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Abstract

This paper provides a review of the NTIRE 2021 chal-

lenge targeting defocus deblurring using dual-pixel (DP)

data. The goal of this single-track challenge was to re-

duce spatially varying defocus blur present in images cap-

tured with a shallow depth of field. The images used in this

challenge were obtained using a DP sensor that provided a

pair of DP views per captured image. Submitted solutions

were evaluated using conventional signal processing met-

rics, namely peak signal-to-noise ratio (PSNR) and struc-

tural similarity index measure (SSIM). Out of 185 registered

participants, nine teams provided methods and competed in

the final stage. The paper describes the methods proposed

by the participating teams and their results. The winning

teams represent the state-of-the-art in terms of defocus de-

blurring using DP images.

1. Introduction

Defocus blur occurs in an image at scene points when the

light rays, traveling through the camera optics, converge ei-

ther before or after the imaging sensor. While the effect

of defocus blur can be intentional in photography (e.g., the

bokeh effect [13, 32]), for computer vision applications, de-

focus blur is often undesired and affects image quality due

to the loss of sharp image details. Recovering sharper de-
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tails from a defocus deblurred image is challenging [15] due

to the spatially varying nature of blur shape and size because

of optical aberrations across scene depth [30].

Recently, Abuolaim et al. [1] demonstrated the advan-

tage of utilizing dual-pixel (DP) data to reduce defocus

blur. The DP sensor was designed by Canon to assist

phase-difference autofocus mechanism used in many mod-

ern cameras. In particular, the DP sensor is constructed

with two photodiodes at each pixel location. When cap-

turing an image, the two photodiodes allow the capture of

two sub-aperture views of the same scene in a single cap-

ture. The DP views have a difference in phase that is cor-

related to the amount of defocus blur. When a DP sensor

is coupled with an adjustable lens, an autofocus algorithm

can quickly correct the lens position to minimize the phase

difference between the DP views and bring scene content

into focus. While intended for camera autofocus [2], DP

data was found to be useful for other computer vision ap-

plications e.g., depth map estimation [10, 26, 41], synthetic

bokeh [32], and defocus deblurring [1].

This challenge is one of the NTIRE 2021 associated

challenges: nonhomogeneous dehazing [4], defocus deblur-

ring using dual-pixel [3], depth guided image relighting [8],

image deblurring [22], multi-modal aerial view imagery

classification [17], learning the super-resolution space [20],

quality enhancement of heavily compressed videos [37],

video super-resolution [29], perceptual image quality as-

sessment [11], burst super-resolution [5], high dynamic

range [24]. This single-track challenge solicited algorithms

that can reduce defocus blur using DP data. The challenge,

dataset, submitted solutions, and the results based on PSNR

and SSIM are described in the subsequent sections.
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2. The Challenge

The NTIRE 2021 challenge on defocus deblurring using

DP images is aimed to gauge and advance the state-of-the-

art in reducing defocus blur. This challenge aims to evaluate

the performance of the proposed defocus-deblurring meth-

ods on a newly captured DP dataset. The following provides

a detailed description of the DP datasets used, the evaluation

procedure and metrics, and the challenge timeline.

2.1. Datasets

The dataset used in this challenge consists of images

carefully captured on a tripod with the aperture adjusted

between image captures. Two images are captured for the

same static scene in succession; the first is a wide-aperture

image captured using f/4 and exhibits notable defocus blur,

while the second is captured with a narrow aperture (i.e.,

f/22) and exhibits a wide depth of field with almost no de-

focus blur. The narrow aperture image serves as the ground

truth sharp image.

The training data used for this challenge consists of the

500 indoor/outdoor scenes from the DP defocus deblurring

dataset1 [1]. In addition to this dataset, we captured a new

100 indoor/outdoor scenes divided equally for the valida-

tion and testing data. The challenge provides 600 scenes

in total (i.e., 1800 images) where each scene has: (i) the

two DP sub-aperture views of an image with defocus blur

captured at a large aperture; and (ii) the corresponding all-

in-focus image captured with a small aperture.

