
Private-Shared Disentangled Multimodal VAE for Learning of Latent
Representations

Mihee Lee
Rutgers University

Piscataway, NJ, USA
ml1323@rutgers.edu

Vladimir Pavlovic
Rutgers University

Piscataway, NJ, USA
vladimir@cs.rutgers.edu

This supplement consists of the following materials:

• Details of network architectures in Sec. 1.

• Optimization details in Sec. 2.

• Reconstruction inference in Sec. 3.

• Additional experimental results in Sec. 4.

1. Neural Network Architecture
We describe our model architecture in Tab. 1a, Tab. 1b,

Tab. 1c, and Tab. 1d, for MNIST, SVHN, the Oxford-
102 Flowers image, and caption respectively. Zp,MNIST ,
Zp,SV HN , Zp,I , and Zp,C indicate the latent dimension of
the private space of MNIST, SVHN, the Oxford-102 Flow-
ers Image, and the Oxford-102 Flowers Caption respec-
tively while Zs is the latent dimension of the shared space.

2. Training Details
We use Adam optimizer for all datasets. For MNIST

and SVHN modalities, we use batch size 100. 10 epochs
are trained with learning rate 1e−3. The dimension of pri-
vate latent space is 1 for MNIST and 4 for SVHN while
the shared latent space has 10 dimension. λMNIST and
λSV HN are set as 50 and 1 respectively to balance the con-
tribution of the modalities to the PoE [2].

For the Oxford-102 Flowers [3], batch size 64 is used.
After 10 epochs are trained with learning rate 2e−4, we
fine-tune the model with learning rate 2e−5 for 20 more
epochs. The dimension of private latent space is 3 for both
image and caption while the shared latent space has 64 di-
mension. Both λimage and λcaption are set as 1. In the
caption modality, we use the BERT [1] tokenizer and the
BERT base model, pre-trained on the uncased book corpus
and English Wikipedia datasets in order to extract the se-
quence of the word embedding of 768d, which is fed to our
caption network as an input. The maximum length of the
sequence is 30 and sequence whose length is less than 30 is

padded by zeros. In the image modality, we resize images
into 224× 224 and adopt image augmentation of horizontal
flipping with probability 0.5.

3. Reconstruction Inference
In the main paper, Figure 4, we cross-synthesize MNIST

and SVHN images from the opposite modality assuming
the reconstruction inference setting (Sec. 4.2, Main pa-
per), where the missing input image modality was replaced
by sampling from zp,MNIST ∼ N (0, 1) or zp,SV HN ∼
N (0, 1). Here, we consider a more complete set of recon-
struction experiments. Specifically, we consider the six re-
construction instances illustrated in Fig. 1.

The first instance, Fig. 1a corresponds to traditional
”style transfer” experiments, where the ”style” (private
space) of x1 is used to map onto the ”content” determined
by x2. This can mean that x1 could be an MNIST image of
digit ’1’, while x2 is the SVHN image of digit ’2’. The task
would be to create a synthetic MNIST image of digit ’2’ in
the style of digit ’1’. The second instance, in Fig. 1b, is
that where there is no conditioning modality x1, hence the
”style” of x1 is sampled from the prior. This corresponds to
the task of synthesizing any MNIST image of SVHN class.
Fig. 1c and Fig. 1d make the strong inference of zs with
both modalities using PoE [2]. The ”style” is reflected from
x1 in Fig. 1c while Fig. 1d randomly samples the private
latent factors from the prior. Fig. 1e corresponds to the in-
stance of traditional reconstruction of a data point, where
both style and digit information comes from x1. The style
of this reconstruction also can be varied by private latent
codes from the prior distribution as in Fig. 1f.

4. Additional Experimental Results
In this section we present additional experimental results

on MNIST, SVHN and the Flower dataset. Sec. 4.1 fo-
cuses on studying the two image modalities of MNIST and
SVHN. Sec. 4.2 studies the image and text modalities with
the Oxford-102 Flowers dataset.
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Table 1: Neural Network of each dataset modality. Zp,MNIST , Zp,SV HN , Zp,I , and Zp,C indicate the latent dimension of
the private space of MNIST, SVHN, the Oxford-102 Flowers Image, and the Oxford-102 Flowers Caption respectively while
Zs is the latent dimension of the shared space.

Encoder Decoder

Input: Image (1×28×28) Input: Latents (Zp,MNIST + Zs)
Linear 784 × 256 Linear (Zp,MNIST + Zs) × 256
ReLU ReLU
Linear 256 × (Zp,MNIST + Zs) Linear 256 × 784

Sigmoid
(a) MNIST network

Encoder Decoder

Input: Image (3×32×32) Input: Latents (Zp,SV HN + Zs)
32 Conv 4 × 4, stride 2, pad 1 Linear (Zp,SV HN + Zs) × (256×2×2)
ReLU ReLU
64 Conv 4 × 4, stride 2, pad 1 256 Conv 4 × 4, stride 2, pad 1
ReLU ReLU
128 Conv 4 × 4, stride 2, pad 1 128 Conv 4 × 4, stride 2, pad 1
ReLU ReLU
256 Conv 4 × 4, stride 2, pad 1 64 Conv 4 × 4, stride 2, pad 1
ReLU ReLU
Linear (256×2×2) × 512 32 Conv 4 × 4, stride 2, pad 1
ReLU Sigmoid
Dropout 0.1
Linear 512 × (Zp,SV HN + Zs)

(b) SVHN network

Encoder Decoder

Input: Image (3×224×224) Input: Latents (Zp,I + Zs)
ResNet-101 Linear (Zp,I + Zs) × 2048
AvgPool2d 7 × 7 Sigmoid
Linear 2048 × (Zp,I + Zs)

(c) The Oxford-102 Flowers Image network

Encoder Decoder

Input: Caption embedding (768) from the BERT base model Input: Latents (Zp,C + Zs)
Bi-LSTM w. one hidden layer of 512d Linear (Zp,C + Zs) × 1024
Max pooling
Linear 1024 × (Zp,C + Zs)

(d) The Oxford-102 Flowers Caption network

4.1. Image-Image modality

In Sec. 4.1.1, we conduct further qualitative evaluation
on MNIST, SVHN based on the discussed reconditions in
Sec. 3. We also provide a quantitative view of these syn-
thesis results in Sec. 4.1.2. Finally, Sec. 4.1.3 demonstrates
the separation of private and shared latent space by investi-
gating the private latent space according to the digit identity

and input image in 2-D space.

