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Abstract

Previous full-reference image quality assessment meth-

ods aim to evaluate the quality of images impaired by tra-

ditional distortions such as JPEG, white noise, Gaussian

blur, and so on. However, there is a lack of research mea-

suring the quality of images generated by various image

processing algorithms, including super-resolution, denois-

ing, restoration, etc. Motivated by the previous model that

predicts the distortion sensitivity maps, we use the DeepQA

as a baseline model on a challenge database that includes

various distortions. We have further improved the baseline

model by dividing it into three parts and modifying each: 1)

distortion encoding network, 2) sensitivity generation net-

work, and 3) score regression. Through rigorous experi-

ments, the proposed model achieves better prediction accu-

racy on the challenge database than other methods. Also,

the proposed method shows better visualization results com-

pared to the baseline model. We submitted our model in

NTIRE 2021 Perceptual Image Quality Assessment Chal-

lenge and won 12th in the main score.

1. Introduction

With the rapid increase of users in social media, it is es-

sential to build systems that quickly transmit a large number

of images to provide the best experiences to users. There-

fore, various compression algorithms are applied to raw im-

ages, while various distortions are added due to wireless

transmissions. Therefore, service engineers need to evalu-

ate the distortions in images to provide high-quality images

to users. When a person sees images, various operations are

applied during the transmissions of visual information from

the eyes to the brain. Accordingly, various image quality

assessment (IQA) methods [30, 44, 50] have been proposed

considering the human visual system (HVS) responses to

image impairment.

Also, as the generative adversarial network (GAN) is
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Figure 1. Examples of generated distortion sensitivity maps: (a)

represents a reference image; (b) represents an image distorted by

white noise; (c) represents a distortion sensitivity map generated

by Kim et al. [19]; (d) represents a sensitivity map generated by

the proposed models. In (c) and (d), darker regions mean higher

distortion sensitivity.

successfully applied to various image generation applica-

tions [10, 16, 52], there are more needs to objectively as-

sess the quality of images generated by GAN. In previous

works [9, 36], inception score (IS) and Frechet inception

distance (FID) are used to measure the quality and diver-

sity of generated images. However, these scores do not

match with human perceptions. In other words, high IS

and FID does not guarantee that the generative models can

make images with high perceptual quality. Therefore, some

researchers [17, 24, 46] benchmarked their generative mod-
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Figure 2. Overall framework of [19].

els using IQA metrics, such as SSIM [44] and NIQE [30].

However, these metrics are optimized to predict images dis-

torted by synthetic distortions (e.g. JPEG, Gaussian blur,

white noise, and so on), not the images distorted by gener-

ative models. Therefore, it is necessary to develop a model

that evaluates the quality of images generated by generative

models as well as synthetic distortions.

1.1. Limitations of DeepQA

Motivated by the work of Kim et al. [19], we use the

model of [19] as a baseline to predict the quality of images,

which is named as DeepQA. The baseline model generates

distortion sensitivity maps as intermediate results, visual-

izing which areas are more sensitive to distortions. The

model consists of three parts, as shown in Fig. 2: 1) dis-

tortion encoding network, 2) distortion sensitivity genera-

tion network, and 3) quality score regression network. In

[19], it achieves state-of-the-art performance in various im-

age quality assessment databases, but it has some limita-

tions.

First, because of down-sampling operations, the resolu-

tion of distortion sensitivity maps are 1/4 of distorted im-

ages, losing spatial information. Also, in the distortion en-

coding network, it uses two consecutive 3 × 3 convolution

layers, which means that the effective receptive fields are

5× 5. However, these receptive fields are not large enough

for predicting an image quality because humans tend to as-

sess images considering global and semantic information.

After measuring the quality score by multiplying distortion

sensitivity and spatial error maps, it passes fully connected

(FC) layers for regression. However, we empirically found

that these FC layers lower the performance.

To resolve these problems, we made some modifications

to improve the performance of the baseline model [19]:

• Instead of using down-sampling operations for predict-

ing distortion sensitivity maps, we use UNet structure

[34] to conserve the spatial information of input im-

ages.

