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Abstract

Human can naturally understand scenes in depth with

the help of various knowledge accumulated and by a com-

prehensive visual concept organization including category

labels and different-level attributes. This inspires us to unify

professional knowledge at different levels with deep neural

network architectures progressively for scene understand-

ing. Different from the general embedding approaches, we

construct different knowledge graphs for different levels of

vision tasks by organizing the rich visual concepts accord-

ingly. We employ a gated graph neural network and re-

lational graph convolutional networks to propagate node

messages for different levels of tasks and generate progres-

sively different levels of knowledge representation through

the graph. Compared with existing methods, our framework

has a main appealing property leading to a novel progres-

sive knowledge-embedded representation learning frame-

work that incorporates different level knowledge graphs

into the learning of networks at corresponding level. Ex-

tensive experiments on the widely used Broden+ dataset

demonstrate the superiority of the proposed framework over

other existing state-of-the-art methods.

1. Introduction

Humans can not only extract a large amount of semantic

information at a glance, but also acquire knowledge from

daily lives or professions, thus completing the task of scene

understanding [3,8,27,44,61]. Specifically, human not only

instantly segment and recognize the scene and objects con-

tained within, but also identify the fine-grained attributes of

a scene, such as objects and materials. Usually, our kind

*Chao Gou is the corresponding author.
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Figure 1. An example of knowledge graphs are able to to help with

scene understanding. Our proposed framework is able to associate

object-level attributes and material-level attributes with the results

of image feature representations. Black color denotes ”scene”,

blue denotes ”object”, orange denotes ”material”. The links in

the graph correspond to object/material categories. The actual ob-

ject/material pictures represent correspond category.

knowledge refers to a comprehensive visual concept orga-

nization including category labels and their attributes. It

is incredibly beneficial to scene understanding as attributes

are always crucial to distinguish different subordinate cat-

egories [6, 55, 60, 66]. For example, we might know from

a book that certain kinds of churches are built from pol-

ished stones. With this knowledge, to recognize the scene

category “church” given an image, we might first recall

the knowledge, attend to the corresponding objects to see

whether it possesses these attributes, and then perform rea-

soning. Figure 1 illustrates an example of how professional

knowledge aids scene understanding.

Up to now, mainstream algorithms of scene understand-

ing are mainly divided into three categories: structure-based

models [36, 37], visual attention network-based model [9,

50, 63], multi-task learning-based model [48]. These mod-

els all can locate discriminative regions/parts to distinguish



building

tree

others sky

polished 

stone

stone

foliage
grassearth

river

Church(Rococo)

Church(Baroque)

Church(Goth)

... ...

skyy

Figure 2. An example knowledge graph for modeling object-level attributes and material-level attributes with the results of image feature

representations on the Broden+ dataset. Black color denotes ”scene”, blue denotes ”object”, orange denotes ”material”. The size of circles

of ”object” and ”material” mean frequency of corresponding category. The links in the graph correspond to object/material categories. The

actual object/material pictures represent correspond category.

subtle differences among different subordinate categories.

However, structure-based models involve heavy annotations

or geometric annotations of objects, preventing them from

application to large-scale data. Visual attention network-

based model can only locate the parts/regions roughly due

to the lack of supervision or guidance. Multi-task learning-

based models can only locate parts of each attribute, and

the identification label is inaccurate due to lack of supervi-

sion or guidance. Conventional approaches for scene under-

standing usually neglect this knowledge and merely rely on

low-level image cues for parsing.

Recently, the theory [46] of neuroscience points out

that one of the mechanisms of humans’ understanding

of natural vision is obtained through stimulation of the

brain. Further, the acquisition and loss of this neurolog-

ical stimulus is a progressive process [5, 12]. When hu-

mans see a scene image (stimulation), humans always as-

sociate this image with humans’ knowledge to understand

this scene. Inspired by aforementioned neuroscience, we

organize knowledge about categories and different-level at-

tributes in the form of the knowledge graph, and we pro-

posed a progressive knowledge-embedded-representation-

learning framework to incorporate knowledge graph into

image feature learning to promote the process of scene un-

derstanding.

To this end, our work focuses on a new task called

Unified Perceptual Parsing [48]. Compared to conven-

tional scene understanding task, this task emphasizes mod-

els parse various visual concepts at multiple perceptual lev-

els such as scene, objects, and materials all at once. In other

words, our framework is able to achieve different level vi-

sion task given one image. And our proposed framework

contains three crucial components:

(1) Gated graph neural networks (GGNN) [22] is em-

ployed to propagate node message through the graph to gen-

erate knowledge representation at the different level of the

process of learning [4, 17, 21, 35, 45].

