts

the meaningful pose-specific information from the RGB images. (b) The variational alignment stage aligns the pose-specific

and ground truth pose latent spaces. (c) The refinement stage imposes kinematic constraints to the predicted poses.

Figure 2: Network architectures of a) the injection decoder and b) the variational mapper. With z∗ we denote any initial latent

space, while with z∗align we denote any aligned latent space. Res denotes a linear layer used as a residual connection.

To this end, we propose the use of two variational align-

ment components, TRGB and Tpose, to project each latent

space to a new one. By jointly training them while us-

ing a shared decoder, an efficient alignment of the two la-

tent spaces is achieved. The architecture of both align-

ment components is the same and can be viewed in Fig-

ure 2b. TRGB takes the vector pair produced by ERGB ,

(µRGB
pose , σRGB

pose ), as input and applies a re-parameterization,

generating a new distribution with (µRGB
align, σ

RGB
align). Like-

wise, Tpose is responsible to generate a new distribution

with (µtrue
align, σ

true
align), given (µtrue

pose, σ
true
pose). Afterwards, the

pretrained IDRGB decoder is utilized to infer the 3D hand

pose from each latent space.

Besides the joint regression task, we need to regularize

the aligned latent spaces in order to facilitate the generative

process, since the alignment is based on variational infer-

ence. This is accomplished by using the Kullback–Leibler

divergence alongside the MSE loss. Thus, we optimize the

network’s parameters using the following objective:

Lalign = Lcross
align + wLuni

align, (5)

where:

Lcross
align = LMSE(J, IDRGB(z

RGB
align))−

βcross
alignLKL(TRGB(z

RGB
align|X)||p(z)) (6)

and

Luni
align = LMSE(J, IDRGB(z

true
align))−

βuni
alignLKL(Tpose(z

true
align|J)||p(z)) (7)

The term w is a weight that controls the contribution of

the uni-modal VAE loss term. The VAE encoders ERGB

and Epose are initially frozen while the two alignment com-

ponents and the shared decoder are trained. After conver-

gence, a finetuning process is performed where the entire
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network is trained, leading to further alignment enhance-

ment.

3.2. Refinement stage with kinematic losses

During the refinement stage, two loss terms are em-

ployed, namely the Kinematic Chain Space (KCS) and the

Geometrical (GEO) losses. The aim of these loss terms is

to impose kinematic constraints on the predicted 3D hand

poses based on physiological and geometrical criteria in or-

der to discard non-plausible poses and finger deformations.

The physiological constraints are derived from projecting

the 3D hand joints to a kinematic chain [38], aiming to min-

imize the discrepancy between the ground truth and the pre-

dicted hand poses, whereas the geometrical constraints are

based on the calculation of the joint-line distances of hand

joints [43] and minimizing the error from the ground truth

distances.

3.2.1 KCS Loss

The kinematic chain space has been employed in the litera-

ture [38, 39] as an alternative way of 3D skeleton represen-

tation that contains joint angles and bone lengths. Lever-

aging this representation, we propose a loss term that is di-

rectly applied to the kinematic chain space. More specifi-

cally, a bone bk is the vector between the r-th and t-th joint,

bk = pr − pt = Jc, (8)

with c being a vector with a value of 1 at position r and -1

at position t and J ∈ R
N×3 the 3D joint coordinates

c = (0, ..., 0, 1, 0, ..., 0,−1, 0, ..., 0)T (9)

A matrix B ∈ R
3×b containing all the hand bones, can be

constructed by concatenating b bones:

B = (b1, b2, ..., bb) (10)

Moreover, the matrix C ∈ R
j×b is constructed by concate-

nating c vectors. Therefore, the B matrix is calculated as

follows:

B = JC (11)

The KCS is computed by multiplying B with its transpose:

KCS = BTB =











l21
l22

. . .

l2b











(12)

Each entry in KCS contains the inner product of two bone

vectors and a scaled angular representation on the other en-

tries [39]. The KCS loss is then formulated as:

LKCS = ℓ1(KCSgroundtruth,KCSpredicted), (13)

with ℓ1 being the L1 distance.