• In the distortion encoding network, we add more con-

volution layers to enlarge the receptive fields.

• We directly predict an image quality instead of using

FC layers for regression.

The comparison between the baseline model and the pro-

posed model is depicted in Fig. 1. As shown in Fig. 1, the

white Gaussian noise is more sensitive in flat regions (sky

in the left top side and window in the bottom side), which

is well depicted in Fig. 1 (d). However, in Fig. 1 (c), the

distortion sensitivity map losses the detail information, and

it does not predict the high sensitivity in the sky region.

Also, the contributions are summarized as follows:

• By modifying the baseline model, we can get more

spatial information from distortion sensitivity maps

than the baseline model, resulting in performance im-

provements.

• We visualize the distortion sensitivity maps as inter-

mediate results, enabling us to analyze the results.

• The proposed IQA model achieves high performance

on a database with various distortion types, which is

challenging. (NTIRE 2021 Perceptual Image Quality

Assessment Challenge [12] : 12th in the main score)

The remainder of the paper is organized as follows. Sec-

tion 2 introduces previous works of sensitivity in human

perception and image quality assessment methods. Section

3 describes the overall flow of the proposed model. Section

4 shows rigorous experimental results, and conclusion are

given in Section 5

2. Related works

2.1. Human perception regarding sensitivity

Several researchers proposed computational models of

human visual sensitivity. Contrast sensitivity function

(CSF) represents the varying sensitivity of human eyes ac-

cording to the spatial frequency of images. According to the

CSF, which acts as a band-pass filter, humans are not sen-

sitive to signals which contains high or low frequencies [5].

Therefore, several studies are explaining that distortions are

less noticeable if strong contrast or texture exists, which is

called visual masking effects [5, 25].

Based on these observations, many IQA methods have

been proposed. For example, Wang et al. [44] proposed

a structural similarity index (SSIM) which assumed that

humans are sensitive to contrast and structural distortions.

Also, Zhang et al. [50] proposed feature similarity in-

dex (FSIM), assuming that phase congruency is crucial for

human perception. In addition, many no-reference image

quality assessment [29, 30, 31, 35] uses mean subtracted

contrast normalization as pre-processing, assuming that a

human primarily perceives structure information.
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Figure 3. The architecture of the proposed model. The model takes a reference image, a distorted image, and a spatial error map and

generates a distortion sensitivity map as an intermediate result. The sensitivity map is multiplied by the spatial error map, and the mean

value is regarded as the predicted quality score.

2.2. Image quality assessment

Previous IQA methods can be categorized into: full-

reference image quality assessment (FR-IQA) and no-

reference image quality assessment (NR-IQA). FR-IQA

methods use both references and distorted images to pre-

dict the quality scores of distorted images, while NR-IQA

methods evaluate the image qualities without references.

Most previously proposed FR-IQA methods were de-

veloped based on the measurement of perceptual distances

between distorted images and reference images [44, 50].

In the case of NR-IQA, researchers found different sta-

tistical characteristics between reference and distorted im-

ages, which is defined as natural scene statistics (NSS)

[29, 30, 31, 35]. Although these methods show comparable

performances, there are limitations that these hand-crafted

features do not fully represent the HVS which explains the

process of image perception.

Motivated by successful achievements in computer vi-

sion areas using convolutional neural networks (CNN) [13,

22, 41], many recent IQA studies apply CNN to extract fea-

tures in a data-driven way. Kang et al. [15] firstly used CNN

to predict the quality of images, applying a patch-based ap-

proach. Kim et al. [18] proposed a new approach for data

augmentation and train the CNN model in two stages: 1)

local quality prediction, 2) subjective score regression. Lin

et al. [26] used GAN to recover pseudo-reference images

from distorted images and predict the quality of distorted

images with the aid of pseudo-reference images. Su et al.

[40] proposed a hyper network which weights are decided

by the semantic information extracted from a pre-trained

ResNet [13] on the IMAGENET database [7].