The dataset images are high-quality as they are captured

with low ISO (i.e., low ISO equates to low-noise [25]) and

have a 1, 680 × 1, 120 spatial resolution. These images,

including the left/right DP views, are processed to an sRGB

color space and encoded with a lossless 12-bit depth per

RGB channel.

2.2. Evaluation

The evaluation compares the recovered sharp (i.e., de-

blurred) images with the ground-truth images. For this

comparison, we use the standard peak signal-to-noise ra-

tio (PSNR) and the structural similarity (SSIM) index [34]

as often employed in the literature. We report the average

results over all the estimated test images provided.

Challenge participants were asked to provide the esti-

mated deblurred images with the same resolution as the in-

put and using the specified naming convention. Participants

were also asked to provide additional information, for ex-

ample, the algorithm’s runtime per test image (in seconds);

whether the algorithm employs CPU or GPU at runtime,

and whether extra metadata is used as inputs to the algo-

rithm.

1https://www.eecs.yorku.ca/˜abuolaim/eccv_2020_

dp_defocus_deblurring/

Figure 1. Network architecture of multi-refinement network for

dual-pixel images defocus deblurring (MRNet).

At the final stage of the challenge, the participants were

asked to submit fact sheets to provide information about the

teams and describe their methods. In addition to the fact

sheets, the output results, codes and trained models were

also submitted.

2.3. Timeline

The challenge timeline had two stages – validation and

testing. The validation stage commenced on January 6,

2021, and lasted for approximately 10 weeks. The final

testing stage started on March 15, 2021, and lasted for 5

days. Each participant was allowed 20 submissions during

the validation stage and three submissions for the testing

phase. The challenge ended on March 20, 2021. The final

test results were shared with the participants on March 26,

2021.

3. Proposed Methods

This section reviews the details of the proposed methods,

where the description of each method is provided by the

team members.

3.1. SRC­B Team

The SRC-B team proposed the MRNet: Multi-

Refinement Network for Dual-pixel Images Defocus De-

blurring, as shown in Fig. 1. The proposed DP images de-

focus deblurring neural network is mainly composed of 4

modules: feature extraction module, fusion module, recon-

struction module and upsampling module.

The feature extraction module mainly uses Siamese net-

work [14] to extract features of left and right input images,

in which the Siamese network is the weight sharing. The

original letf and right images are downsampled 16 times for

aligning in the spatial position that cause by the position

deviation of the left and right sensors. Downsampling will

lose a lot of detailed information, so then upsample the fea-

tures by 4 times. On the one hand, it protects more detailed

information of the input features, and on the other hand, it

can speed up the network.

We use a simple way to fuse the left and right features ex-

tracted by the feature extraction module. We use the CON-

CAT operation to concatenate left and right features in the
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Figure 2. Residual Group Module. RBM: is the a single residual

block module.

Figure 3. Multi-scale Residual Group Module.

Figure 4. Reconstruction Module.

channel dimension. Then, the convolved kernel with size 1

is used to reduce its dimension to get the fused features.

MMDM [19] verified the effectiveness of the proposed

feature extraction and reconstruction module (FERM) in the

NTIRE 2020 Challenge on the Image Demoireing track. In-

spired by MMDM, we proposed Residual Block Module

(RBM) as the basic module of the reconstructed module.

RBM adopts the same configuration as MMDM, which con-

sists of 10 residual modules and a global residual connec-

tion. And like MMDM, we don’t use Channel Attention

(CA) module. CA module will increase the inference and

training time of the model, but the benefit is very small.

MMDM uses 20 RBM modules and many 3x3 convolution

modules to form FERM module, while we only use 5 RBM

modules to form RGM module to accelerate the training and

inference speed of the network. RBM and RGM are shown

in Fig. 2. To process the various frequency components in

the moire patterns, MMDM proposes a multi-scale feature

encoding module (MSFE) that processes images at different

scales. The MSFE has 3 simple versions of FERM with up

and downsampling layers for different scales. We also pro-

posed the Multi-scale Residual Group Module (MSRGM)

to fuse features of different scales to improve the model’s

expressive ability. But in the training phase, we use a patch

Figure 5. Supervised attention module (SAM).