(2) Relational graph convolutional networks (R-GCN)

[38] is introduced to encode and combine different level

node message through dealing with the different level data

characteristic of the knowledge graph.

(3) A novel progressive gated mechanism is introduced

to learn the attribute-aware representation.

Specifically, we first construct a large-scale knowledge

graph that associates category labels with their different-

level attributes, as shown in Figure 2. As we can see,

our framework initializes the constructed knowledge graph

nodes with given image information for different levels of

tasks implicitly. Thus, our framework associates these dif-

ferent levels of attributes with feature maps, and is able to

reason about the discriminative attributes and categories for

the image. In this way, our framework can learn feature

maps with meaningful information that the parts/regions

finely associate with the relevant different-level attributes

in the graph. For example, the learned parts/regions of sam-

ples from category “church” always contains “building” and

“stone” or “polished stone” in Figure 2. This category can-

not contain other impossible attributes, such as “fabric”,

because these scene related to attributes and these regions

relate to attributes that are key to distinguish this category

from others. This characteristic also provides insight into

why the framework improves performance.

In summary, the contributions of our work can be con-

cluded to three-fold:

(1) Our work formulates a novel progressive knowledge-

embedded representation learning framework that incorpo-



rates different level knowledge graph into the learning of

network at the corresponding level.

(2) Through utilizing the gated graph neural networks,

our work incorporates high-level knowledge graph as ex-

tra guidance into scene understanding. To the best of our

knowledge, this is the first work to investigate this point.

(3) Extensive experimental results demonstrate the su-

periority of the proposed framework over existing state-of-

the-art approaches.

2. Related Work

We review the related work about two research streams:

unified perceptual parsing and knowledge representation.

Then, we introduce the prerequisite knowledge about the

brain of understanding the natural vision.

Unified Perceptual Parsing Humans recognize the vi-

sual world on multiple levels: we effortlessly classify

scenes and detect internal objects, while also identifying the

composition of the object’s material. Based on this, Xiao et

al. [48] proposed a new task called unified perceptual pars-

ing, which requires the machine vision systems to recognize

as many visual concepts as possible from a given image.

Obviously, this is a multitasking issue. Further, according

to the principle of network dissection [2], Xiao et al. [48]

proposed the unified perceptual parsing network. However,

since the method does not notice the correlation between

different levels of task attributes and the guidance of prior

knowledge, this method is not very effective. It can be rec-

ognized that it is necessary to add knowledge guidance.

Knowledge Representation Representing prior knowl-

edge in the form of graph structure [7, 18] and incorpo-

rating this structure for visual reasoning has received in-

creasing attention [31, 33, 39, 49, 53]. For example, Mal-

isiewicz et al. [29] build a large graph, with the nodes

referring to object instances and the edge corresponding

to associated types between nodes, to represent and rea-

son about object identities and their mined relationships

[9, 18, 26, 28, 34, 41, 43]. These methods usually involve

hand-crafted features and manually-defined rules. Recently,

more works are dedicated to exploring message propagation

by learnable neural networks like [47] or neural network

variants [51]. Relational graph convolutional networks (R-

GCNs) [38] are encoder models which develop specifically

to deal with the highly multi-relational data characteristic

of realistic knowledge bases, and mine the implicit rela-

tionship between multi-relational data. Thus, we planned to

use R-GCN to mine the relationship between the knowledge

graphs of different levels of visual tasks. Gated graph neural

network (GGNN) [22] is a fully differential recurrent neu-

ral network architecture for handling graph-structured data,

which iteratively propagate node message through the graph

to learn node-level or graph-level representation [32]. Sev-

eral works have successfully developed GGNN variants for

various vision tasks [45, 60]. Therefore, it is an excellent

choice combining GGNN and R-GCN to handle different

levels of visual tasks at once.

Prior Knowledge about Brain’s Understanding Natu-

ral Vision Our knowledge of brain processing has advanced

dramatically in the last few decades, but this understanding

remains far from complete, especially for stimuli with the

broad dynamic range and strong temporal and spatial cor-

relations characteristic of natural visual inputs. Maxwell

et al. [46] highlight two broad strategies for approaching

this problem: a stimulus-oriented framework and a goal-

oriented one. In a stimulus-oriented framework, a common

approach is to identify the transformations of sensory-input

signals that optimize statistical and information-theoretic

metrics. It’s worth noting that, after inputting stimulus, a

message composed of an appropriately timed periodic train

of pulse packets will be progressively amplified, and even-

tually will be strong enough to be propagated to the receiver

neuronal network [5, 12]. Inspired by the theory of neuro-

science, we consider using the different level of knowledge

graphs to guide our neural network for corresponding lev-

els of visual tasks, and further using the mined relationship

to generate progressively different levels of knowledge rep-

resentation to guide our neural network.