3. Proposed framework

3.1. Model architecture

The overall flow of the proposed model h(·) is depicted

in Fig. 3. The model uses a reference image Xref , a dis-

torted image Xdis, and a spatial error map es, and it predicts

a quality score spred of the distorted image. The model is

trained end-to-end, and it generates a distortion sensitivity

map S as an intermediate output, which explains the dis-

tortion sensitivity in terms of human perception. The model

consists of three parts: 1) distortion encoding network E(·),



2) distortion sensitivity generation newtork V (·), and 3)

score regression R(·). The details of each part are explained

in Sections 3.1.1, 3.1.2, and 3.1.3.

3.1.1 Distortion encoding network

In the first part, feature maps containing distortion informa-

tion are extracted from a reference image Xref , a distorted

image Xdis, and a spatial error map es. In case of Xref and

Xdis, gray-scale images are used, and pixel values are nor-

malized to [0, 1]. Since the pixel differences between Xref

and Xdis yield many near-zero values, we use normalized

log difference for measuring es as in [19, 20]:

es =
log(1/((Xref −Xdis)

2
+ ǫ/2552))

log(2552/ǫ)
, (1)

where we use ǫ = 1 in our model. In [19], two consec-

utive 3 × 3 convolution layers are used to extract feature

maps. However, it means the model uses small receptive

fields (similar to 5 × 5 filters), which is not appropriate for

IQA because humans perceive an image quality considering

global regions of an image. Therefore, we use more con-

volution layers to exploit larger receptive fields to extract

distortion information. Furthermore, it leads to the repre-

sentation with non-linearity. In our model, each input is

individually fed into four consecutive 3×3 convolution lay-

ers (each layer has 32 filters), and the outputs are concate-

nated, producing 96-dimensional feature maps. And then,

1 × 1 convolution is applied to change the channel dimen-

sion from 96 to 128. Finally, the 128-dimensional feature

maps are extracted in the first part of our model.

3.1.2 Distortion sensitivity generation network

In the second part, a distortion sensitivity map S is gener-

ated from the 128-dimensional feature maps of the distor-

tion encoding layer E(·). In [19], the resolution of the dis-

tortion sensitivity map is 1/4 of the input image because of

down-sampling operations. Therefore, a model similar as

UNet [34] (V (·) in Fig. 3) is used for generating the distor-

tion sensitivity map. And then, 1× 1 convolution is applied

for channel conversion, yielding S.

3.1.3 Score regression

In the last part, an image quality score is predicted. At first,

the perceptual error map epercept is defined as

epercept = es ⊙ S, (2)

where ⊙ means the element-wise product. The predicted

quality score spred is the mean of perceptual error epercept:
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Figure 4. Histogram of PIPAL database (train phase) according to

normalized ground-truth scores.

spred =
1

He ·We

He∑

i=1

We∑

j=1

epercept(i, j) (3)

where He and We means the height and width of percep-

tual error map epercept, respectively.

In [19], fully connected (FC) layers are used for regres-

sion. However, in our models, the FC layers degrade the

performance, so we delete the FC layers, and spred is used

directly for the loss function.

The loss function of the proposed model is mean-square

error between the predicted quality score spred and subjec-

tive scores ssubj :

LMSE =
1

N

N∑

i=1

(spred,i − ssubj,i)
2

(4)

where N means the total number of distorted images.

Also, L2 regularization is used to avoid over-fitting. Fi-

nally, total loss function Ltotal is given as:

Ltotal = LMSE + λ · L2 (5)

where L2 is L2 regularization loss, and λ controls the

relative importance of the two loss terms.

3.2. Training method

To optimize the total loss function Ltotal, the adaptive

moment estimation optimizer (ADAM) [21] was used, and

we use the hyperparameter suggested in [21]. The learning

rate was initially set to 1 × 10−3, and it was multiplied by

0.8 for every 20 epochs. Also, the relative weight was set to

λ = 1× 10−5.

As shown in Fig. 4, most of the images in the PIPAL

database (train phase) are in the range of [0.4, 0.8]. There-

fore, the images outside of this range were oversampled to



Table 1. SRCC and PLCC Comparisons of IQA Models on the

PIPAL test dataset. Italics mean Deep Learning-Based Methods.