Figure 6. MRNet-SAM.

size of 512x512, and the feature dimension entered in the

reconstruction module is 128x128. 8 times downsampling

operation will result in very small feature size, which will

lose a lot of detail information. Therefore, we use the mod-

ule shown in the Fig. 3. to extract multi-scale features.

The reconstruction module (RM) is composed of multiple

MSRGM modules, as shown in the Fig. 4. The RM, RGM,

and RBM modules all add global residual connections. The

idea is that each block is a refinement of the previous fea-

ture. Especially in RM, we fuse the multi-scale features and

refine them in the next MSRGM.

Refinement is the core idea of their method. In MRNET,

we use MSRGM to fuse and refine the features from dif-

ferent scales. Inspired by MPRNet(CVPR2021) [39], we

improve MRNet and propose a cross-stage progressive neu-

ral network based on supervised attention module (SAM),

which we named MRNet-SAM. MRNet-SAM is shown in

Fig. 6. MPRNet introduced a supervised attention mod-

ule (SAM) between every two stages, facilitating signifi-

cant performance gain. We modified SAM to make it more

suitable for the task due to the different sizes between in-

put and output features. SAM is shown in Fig. 5. We di-

vide the reconstruction module in MRNet into two parts as

the reconstruction module 1 and reconstruction module 2

in MRNet-SAM, and add the SAM module to obtain better

performance. At the same time, we replace the convolution

with stride 2 in the MSRGM with the DownPixelShuffle op-

eration. Compared with convolution with stride 2 methods,

DownPixelShuffle can preserve the information and reduce
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the parameters.

3.2. TeamInception Team

The TeamInception team presents a Multi-Stage Progres-

sive Image Restoration MPRNet that is recently introduced

in [39]. As illustrated in Fig. 7, MPRNet consists of three

stages to progressively restore images. The first two stages

are based on encoder-decoder subnetworks that learn the

broad contextual information due to large receptive fields.

Since defocus deblurring is a position-sensitive task (which

requires pixel-to-pixel correspondence from the input to

output), the last stage employs a subnetwork, named OR-

RNets, that operates on the original input image resolution

(without any downsampling operation), thereby preserving

the desired fine texture in the final output image. ORSNet

contains multiple original resolution blocks (ORBs). ORB

is shown in Fig. 8.

Instead of simply cascading multiple stages, we incor-

porate a supervised attention module (SAM) between every

two stages. The schematic diagram of SAM is shown in

Fig. 5. Our model rescales the feature maps of the previous

stage with the supervision of ground-truth images before

passing them to the next stage. Furthermore, we introduce a

cross-stage feature fusion mechanism where the intermedi-

ate multi-scale contextualized features of the earlier subnet-

work help consolidate the latter subnetwork’s intermediate

features.

Although MPRNet stacks multiple stages, each stage has

access to the input image. We adapt the multi-patch hi-

erarchy on the input image and split the image into non-

overlapping patches: four for stage-1, two for stage-2, and

the original image for the last stage, as shown in Fig. 7. Fur-

thermore, the restored image at each stage is concatenated

to the next stage. For more architectural details, we refer

the interested readers to [39].

Loss Function. To optimized the proposed network, we

use the following loss function.

Lf = αL1(ŷ,y) + βLMS-SSIM(ŷ,y) + γLVGG(ŷ,y) (1)

The first term (L1 loss) and second term (multi-scale

structural similarity measure) compute differences between

the network’s output and the ground truth directly at the

pixel level. The last term of the loss function compares the

deep feature representations of the output and ground-truth

images extracted with the VGG network pre-trained on the

ImageNet dataset [28]. In Fig. 7 we show the framework of

our MPRNet.

LV GG(ŷ,y) =
1

N
‖ φ(ŷ)− φ(y) ‖22, (2)

where N denotes the total number of pixels in the image.

In our experiments we use conv2 layer after ReLU of the

VGG-16 network.

Figure 7. TeamInception team. The proposed multi-stage ar-

chitecture for progressive image restoration (MPRNet). Earlier

stages employ encoder-decoders to extract multi-scale contextual-

ized features, while the last stage operates at the original image

resolution to generate spatially accurate outputs. A supervised

attention module (SAM) is added between every two stages that

learns to refine features of one stage before passing them to the

next stage. Dotted pink arrows represent the cross-stage feature

fusion mechanism.