3. Our Framework

In this section, we first present the construction of our

knowledge graphs that relate category labels with their

different-level attributes. Then, we introduce our frame-

work in detail, which consists of a GGNN for knowledge

representation learning, a combining GGNN and R-GCN

for progressive relational learning, and a gated mechanism

to embed knowledge into discriminative image represen-

tation learning progressively. An overall pipeline of the

framework is illustrated in Figure 3.

3.1. Knowledge­Graph Construction

Considering to parsing scene, objects, and materials

all at once, we construct our knowledge graph that re-

lates scene category labels with object-level attributes and

material-level attributes. For the construction of our knowl-

edge graph, we use the GGNN [22] method.

Principle of GGNN GGNN [22] is an end-to-end train-

able network architecture that can learn features for arbi-

trary graph-structured data by iteratively updating node rep-

resentation in a recurrent fashion. Formally, the input is a

graph represented as G = {V,A}, in which V is the node

set and A is the adjacency matrix denoting the connections

among these nodes. We define t is the time step of conduct-

ing the knowledge graph. At t = 0, input feature vectors

xv that depends on the special task is initialized as the hid-

den state. Then, at time-step t, we define hv
t as the hidden

state. For each node v ∈ V, the basic propagation recurrent
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Figure 3. An overall pipeline of our proposed knowledge-

embedded representation learning framework. The primary frame-

work consists of a GGNN and R-GCN that takes the knowledge

graph as input and propagates node information through the graph

to learn knowledge representation under different time step, and

a gated mechanism that embeds the representation into the image

feature learning to learn attribute-aware features progressively. All

components of the framework can be trained in an end-to-end fash-

ion.

process is formulated as

hv
0 = xv

av
t = Av

T [h1
t−1 · · ·h|V|

t−1]T + b

hv
t = gate(av

t,hv
t−1)

(1)

where Av is a sub-matrix of A represents the connections

of node v with its neighbors, and gate denotes gated update

mechanism, which is defined as:

zv
t = σ(Wz

av
t +U

z
hv

t−1)

rv
t = σ(Wr

av
t +U

r
hv

t−1)

h̃
t
v = tanh(Wav

t +U(rv
t ⊙ hv

t−1))

hv
t = (1− zv

t)⊙ hv
t−1 + zv

t ⊙ h̃
t
v

(2)

where ⊙, σ and tanh are the element-wise multiplication

operation, the logistic sigmoid and hyperbolic tangent func-

tions, respectively.

The propagation process is repeated until our fixed it-

eration T . During this process, we update the representa-

tion of each node based on its history state and the mes-

sage sent by its neighbors. Thus, we can obtain the fi-

nal hidden states {h1
T ,h2

T , . . . ,h|V|
T }. All in all, the

computation process of equation (1) can be reduced to

hv
t = GGNN(h1

T ,h2
T , . . . ,h|V|

T ;Av). Similar to [10],

we employ an output network that is implemented by a

fully-connected layer o, to compute node-level feature, ex-

pressed by

ov = o([hv
T ,xv]), v = 1, 2, 3, · · · |V| (3)

A Case of Constructing Scene-Object GGNN Distinctly,

we need to construct two knowledge graph of which one

relates scene category labels with object-level attributes and

the other relates scene category labels with material-level

attributes. We use the knowledge graph that relates scene

category labels with object-level attributes as an example to

illustrate the process of constructing GGNN. Given dataset

that covers J scene categories and L object attributes, the

graph has a node set V with J + L elements. Similar to

[7], we define the J ×L matrix SScene−Object that denotes

the confidence that this category has the attribute and its

value range is [0, 1]. Then, we can get the adjacency matrix

AScene−Object can be expressed as

AScene−Object =

[

0J×J SScene−Object

0J×L 0L×L

]

(4)

where 0n is a zero vector with dimension n.

Finally, by this way, we can get the knowledge graph

GScene−Object = {VScene−Object,AScene−Object} . We

are able to get the knowledge graph GScene−Material =
{VScene−Material,AScene−Material} that relates scene

category labels with material-level attributes in a similar

way.