3.2.2 Geometrical Loss

The proposed geometrical loss term is based on the calcu-

lation of joint-line distances, which can be considered as

an additional spatial representation that models the relation-

ship among the 3D joints of a hand. Given three different

joints i, j, k and the distances between them dij , dik, djk,

the joint-line distance of joint i to the line l formed by joints

j and k is equal to the shortest (i.e., perpendicular) distance

between the point and the line and it can be efficiently com-

puted using the Heron’s formula as shown below:

S∆(i, l) = 2

√

s(s− dij)(s− dik)(s− djk)

djk
, (14)

where s = 0.5(dij+dik+djk). Following the above proce-

dure, 190 lines are computed for the 21 hand joints. Then,

a matrix of joint-line distances is formed that is equal to:

DistJ,L =

J
∑

i

L
∑

l

S∆(i, l) (15)

Using the L1 distance between the ground truth joint-line

distances and the joint-line distances of the predicted joints,

the geometrical loss is estimated as:

LGEO = ℓ1(DistgroundtruthJ,L , DistpredictedJ,L ) (16)

The final loss during the kinematic training stage is formu-

lated as:

Lkinematic = LMSE(J, J
predicted) + qrkcsLKCS+

q′rgeoLGEO, (17)

with q taking values between 0 and 1, alternating between

LKCS and LGEO and rkcs, rgeo being hyperparameters that

control the weights of the loss terms.

3.3. Injection Decoder

Differentiating from the literature that considers de-

coders as stacks of fully connected layers and motivated by

residual connections, this work proposes the novel injection

decoder that consists of fully connected layers with inter-

mediate residual layers. The proposed decoder functions

inside any VAE framework and is present in our network ar-

chitecture during the entire multi-stage training process. Its

purpose is to improve the discrimination ability and the per-

formance of a VAE network by allowing the construction of

more descriptive latent spaces and by enabling a better flow

of gradients during training.

More specifically, to learn a variational mapping from

modality x to modality y, an encoder Ei is initially em-

ployed to project the input x ∈ {X} into the latent space

LSi by producing fixed-size vectors µi and σi with di-

mensionality di, which approximates a Gaussian distribu-

tion N (µi,Σi), where Σi = diag(σi(1)
2, . . . , σi(di)

2). A
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decoder Di then, draws stochastically a sample z from the

distribution and decodes it to y ∈ {Y }. In the proposed

injection decoder ID, the sample z is not only provided at

input level but also injected at every intermediate layer by

performing an element-wise addition between the output of

the layer and the initial z, as shown in Figure 2a. Formally,

for K intermediate layers, this can be expressed as:

yinteri = ζ(σ(Wiy
inter
i−1 ))+

ζ(σ(W s
i z)), i ∈ [2, ...,K − 1], (18)

where Wi denotes the layer’s learned weight matrix, W s
i z

denotes a learned matrix that projects z to the same dimen-

sion as yinteri−1
, σ represents batch normalization and ζ rep-

resents a ReLU activation function. The biases are omitted

for simplification purposes. If i = 1, the left term of the

addition in Equation 18 becomes ζ(σ(z)) and if i = K, the

injection decoder predicts the 3D position of N hand joints,

without the need for a residual connection:

Jpredicted = ζ(σ(Wiy
inter
K−1 )), y

out ∈ R
N×3 (19)

4. Experiments

4.1. Datasets and Metrics

The proposed method is tested on two publicly available

benchmark datasets, namely Stereo Hand Pose Tracking

(STB) [42] and Rendered Hand Pose (RHD) [47] datasets.

STB is a real dataset that comprises one subject perform-

ing 12 hand motion sequences with 6 different backgrounds.

Altogether it contains 18K frames with 640×640 resolution

and a 15K/3K training/test split. To evaluate our 3D hand

pose estimation method, we use the provided 15K/3K split.

RHD is a challenging synthetic dataset that contains 20

subjects performing 39 actions. In total, there are 43,986

rendered hand images of 320× 320 resolution, with 41258

images used for training and 2728 for evaluation. For each

image, a depth map, a segmentation mask and 2D/3D key-

point annotations are provided. We only used the RGB im-

ages and their corresponding 3D labels in our experiments.

We report on two common metrics: 1) Mean End-Point

Error (MEPE), which refers to the Euclidean distance be-

tween the predicted and the ground truth keypoint locations

and 2) the Area Under the percentage of correct keypoints

(PCK) Curve (AUC). The distance thresholds of the PCK

ranges from 20 mm to 50 mm.

4.2. Implementation Details

We use the PyTorch [28] framework for method im-

plementation. The encoder of the RGB-to-Pose VAE is a

ResNet-18 [10], initialized with pretrained weights on the

ImageNet dataset [31], whereas the encoder of the Pose-to-

Pose VAE and the architecture of the VAE alignment com-

ponents are similar to [36]. The dimensions of the latent

Components/Stages

RefinementModel Injection

Decoder

Disent-

anglement
Alignment

KCS GEO

MEPE

Baseline × × × × × 15.71

A X × × × × 15.08

B X X × × × 14.77

C X × X × × 14.82

D0 X X X × × 14.36

D1 X X X X × 13.93

D2 X X X × X 13.99

D3 X X X X X 13.88

Table 1: Ablation study on the RHD dataset.