Figure 8. Illustration of the original resolution block (ORB) in our

ORSNet subnetwork. Each ORB contains multiple channel atten-

tion blocks (CABs). GAP represents global average pooling.

3.3. Mier Team

The Mier team proposed a Big UNet for image restora-

tion based on both MWCNN [18] and RCAN [40]. They

replaced the convolutional layer in MWCNN with the resid-

ual group (RG, without channel attention layer) in RCAN

to enhance the reconstruction ability of the network. In or-

der to further expand the receptive field, they also added a

multi-scale dilate block (MDB [42]) to the network. The

network structure is shown in the Fig. 9.

3.4. VIDAR Team

The VIDAR team propose a multi-scale parallax atten-

tion network with a two-stage structure as shown in Fig. 10.

In stage 1, we adopt a multi-scale feature extractor to ex-

tract discriminative features for the following processes.

Then, we design a multi-scale parallax attention module

to fully exploit the correlation of DP images at differ-

ent scales. Specifically, inspired by [33], we modify the
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Figure 9. The Big UNet architecture proposed by the Mier team
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Figure 10. The multi-scale parallax attention network proposed by

the VIDAR team. Il and Ir are the defocus blurred left and right

images. Is1 and Is2 are the results of stage 1 and stage 2, respec-

tively. F l, F r , F l

out and F r

out are the input left feature, the input

right feature, the output left feature and the output right feature of

the multi-scale parallax attention module. Mr→l and M l→r are

parallax attention maps generated by the parallax attention mod-

ule.

parallax-attention mechanism with a pyramid structure to

fully exploit the parallax information and stereo correspon-

dence from DP images with enlarged receptive fields. This

module can generate stereo-symmetric features and aggre-

gate the information from DP data. Finally, we use 20 resid-

ual channel attention blocks [40] as the reconstruction back-

bone. In stage 2, the output of stage 1 and the original input

DP images are fed into a convolution layer and 10 progres-

sive feature fusion blocks [38]. Then, the fused features are

fed into 20 residual channel attention blocks to generate the

high-quality image.

3.5. Attention Team

The Attention team proposed an algorithm to exploit the

properties of each pixel and each channel of the input im-

ages to generate the non-blurred output image as shown in

Fig. 11. We designed a network architecture that is an Unet-

liked with dual-attention modules, which are employed in

every down-scaling level. Furthermore, the model also con-

tains the global non-local modules, which ensure to make

the network intentionally learns the local patterns without

losing the global image structures, which makes the output

images to be closer to the real human visual system.

Attention Encoder. The attention encoder is shown in

Fig. 12. Our encoder takes the advantages of the dual-

attention modules [9] where the sigmoid function is em-

ployed in both channel-wise and pixel-wise, which helps

the encoder to learn the useful information from both input

images. Our attention encoder modules take the output of

the previous module; the dual-attention module will selec-

tively select the channel as well as the pixel to encode and

move to the next module. The sigmoid function ensures

that the useful information will be passed through while the

others will be discarded.

Triplet Local. Since it is beneficial to learn the feature in

different local levels, we designed the triplet local mod-

ules, which uses different kernel sizes. Different kinds of

details can be learned from different receptive fields. The

small kernel size devoted to extracting local features and

the larger kernel size can cover more extensive regions of

the receiving layers.

Global Non-Local We calculate the non-local information

in the feature domain by firstly using adaptive pooling to

7×7 features in the global non-local module; then the global

non-local will selectively select the region to be fused. Note

that the information of the output of this module covers the

information of the entire input. The output is then adap-

tively upsampled to the output size of the triplet local.

3.6. Maradona Team

Maradona Team follow Nah’s contribution [21]. It is a

two-scale network (see Fig. 13). We use 28 Resblocks[12]

in the low-resolution branch and 35 Dilation blocks [6, 42]

in the high-resolution branch. The low-resolution result is

up-sampled to the higher resolution that concats the original

blurred dual images on the channel.