3.2. Progressive Relational Knowledge­Graph
Learning

Our work focuses on the unified perceptual parsing task.

Based on the theory of the network dissection, Xiao et al.

[48] find that unified perceptual parsing network can effec-

tively parse the feature maps of different levels of visual

tasks, such as the material-level feature maps, object-level

feature maps and scene feature maps. Xiao et al. [48] also

prove that this network parsed the features according to the

following order: material → object → scene. However, due

to the lack of the guidance of prior knowledge of this net-

work, the output of this network might be irrational. For

example, the material of the sky is painting; the material

of the road is fabric; the position of the segmented object

is biased, etc. In order to solve this problem, we plan to

use the knowledge graph to guide the training of the net-

work. Since this problem is three different levels of tasks,

we create a corresponding knowledge graph for each task

to guide corresponding tasks. For material-level and object-

level tasks, we construct scene-material knowledge graph

and scene-object knowledge graph, respectively. For the fi-

nal task, we combine scene-material knowledge graph with



scene-object knowledge graph using R-GCN [38]. Besides,

we design the progressive relational structure shown in Fig-

ure 3.

Material-Level and Object-Level Tasks We use the

object-level task as an example to illustrate. For the

material-level task, we can also use a similar method to

learn under the guidance of knowledge graph. After build-

ing the scene-object knowledge graph, we employ the

GGNN to propagate node message through the graph and

compute a feature vector for each node. All the feature vec-

tors are then concatenated to generate the final representa-

tion for the knowledge graph.

We define the score vector S = {s0, s1, · · · , sL} as the

confidence of this category presented in a given image. We

initialize the node refers to the category label i with si, and

the node refers to each attribute with a zero vector. Thus, we

can get the input feature for each node can be represented

as

xv =

{

[si,0n−1] if node v refers to scene category i

[0n] if node v refers to an attribute

(5)

where 0n is a zero vector with dimension n. After T2 iter-

ation in Figure 3, according to the principle of the GGNN

mentioned in Section 3.1, we can get the node-level fea-

ture ov
Object. Similarly, we also can get the the node-

level feature ov
Material for the material-level task by T1

iteration. Finally, these features are concatenated to pro-

duce the final knowledge representation fknowledge
Object

and fknowledge
Material.

Final Scene Task According to the principle of the

GGNN mentioned in Section 3.1 at T3 iteration, we can get

hv
T3

Object and hv
T3

Material. We denote directed and labeled

multi-graphs as GScene = {V,A,RObject−Material} with

nodes V and labeled edges A, where RObject−Material is

relation between object and material.

According to the principle of R-GCNs [38], we define

the following simple propagation model for calculating the

forward-pass update in multi-graph:

hR−GCN = tanh(
1

N
Wrhv

T3

Object +W0hv
T3

Material) (6)

where tanh is hyperbolic tangent functions, N is a problem-

specific normalization constant that can either be learned or

chosen in advance. Each Wr is defined as follows:

Wr =

B
∑

b=1

CbTb (7)

where Tb is a linear combination of basis transformations

with coefficients Cb such that only the coefficients depend

on RObject−Material, according to the principle of R-GCNs

[38].

As we can see, Eq.(6) accumulates transformed feature

vectors of neighboring nodes, and we obtain the hR−GCN .

Then, we can get the ov
Scene computed by Eq.(3). Finally,

these features are concatenated to produce the final knowl-

edge representation fknowledge
Scene.

3.3. Knowledge­Embedded Unified Perceptual
Parsing

We introduce the gated mechanism that embeds the

knowledge representation to enhance image representation

learning.

Image Representation We start by introducing the im-

age feature extraction. Based on the unified perceptual pars-

ing network [48], we apply this model to extract image fea-

tures. This model apply a pyramid pooling module from

PSPNet [62] on the last layer of the backbone network be-

fore feeding it into the top-down branch in feature pyramid

network. The down-sampling rates are {4, 8, 16, 32, 32},

respectively. Specifically, given an image, we can extract

material-level feature maps with 1

4
size of given image,

object-level feature maps with 1

16
size of image, and scene-

level feature maps with 1

16
size of image, by using the uni-

fied perceptual parsing network. Thus, we use the com-

pact bilinear pooling method [11] shown in Figure 3 to

produce feature maps fnetwork
Material, fnetwork

Object and

fnetwork
Scene, respectively.