Type Method
PIPAL (test)

SRCC PLCC

NR

NIQE 0.0341 0.1317

Ma 0.1405 0.1469

PI 0.1036 0.1454

FR

PSNR 0.2493 0.2769

NQM 0.3645 0.3954

UQI 0.4195 0.4500

SSIM 0.3614 0.3936

MS-SSIM 0.4618 0.5007

IFC 0.4851 0.5549

VIF 0.3970 0.4795

VSNR 0.3682 0.4107

RFSIM 0.3037 0.3284

GSM 0.4094 0.4646

SRSIM 0.5728 0.6360

FSIM 0.5038 0.5709

FSIMc 0.5057 0.5727

VSI 0.4584 0.5169

MAD 0.5434 0.5804

LPIPS-Alex 0.5658 0.5711

LPIPS-VGG 0.5947 0.6331

PieAPP 0.6074 0.5974

WaDIQaM 0.5533 0.5408

DISTS 0.6548 0.6873

SWD 0.6243 0.6342

Proposed 0.6744 0.6535

Table 2. SRCC and PLCC Comparisons of IQA Models on the

PIPAL validation dataset.

Method
PIPAL (valid)

SRCC PLCC

DeepQA 0.6966 0.7129

DeepQA + modify 0.7529 0.7623

DeepQA + modify + aug (proposed) 0.7951 0.7854

relieve score imbalance problems. In addition, the horizon-

tal flip was also used for data augmentation. We did not use

other augmentation methods such as resizing, rotating and

cropping because these methods would change the quality

score of images.

The proposed model was implemented in the Pytorch

library on the Python 3.7 platform, using a single GPU

(Tesla V100-DGXS-32GB). Using these setups, the train-

ing and inference time on the database in Section 4.1 was

12.25min/epoch and 0.0184s/image, respectively.
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Figure 5. Scatter plot of normalized ground-truth score versus pre-

dicted scores. Each sample point represents one image.

4. Experimental results

4.1. Dataset

A dataset provided by NTIRE 2021 Perceptual Image

Quality Assessment challenge [12] was used to evaluate

the proposed algorithm: PIPAL [14]. The PIPAL database

contains 250 reference images and about 29,000 distorted

images impaired by 40 distortion types. These distortion

types are categorized into four sub-types: traditional, super-

resolution, denoising, and mixture restoration. Each image

size is 288×288, and the ground truth scores are given as

ELO rating scores. We normalized the score in the range

of [0, 1], where a value near 1 means high quality. The

database is divided into three phases: train, validation, and

test. Each phase contains 200, 25, 25 reference images, and

these phases also have distorted images according to their

references. In Sections 4.2 and 4.3, we trained our model

on the train phase and tested our model on validation and

test phases.

In the cross-dataset tests, we also used two well-known

datasets: LIVE [39] and TID2013 [32] databases. The

LIVE database consists of 29 reference images and 799 dis-

torted images, containing five types of distortions: JPEG,

JP2K, white noise, Gaussian blur, and fast-fading. The

TID2013 database contains 25 reference images and 3,000

distorted images impaired by 24 distortion types at five lev-

els of degradation. Since the ground-truth scores of the

LIVE database are given as differential mean opinion scores

(MOS), we normalize the differential MOS (DMOS) to

[0, 1] and converted to MOS (MOS = 1-DMOS).

4.2. Benchmark results

To compare the performances of the IQA algorithms,

two correlation coefficients between predicted scores and

ground-truths are employed: Spearman’s rank-order corre-

lation coefficient (SRCC) and Pearson’s linear correlation

coefficient (PLCC). These coefficients are ranged to [0, 1],



Table 3. Cross-Dataset Test Results on Various IQA Datasets

Test

PIPAL (train) LIVE TID2013

SRCC PLCC SRCC PLCC SRCC PLCC

Train

PIPAL (train) 0.9002 0.9001 0.9263 0.9211 0.5371 0.6264

LIVE 0.5051 0.5148 0.9807 0.9771 0.4496 0.5226

TID2013 0.5950 0.6263 0.6074 0.7113 0.7783 0.7932

and the value closer to 1 means higher performance.