3.7. AIIA Team

The AIIA team proposed a Multi-Branch Convolution

Neural Network for Dual-Pixel Image Deblurring. The

main network architecture is a set of autoencoders with an
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Figure 11. Attention team proposed architecture. We redesign the

original encoder by adding the Dual-Attention Module on top of

it. This ensures the encoders extract useful information wisely at

every pixel location as well as channel position.

Figure 12. Attention team. Dual Attention Module consists of two

parallel sub-modules, which help the encoder decide the level of

contribution for each pixel and each channel of the input feature.

Figure 13. An overview of Maradona team proposed method.

assignment module. To train the model, a patch filter is

used to convert 1680 × 1120 size images to 512 × 512
size patches. The model is optimized using the Adam op-

timizer to minimize the MSE loss. The initial learning rate

is 2 × 105. AIIA team proposed a novel multi-branch net-

work with an assignment module to assign different branch

networks to different pixels for DP image deblurring.

Figure 14. Overview of our model. Each encoder layer (EncLayer

i, where i ∈ {1, 2, 3, 4}) and decoder layer (DecLayer i) con-

sists of two convolution layers. 1/2 and ×2 represent maxpooling

which halve the feature size and nearest upsampling which double

feature size, respectively. Both “Bottleneck” and “RecoverNet”

are simple networks which contain two convolution layers.

3.8. DDDP Team

Inspired by [1], the proposed method takes an encoder-

decoder fashion, which consists of four parts: 1) Encoder;

2) Decoder; 3) Bottleneck; 4) RecoverNet, as shown in Fig-

ure 14. We also develop a novel data augmentation method

to impose a model to learn spatial relations.

We also treat the ground truth as left patches and right

patches in addition to the original data. By introducing this

data augmentation technique, we can easily double the data

scale and interpret a model as a spatial relation learner.

We adopt a loss function which is the weighted sum of

MSE loss and SSIM loss. By denoting the output of the pro-

posed method and the ground-truth as O and Y, respectively,

the total loss can be formulated as:

Loss = λ1 · MSE(O, Y ) + λ2(1− SSIM(O, Y )) (3)

where λ1 and λ2 are the weight of MSE loss and SSIM loss,

respectively.

3.9. ImageLab Team

The ImageLab team proposed network has two parallel

encoders and a decoder as shown in Fig 15. The Input Im-

age Ia and Input Image Ib are being passed into each Du-

alVisionNet encoder. Encoder block has the convolution

layer with a 3x3 filter followed by two Densely Connected

Recurrent Residual block [7], and the end of the block max-

pooling layer is added. Two encoder outputs are concate-

nated and passed to the convolutional block attention mod-

ule (CBAM) [36] attention layer. The decoder uses the

same block as an encoder, but the max-pooling layers are

replaced with the upsampling layers. Output features of

encoder blockx, encoder blocky are concatenated with the

decoderX upsampled features . In this network, the en-

coder acts as a fusion network that helps us find the pair of
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Table 1. Results and rankings by team of the submitted methods for NTIRE 2021 defocus deblurring challenge. MS-SSIM [35]: multi-scale

structural similarity loss. The runtime of s/Mpixel is calculated based on the runtime of a single test image of size 1680× 1120× 3 pixels

(i.e., 5.6448 Mpixel).

Team Username PSNR SSIM Runtime

(s/Mpixel)

CPU/GPU

(at runtime)

Platform Ensemble Loss

SRCB SRCB-Z 27.80(1) 0.8484(1) 0.029(1) Tesla V100 PyTorch flip, multi-model

ensemble

Charbonnier

TeamInception swz30 27.48(2) 0.8387(3) 0.514(7) Tesla V100 PyTorch flip, rotate, self-

ensemble [31]

L1, VGG [28],

MS-SSIM [35]

Mier q935970314 27.13(3) 0.8408(2) 10.62(9) Tesla V100 PyTorch left/right swap,

self-

ensemble [31]

L1

VIDAR zyxiao 26.79(4) 0.8264(4) 0.046(3) Tesla V100 PyTorch flip, inverse

transform

Charbonnier,

SSIM

Attention buffalo 26.42(5) 0.8020(6) 0.097(5) Tesla V100 Tensorflow/Keras flip/rotate L2, SSIM