Unified Perceptual Parsing by Knowledge-Embedded
Learning Similar to [47], we embed this representation into
image feature learning to learn feature corresponding to this
attributes. Considering suppressing non-informative fea-
tures and allowing informational features to pass under the
guidance of different-level of knowledge graphs, we intro-
duce a gated mechanism can be expressed as

fMaterial = σ(g(fnetwork
Material

, fknowledge
Material))⊙

fnetwork
Material

fObject = σ(g(fnetwork
Object

, fknowledge
Object))⊙

fnetwork
Object

fScene = σ(g(fnetwork
Scene

, fknowledge
Scene))⊙

fnetwork
Scene

(8)

where σ is the logistic sigmoid, ⊙ denotes the element-

wise multiplication operation, g is a neural network that

takes the concatenation of the feature of knowledge repre-

sentation and the feature of extracting by using the unified

perceptual parsing network.

4. Experiments

4.1. Experiment Settings and Experimental Results

4.1.1 Datasets

We evaluate our framework and the competing methods on

the Broden+ dataset [48] that is specifically used for unified



Figure 4. Predictions on the validation set using our framework.

From left to right: original image, scene classification results, ob-

ject parser results and material parser results.

perceptual parsing.

For the scene-level task, we choose the top-1 accuracy

the performance evaluation index of the algorithm. For

object-level task and material-level task, we choose the

mIoU which indicates the intersection-over-union (IoU) be-

tween the predicted and ground truth pixels, and the pixel

accuracy which indicates the proportion of correctly classi-

fied pixels, as the performance evaluation index of the algo-

rithm. Also, to compare the effectiveness of our proposed

architecture and the competing methods for semantic seg-

mentation, we use the ADE20K dataset [65] and choose the

mIoU, pixel accuracy and overall which is averaged over

all object classes as the performance evaluation index of the

algorithm.

4.1.2 Implementation Details

For the GGNN, we utilize the compact bilinear model re-

leased by work [11] to produce the scores to initialize the

hidden states. For R-GCNs, we build a 2-layer model with

16 hidden units by work [38], and trained for 50 epochs us-

ing a learning rate of 0.01. For fair comparisons, we set the

epoch of our method as 40 similar to [48] and trained on

the training part of the Broden+ dataset. The iteration time

T1, T2, T3 is set to 5, 10, 10, respectively. Our framework

is jointly trained using the cross-entropy loss. All compo-

nents of the framework are trained with SGD except GGNN

and R-GCNs that are trained with ADAM following [30].

Our framework is able to uniformly parser visual knowl-

edge while effectively predicting the hierarchical output.

Table 1. Results of Ablation study on the Broden+ dataset. O: Ob-

ject. M: Material. S: Scene. mI.: mean IoU. P.A.: pixel accuracy.

T-1: top-1 accuracy.
Training Data Knowledge-Graph Object Material Scene

+O +M +S +O +M +S mI. P.A. mI. P.A. T-1

X 24.72 78.03 - - -

X - - 52.78 84.32 -

X X X 23.36 77.09 54.19 84.45 70.87

X X 31.45 84.27 - - -

X X - - 59.26 90.47 -

X X X X X 30.99 83.86 59.26 90.47 75.29

X X X X X X 32.48 85.35 60.04 91.62 80.01

4.1.3 Qualitative Results on ADE20K Dataset

We provide qualitative results of our framework, as visual-

ized in Figure 4. Our framework is able to uniformly parser

visual knowledge while effectively predicting the hierarchi-

cal output.

4.2. Ablation Study

To verify the contribution of knowledge embedding and

progressive knowledge embedding, we design the Ablation

experiment. Note that our framework employs the unified

perceptual parsing network [48] as the baseline. The quanti-

tative evaluations of the unified perceptual parsing network

and our framework are shown in Table 1. As shown in Table

1, it is evident that the results of our framework are better

than the baseline.

To further clarify the contribution of knowledge guided,

we analyze the following two aspects: comparison of tasks

at the same level and comparison of the different level tasks

under different-level knowledge graph.

Comparison of The Same Level Tasks To better verify

the benefit of embedding knowledge for feature learning at

the same-level task, we conduct an experiment that removes

the guidance of the knowledge graph and other components

left unchanged. The comparison results are presented in

Table 1. As shown in Table 1, for the object-level task, the

value of mean IoU has increased by 6.73, and the value of

pixel accuracy has increased by 6.24, after the guidance of

the knowledge graph. It is obvious that the scene-level and

the material-level task is improved by adding the guidance

of the knowledge graph. This suggests that the design of

embedding knowledge for feature learnings is reasonable

and effective.