4.1.1 Qualitative Evaluation

In Fig. 2 we depict the generated images of MNIST and
SVHN under various reconstruction scenarios, defined in
Fig. 1, beyond those in the main paper Figure 5. Fig. 2a
is the ground truth images of MNIST and SVHN which are
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(a) Cross-reconstruction with conditioning (b) Cross-reconstruction with missing modality

(c) PoE-reconstruction with conditioning (d) PoE-reconstruction with prior distribution

(e) Reconstruction (f) Reconstruction with prior distribution

Figure 1: ix instances of reconstruction of an image of MNIST or SVHN using the DMVAE model. Cross-reconstruction
with conditioning (a): both modalities x1, x2 are given; however, zs is assumed to be inferred only from x2, unlike the
complete model. This corresponds to the case of ”style transfer”, where zp1

(the style of x1) is ”injected” into the content
zs of x2. Cross-reconstruction with missing modality (b): depicts the reconstruction where the ”style” of x1 is not know,
hence, zpi is sampled from its prior p(zp), the standard normal distribution. PoE-reconstruction with conditioning (c):
both modalities x1, x2 are given; while zp1 is extracted only from x1, zs is assumed to be inferred from both x1 and x2
using PoE, which can enhance the shared latent code from both modalities. PoE-reconstruction with prior distribution
(d): both modalities x1, x2 are given; zp1

is sampled from the prior distribution to have a random style and zs is obtained
from both x1 and x2. Reconstruction (e): in this instance, we conduct traditional x1 to x̃1 reconstruction within a single
modality. Reconstruction with prior distribution (f): it gives variation on style of the traditional reconstruction by injecting
the private factor from the prior distribution.

used as conditioning images for the shared or private factors
in the following figures. Fig. 2b, Fig. 2c, Fig. 2d, and Fig. 2e
show the generated images of MNIST and SVHN where

each of three rows is reconstructed with the shared latent
code coming from self-modality, PoE (both of the modali-
ties), and cross-modality in order. In Fig. 2b and Fig. 2c,
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(a) Ground truth images

(b) Generated MNIST where zp inferred from (a)

(c) Generated SVHN where zp inferred from (a)

(d) Generated MNIST where zp sampled from N (0, I)

(e) Generated SVHN where zp sampled from N (0, I)

Figure 2: (a) Ground truth images of MNIST and SVHN. (b) ∼ (e) reconstructed images of MNIST and SVHN. In each of
(b) ∼ (e), the shared feature comes from self-modality, PoE (both of the modalities), and cross-modality in order. In (b) and
(c), each row corresponds to Fig. 1e, Fig. 1c, and Fig. 1a in order which means the private latent factors comes from the given
GT images in (a). In (d) and (e), each row corresponds to Fig. 1f, Fig. 1d, and Fig. 1b in order which means the private latent
factors comes from the prior distribution N (0, I).

each row corresponds to Fig. 1e, Fig. 1c, and Fig. 1a in or-
der, where the private latent code of each column is inferred
from the given GT images in Fig. 2c in order. We note that
the specific style from the conditioning image is well re-
flected in the generated image. In Fig. 2d and Fig. 2e, each
row corresponds to Fig. 1f, Fig. 1d, and Fig. 1b in order,
where the private latent factors are sampled from the prior
distribution N (0, I). Different columns use different pri-
vate factors from the prior distribution, however within one
column, the same private factor is used for all rows. Even
though the style is not specific, random sampling from the
prior distribution enables synthesis of realistic reconstruc-
tions with identifiable digits.

4.1.2 Quantitative Evaluation of Synthesized Images

In Tab. 2, we assess the quality of reconstructions in Fig. 2.
The quality of reconstruction is evaluated by computing the
prediction accuracy of the digit identity using a separately
trained CNN classifier, as described in the main paper.
Tab. 2a shows the accuracy of reconstructions in Fig. 2b and
Fig. 2c where private latent codes are conditioned on GT
images in Fig. 2a. Tab. 2b accuracy corresponds to Fig. 2d

Table 2: Classification accuracy of the generated output
conditioning on different shared latent code; self-modality,
both modalities (PoE), or cross-modality. (a): accuracy cor-
responds to Fig. 2b and Fig. 2c where private latent codes
are conditioned on GT images. (b): accuracy corresponds to
Fig. 2d and Fig. 2e where private latent codes are sampled
from the prior distribution p(z) = N (z|0, I).

Shared space conditioning Generated output
MNIST SVHN

Self-modality 95.37 81.49
Both modalities (PoE) 95.83 90.54
Cross-modality 84.16 90.04

(a) zp inferred from GT image

Shared space conditioning Generated output
MNIST SVHN

Self-modality 91.87 79.12
Both modalities (PoE) 92.53 88.63
Cross-modality 83.73 88.13

(b) zp sampled from N (0, I)
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