Table 1 shows the performances of FR and NR-IQA

models on the PIPAL test dataset. We compared the pro-

posed model against FR-IQA models (PSNR [1], NQM [6],

UQI [43], SSIM [44], MS-SSIM [45], IFC [38], VIF [37],

VSNR [4], RFSIM [49], GSM [27], SRSIM [47], FSIM

[50], FSIMc [50], VSI [48], MAD [23], LPIPS-Alex [51],

LPIPS-VGG [51], PieAPP [33], WaDIQaM [3], DISTS [8],

SWD [11], and DeepQA [19]) and NR-IQA models (NIQE

[30], Ma [28], and PI [2]). The bold fonts indicate the

two top-performing models on the test dataset. Among the

FR/NR-IQA models, the deep learning-based methods gen-

erally showed superior performance compared to previous

hand-crafted methods. Also, the proposed model attained

the highest correlation with subjective scores on the test

dataset.

The scatter plot of normalized MOS versus output scores

by the proposed model is shown in Fig. 5. As shown in Fig.

5, the proposed model well predicts the quality scores of

distorted images, except for some outliers.

4.3. Ablation studies

In addition to performance comparisons, we also con-

ducted ablation tests for model modification and data aug-

mentation methods stated in Section 3. DeepQA [19] is the

baseline model, DeepQA+modify means that three types of

modifications (increasing convolution layers, using a UNet

structure, and removal of FC layers) in Section 3.1 are ap-

plied to DeepQA, and aug means the data augmentation

stated in Section 3.2. In other words, DeepQA+modify+aug

in Table 2 is same as proposed in Table 1, but they use dif-

ferent phase of the PIPAL database when evaluating perfor-

mances.

Compared to the performances of DeepQA and

DeepQA+modify in Table 2, three types of modifications

result performance improvements. Furthermore, compared

the results of DeepQA+modify and DeepQA+modify+aug,

data augmentation methods stated in Section 3.2 improves

the performance of the proposed model. Since the dis-

tribution of normalized ground-truth scores on the PIPAL

database is concentrated in a certain range, it causes score

imbalance problems, resulting in the performance degrada-

tion on images in which ground-truth scores are rare.

4.4. Crossdataset tests

To test the generalization ability of the proposed model,

we conducted cross-dataset tests. In these experiments, we

used the PIPAL, LIVE, and TID2013 databases. In Table

3, when train and test datasets are the same, we randomly

divided reference images of the dataset into train and test

sets (80% for training and 20% for testing) and divided dis-

torted images according to their references. Also, in the

PIPAL dataset, we only use the training phase because we

can get the ground-truth score in the training phase only.

As shown in Tabel 3, except when the proposed model

is trained on the PIPAL database, performances are the best

when the train and test datasets are the same, and the per-

formances degrade when the test dataset changes. It means

that the proposed model tends to learn the distortion proper-

ties in the train dataset, so the distortions that do not exist in

the train dataset degrade the performances. This tendency

is most evident in the LIVE database, including only five

types of distortions. When the proposed model is trained on

the PIPAL database, test performances on other databases

least degrade because the PIPAL database contains various

types of distortions.

4.5. Distortion sensitivity visualization

Following the training step stated in Section 3, the model

takes reference images Xref , distorted images Xref and

spatial error maps es as inputs, and the model generates

distortion sensitivity maps S as intermediate outputs. To

validate distortion sensitivity maps reflect the human per-

ception, model inputs (Xref , Xdis and es) and intermediate

outputs (S) are shown in Fig. 6. In Fig. 6, each column,

from left to right, represents reference images Xref , dis-

torted images Xref , spatial error maps es obtained by Eq. 1,

and the corresponding generated distortion sensitivity maps

S, respectively. In third and fourth column of Fig. 6, darker

regions indicate higher values, which means more spatial

error and higher distortion sensitivity, respectively.