Maradona hellosr 26.38(6) 0.8017(7) 08.70(8) Tesla V100 PyTorch Geometric self-

ensemble×8 [16]

L1

AIIA huxingyu 26.15(7) 0.8021(5) 0.482(6) RTX 3090 PyTorch None L2

DDDP BaiXiaoying 25.17(8) 0.7620(8) 0.081(4) TITAN Xp PyTorch None L2, SSIM

ImageLab sabarinathan 24.85(9) 0.7390(9) 0.041(2) 1080 GTX Tensorflow/Keras None L2, SSIM,

Sobel

Figure 15. ImageLab team proposed model. A multi-level atten-

tion based efficient U-Net encoder decoder model

high frequency and low-frequency components from the Ia
and Ib. The Loss function is inspired by Multi-Level Hyper

Vision Net [23] model.

Loss = MSE + (1− SSIM) + SOBELloss

4. Results

Out of 185 registered participants, the challenge had nine

teams who continued to the final stage by submitting results,

codes/executables, and fact sheets. Tables 1 reports the fi-

nal test results based on PSNR and SSIM index [34]. The

overall method rank based on each metric is indicated in

subscripts. Additionally, the self-reported runtimes and ma-

jor details, provided in the fact sheets submitted by partici-

pants, are also reported in Tables 1. Fig 16 show a 2D visu-

alization of PSNR and SSIM values for all teams. The team

members along with affiliations are listed in Appendix A.

4.1. Core Idea

All of the proposed methods are based on deep learning.

Particularly, all methods employ different architectures of

deep convolutional neural networks (CNN). Most of pro-

posed architectures are based on widely used CNN-based

networks, such as Siamese network [14], U-Net [27] and

ResNet [12]. The core ideas included re-structuring ex-

isting networks, introducing skip connections, introducing

residual connections, and using densely connected compo-

nents. Other strategies have been utilized including super-

vised attention module (SAM) [39], residual channel at-

tention blocks [40], dual-attention modules [9], convolu-

tional block attention module (CBAM) [36], and dilation

blocks [6, 42].

As for loss functions, different types were employed

such as L1, L2, Charbonnier, SSIM, multi-scale SSIM [35]

(MSSSIM), VGG [28], and Sobel. Some teams used a sin-

gle loss, whereas others used a mix of loss functions (e.g.,

TeamInception utilized L1, VGG [28], and MSSSIM [35]).

4.2. Top Results

The SRCB team has achieved the best results for all

metrics, including the inference time (i.e., 0.029 s/Mpixel).
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Figure 16. A 2D visualization of the combined PSNR and SSIM

values of the proposed methods. Each team name is shown next to

the scattered star markers.

They are 0.32 dB higher compared to the second top team

i.e., TeamInception as reported in Table 1. In terms of

PSNR, the main performance metric used in the challenge,

the top three methods achieved larger than 27dB, and they

are from the teams of SRCB, TeamInception, and Mier,

respectively (see Fig. 16). In terms of SSIM, as a com-

plementary performance metric, the second-best method is

proposed by the Mier team and achieved a SSIM index of

0.8408, while the third-best SSIM index is TeamInception

team, i.e., 0.8387.

4.3. Ensembles

Most of the teams applied different flavors of ensem-

ble techniques to boost the overall performance. In par-

ticular, most teams used a self-ensemble [31] technique

where the results from flipped/rotated versions of the same

image are averaged together. Some teams applied addi-

tional techniques such as inverse transform, geometric self-

ensemble [16], and multi-model ensemble.

5. Conclusion

In this paper, we reviewed the methods submitted for the

NTIRE 2021 challenge for defocus deblurring using DP im-

ages with focus on the methods and their results. In par-

ticular, an evaluation of methods proposed by nine teams

is performed based on PSNR, SSIM, and inference time.

In addition to the DP deblurring dataset from [1], we pro-

vided a new DP-based deblurring dataset for further evalu-

ations. All the proposed methods are based on deep CNNs

and most of them utilized attention layers to boost perfor-

mance. The best performing method is proposed by the

SRCB team from Samsung research Beijing, China, where

they achieved the best results for all metrics.
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