Comparison of The Different Level Tasks Under the

guidance of knowledge maps, we progressively add the

guidance of different knowledge graphs to prove the impor-

tance and necessity of progressive knowledge-embedding

learning. In this process, we cannot change other compo-

nents. The comparison results are presented in Table 1. As

shown in Table 1, the value of mean IoU and pixel accuracy

under the guidance of object-level knowledge graph and

material-level knowledge graph is lower than under only

the guidance of object-level knowledge graph at the object-



Figure 5. Comparison of ours and Xiao et al. proposed method on the task of unified perceptual parsing

level task. Due to object attributes and material attributes

are context sensitive, it does not incur additional informa-

tion but only increasing the complexity of the model. This

suggests that the design of the chosen R-GCN is reasonable

and effective. The value of mean IoU and pixel accuracy

under the guidance of all-level knowledge graph is higher

than under the guidance of the corresponding level knowl-

edge graph. This suggests that the design of progressive

embedding knowledge for feature learnings is reasonable

and effective.

4.3. Comparison with State­of­the­Art Methods

Qualitative Evaluation on Comparison Experiments.

It can be seen from the Figure 5 that, the results of our

framework can effectively parse the object and material, and

can effectively recognize the scene. For example, at the

scene-level task, our framework is closer to the scene of a

given image than the Xiao et al. proposed algorithms [48].

All in all, our algorithm in this paper has a higher overall

effectiveness of understanding than Xiao et al. proposed

algorithms [48].

Quantitative Evaluation on Comparison Experi-

ments. From Table.2, it can get the following these points:

mean IoU of our method is 25, 23.97, 16.95, 24.7, 14.03,

11.44, 5.64, 12.06, 4.66, 5.12, 1.13, 0.98, 4.45, 1.34, 1.06,

2.04, 1.69, 2.66, 2.57, 1.12, 1.1, 0.96, 0.74, and 1.48
higher than Fei-Fei et al., FE-CCM, FCN, SegNet, Dilat-

edNet, CascadeNet, RefineNet, DilatedNet, PSPNet, UPer-

Net, PAC-multiple + CAB + MS, GANet, PDN, EFCN-8s,

CaseNet, SAC, EncNet, DSSPN, PSANet, CCNet, APNB,

APCNet, SPNet, and DPM, respectively. In pixel accu-

racy and overall evaluation, there are also true of the case.

This means our method has the best ability of understanding

scene and outperforms state-of-the-art methods.

Table 2. Quantitative evaluations of the comparison experiment on

the ADE20K dataset. mI.: mean IoU. P.A.: pixel accuracy.

Method mI. P.A. Overall

Fei-Fei et al. [20] 21.34 69.44 40.23

FE-CCM [19] 22.37 69.75 43.24

FCN [40] 29.39 71.32 50.36

SegNet [1] 21.64 71 46.32

CascadeNet [65] 34.9 74.52 54.71

RefineNet [25] 40.7 - -

DilatedNet [52] 34.28 76.35 55.32

PSPNet [62] 41.68 80.04 60.86

UPerNet [48] 41.22 79.98 60.6

PAC-multiple + CAB + MS [58] 45.21 82.14 -

GANet [56] 45.36 82.14 -

PDN [59] 41.89 80.81 -

EFCN-8s [42] 45 - -

CaseNet [16] 45.28 - -

SAC [57] 44.30 81.86 63.08

EncNet [54] 44.65 81.69 63.17

DSSPN [24] 43.68 81.13 62.41

PSANet [64] 43.77 81.51 62.64

CCNet [15] 45.22 - -

APNB [67] 45.24 - -

APCNet [13] 45.38 - -

SPNet [14] 45.60 82.09 63.85

DPM [23] 44.86 81.55

Ours 46.34 83.76 64.98

5. Conclusion and Future Work

In this paper, we have presented a novel framework for

handling the problem of scene understanding. The key idea

is that our work formulates a novel progressive knowledge-

embedded representation learning framework that incorpo-

rates different level knowledge graph into the learning of

network at the corresponding level. This not only helps to

endow the deep model with learned relationships mined un-

der the guidance of the knowledge graphs, but also provides

a solution for scene understanding. Extensive experiments

on the widely used Broden+ dataset demonstrate the superi-

ority of our framework over existing state-of-the-art meth-

ods. Following the main idea of this work, future research

can be expanded in various aspects, including the tasks of



visual question answering and visual commonsense under-

standing.
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