Fig. 6 (b) is an output of a generative model for super-

resolution, named as ESRGAN [42]. In other words, Fig. 6

(a) is down-sampled (×4) using a bicubic method and up-

sampled to the original resolution using ESRGAN. Com-

paring Figs. 6 (a) and (b), repeated patterns are collapsed in

some parts of brick areas. While the spatial error map (Fig.

6 (c)) has similar values in all brick regions, the predicted
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Figure 6. Visualization results of generated distortion sensitivity maps. (a), (e), (i), and (m) are reference images, while the distorted

images are shown in (b), (f), (j), and (n). The spatial error maps of the distorted images are shown in (c), (g), (k), and (o), and the distortion

sensitivity maps of distorted images are shown in (d), (h), (l), and (p).

distortion sensitivity map (Fig. 6 (d)) correctly predicts high

distortion sensitivities where the patterns are destroyed.

In the second row of Fig. 6, a reference image is distorted

by compression algorithms where high frequency compo-

nents are suppressed. Interestingly, the corresponding dis-

tortion sensitivity map (Fig. 6 (h)) predicts that distortions

occur at regions around branches and a boat where many

details are deteriorated due to the compression.

In the third row, Fig. 6 (j) is impaired by blurring arti-

facts. As a result, people are more sensitive to distortions in

edge regions than in flat regions. Therefore, the proposed

model predicts that the distortion sensitivity of a book (in

the front area) is higher than those of arms, depicted in Fig.

6 (l).
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Figure 7. Comparisons of distortion sensitivity maps. (a) and (e) are reference images, while the distorted images are shown in (b) and (f).

The distortion sensitivity maps generated by the baseline model [19] are are shown in (c) and (g), and the distortion sensitivity maps of the

proposed model are shown in (d) and (h).

In the fourth row, Fig. 6 (n) is corrupted with white

noise. In this case, humans are more sensitive to distortion

in flat areas. As shown in Fig. 6 (p), the model appropri-

ately predicts high distortion sensitivities in a flat sky (on

the top left side) and window (on the bottom side) regions.

We also compared the distortion sensitivity maps of [19]

and those of the proposed model in Fig. 7. Since the origi-

nal resolution of Figs. 7 (c) and (g) is 1/4 of Figs. 7 (b) and

(f), we use bicubic up-sampling to make the size of Figs.

7 (c) and (g) same as Figs. 7 (d) and (h). In the third and

fourth column in Fig. 7, darker regions indicate higher er-

rors and distortion sensitivity, respectively.

According to the first row, an original image is distorted

by white Gaussian noise, and people are sensitive to noise

in flat regions. Therefore, people feel more distortions in

the bottom areas, which is also observed in Fig. 7 (d) while

Fig. 7 (c) is not. In the second row, a reference image is

distorted by edge-preserving smoothing algorithms. There-

fore, people feel more distortion in texture regions (bricks)

than in a flat region (a sky), as depicted in Fig. 7 (h).

In conclusion, the distortion sensitivity maps of the

proposed model well predict which areas are sensitive to

noise. In previous works, most of the FR-IQA models

[4, 6, 37, 43, 44] predict the quality of images using a dif-

ference between original and distorted images (in the third

column of Fig. 6). It is based on the belief that people

feel noise when errors are high. However, when comparing

Figs. 6 (o) and (p), it is not always true. In other words,

according to the visual masking effects [5, 25], some dis-

tortion is not visible to human eyes, as shown in Fig. 6 (p).

Therefore, we predict the distortion sensitivity in a data-

driven way with a triplet of inputs (reference/distorted im-

ages and spatial error maps). Finally, the proposed model

successfully predicts which regions are sensitive to impair-

ments.

5. Conclusion

We proposed a deep learning approach to the problem

of FR-IQA. Motivated by the work of [19], the proposed

model predicts the distortion sensitivity map, mimicking the

process of HVS. Through various experiments, we demon-

strated that the proposed model predicts the quality scores

of distorted images well, and generates distortion sensitiv-

ity maps that agree with human perception. In addition, as

compared to the benchmarks of [14], the proposed model

gets better results by resolving various problems in [19].

However, in the real world problem, reference images do

not usually exist, so we are going to study NR approaches

as future works.
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