Decoder Architecutre Decoded subspaces MEPE

Concat 15.12
Linear Decoder

Pose-specific 15.13

Concat 14.87
Injection Decoder

Pose-specific 14.77

Table 2: Impact of the injection decoder and decoded sub-

spaces on the disentanglement stage. Concat denotes the

concatenated RGB pose-specific and RGB context latent

spaces.

spaces at every stage are set to 128 for the RGB-to-Pose

VAE and 64 for the Pose-to-Pose VAE. The hyperparame-

ters βcross
V AE , βuni

V AE , β
cross
align , β

uni
align are set to 10−5, the weight

w in equation 5 is set to 10−2 while rkcs and rgeo are set to

10−2 and 10−6, respectively. In all training stages we use

the Adam optimizer [13] with learning rate 10−4 and batch

size of 64.

To crop the hand region from the input image, we use

the 2D annotations in both datasets to create a bounding

box around the hand. To augment data, we consider ran-

dom rotation in the range [−45◦, 45◦], random vertical flip

with probability 0.5 and image resize to 256 × 256. Addi-

tionally, handedness, palm center and scale of hand are pro-

vided during both training and testing. Moreover, we move

the center of the hand to the center of the bounding box and

accordingly rotate the 3D pose. Therefore the 3D hand pose

is aligned with the z-axis of the camera. This process solves

the one-to-many mapping, as indicated by [19, 40].

4.3. Ablation Study

We evaluate the different components and stages of the

proposed method to provide direct insight into their impact

on the method’s performance (Table 1). We opt to conduct

the ablation study on the RHD dataset, since it is the largest

of the two datasets and contains heavily occluded fingers,

allowing a better demonstration of the performance of the

proposed method. In Table 1, Baseline denotes a simple

cross-modal RGB-to-Pose VAE. Case A presents the base-

line model equipped with the injection decoder. Case B
showcases the benefit of the disentanglement stage. Case C
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examines the impact of the variational mapping when ap-

plied to the model of case A (i.e., without disentanglement).

Cases Di, i ∈ 0, ..., 3, evaluate the impact of the loss terms

on the method’s performance, applied after the disentangle-

ment and variational alignment stages. Moreover, Table 2

demonstrates the effectiveness of the injection decoder and

the decoded subspace in the disentanglement process.

Impact of the injection decoder. To evaluate the ben-

efit of the injection decoder, we compare the MEPE of the

baseline model and a model equipped with the injection de-

coder (case A in Table 1). Table 1 shows that the baseline

model has 4% higher relative recognition error as compared

to the one with the injection decoder (15.71 versus 15.08

MEPE). This proves the effectiveness of injecting the latent

space sample to intermediate decoding layers, thus improv-

ing the discrimination ability and decoding accuracy of the

constructed latent spaces thanks to the residual connections

and the better flow of gradients. This claim is further ver-

ified by the results of Table 2 that show the creation of a

more descriptive pose-specific latent space during the dis-

entanglement stage.

Benefit of the disentanglement stage. Initially, we as-

sess the impact of the injection decoder and the decoded

subspaces during the disentanglement stage. The results in

Table 2 reveal that the use of the pose-specific latent sub-

space with the injection decoder outperforms gives 14.77

MEPE, while the use of the concatenated RGB latent sub-

spaces (i.e., concatenation of RGB pose and RGB context

latent spaces) results in 14.87 MEPE. On the other hand,

the performance of a linear decoder is not affected by the

decoded subspace. Therefore, the injection decoder can as-

sist in the construction of a more descriptive pose-specific

latent space that can significantly improve the disentangle-

ment stage.

Afterwards, we evaluate the effect of the disentangle-

ment stage when applied on the baseline model (compar-

ison of case A and case B in Table 1). The disentangle-

ment stage improves the hand pose estimation results, lead-

ing to lower recognition errors by 2%. Our findings validate

the importance of disentangling the RGB context from the

pose-specific information, thus managing to significantly

reduce the impact of background and illumination varia-

tions that are present on the RGB images and improve the

hand pose estimation results. Since the injection decoder

and the disentanglement training stage are beneficial to the

performance of the proposed hand pose estimation method-

ology, we perform the rest of the experiments without omit-

ting them.

Impact of the variational alignment stage. For the

evaluation of the second training step, we employ the

proposed alignment components to create two new latent

spaces for the pose-specific and the true pose information

(case D0 in Table 1). The results reveal that the varia-

(a) RHD

(b) STB

Figure 3: AUC on PCK curve: Comparison against state-

of-the-art methods on a) RHD and b) STB datasets.

tional alignment stage brings the pose-specific information

extracted from the RGB images closer to the ground truth

pose information, thus improving the hand pose estimation

results (MEPE reduction of 2.7%).

Evaluation of the refinement stage with the KCS loss.

Experiments were conducted to determine the impact of the

KCS loss term during the refinement stage (case D1 in Ta-

ble 1), from which we observe a significant improvement in

the results (3% relative MEPE reduction). This finding val-

idates the importance of applying physiological constraints

to the proposed methodology and restricting the predicted

3D hand poses to the space of plausible poses.

Evaluation of the refinement stage with the GEO loss.

In a similar fashion with the KCS loss, we evaluate the ef-

fect of the GEO loss during the refinement stage (case D2

in Table 1). The results show that the GEO loss term leads

to a reduction in the relative MEPE by 2.5%. This finding

demonstrates the importance of applying geometrical con-

straints that empower the proposed methodology to discard

non-plausible poses and finger deformations.

Finally, we combine the KCS and the GEO loss terms
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BaselinePredictedGround truthRGB samples

Figure 4: Qualitative results on 3D hand poses from the

STB and RHD datasets.

Method RHD STB

Zimmerman et al.[47] 30.42 8.68

Moon et al.[23] 20.89 7.95

Yang et al.[41] 19.95 8.66

Spurr et al.[33] 19.73 8.56

Gu et al.[9] 17.11 7.27

Iqbal et al.[12] 15.77 -

Theodoridis et al.[36] 15.61 6.93

Proposed 13.88 6.71

Table 3: Comparison against state-of-the-art approaches on

the RHD and STB datasets

during the refinement stage (case D3 in Table 1). This is

the final proposed hand pose estimation methodology that

achieves superior performance with respect to the baseline

model (11.6% relative MEPE improvement).

4.4. Comparison with stateoftheart approaches.

We compare the performance of our proposed method

against other state-of-the-art RGB-based Model-free ap-

proaches, thus excluding works that process depth images,

leverage multimodal input data or employ a hand model

[6] for fair comparison. More specifically, the comparative

evaluation includes the following approaches: Zimmerman

et al. [47], Moon et al.[23], Yang et al.[41], Spurr et al.[33],

Gu et al. [9], Iqbal et al. [12] and Theodoridis et al. [36].

EPE comparison. Table 3 summarizes the performance

of our proposed hand pose estimation method against other

state-of-the-art approaches. For the method of Iqbal et al.

[12], we report results only for the RHD dataset (no exper-

iments were performed on the STB dataset) and with the

depth maps predicted (ground truth depth maps are not con-

sidered for fair comparison with the other approaches). Our

proposed multi-stage 3D hand pose estimation methodol-

ogy outperforms all other methods, yielding 13.88 MEPE

on the RHD dataset and 6.71 MEPE on the STB dataset.

PCK comparison. We compare the PCK curves of

our method and the other state-of-the-art approaches on the

RHD and STB datasets and report the results in Figure 3.

On the RHD dataset, our method achieves an AUC score of

0.930, clearly outperforming all other state-of-the-art meth-

ods, while on the STB dataset, our method achieves an AUC

score of 0.997, which is on par with the method of [36].

From the experimental results, we can observe that

the proposed methodology surpasses all state-of-the-art

methods on both datasets using MEPE and PCK metrics.

More importantly, the overall performance improvement is

greater on the RHD dataset, despite the fact that the RHD

dataset is large and challenging due to a wide number of

self-occluded fingers, backgrounds and subjects. On the

other hand, the STB dataset is considerably smaller and sat-

urated as it contains a single subject’s left hand within a lim-

ited number of different backgrounds. As a result, the STB

dataset is not optimal for thoroughly demonstrating the full

capabilities of the proposed methodology.

Qualitative results comparison. Finally, we perform a

qualitative evaluation of the poses predicted by our method.

Figure 4 illustrates several predicted poses of the proposed

multi-stage 3D hand pose estimation method, compared to

the baseline RGB-to-Pose VAE and the ground truth 3D

poses. The proposed model predicts 3D hand joint loca-

tions with higher precision in both the small and saturated

STB dataset, as well as the large and challenging RHD

dataset, demonstrating its ability to overcome the difficul-

ties imposed by occlusions, background and illumination

variations and different camera positions.

5. Conclusions

This paper presents a novel multi-stage RGB-based ap-

proach for accurate 3D hand pose estimation. To this end, a

GAN is initially used to disentangle the pose-specific infor-

mation of the RGB images from the irrelevant RGB context.

Subsequently, two variational mappers project the pose-

specific and ground truth pose latent spaces to new latent

spaces that are better aligned with each other. These op-

erations ensure an optimal cross-modal alignment between

the RGB and 3D pose information. Finally, two loss terms

are employed to ensure that the predicted poses abide by

kinematic and geometrical constraints, thus avoiding non-

plausible poses. A novel injection decoder is also proposed

to improve the discrimination ability and decoding accu-

racy of the constructed latent spaces. A thorough abla-

tion study and extensive experimental results on two well-

known datasets demonstrate the benefits of each component

and stage of the proposed method, as well as the method’s

superiority against other state-of-the-art approaches.
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