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Abstract

We propose a novel framework to generate clean video

frames from a single motion-blurred image. While a broad

range of literature focuses on recovering a single image

from a blurred image, in this work, we tackle a more chal-

lenging task i.e. video restoration from a blurred image.

We formulate video restoration from a single blurred image

as an inverse problem by setting clean image sequence and

their respective motion as latent factors, and the blurred

image as an observation. Our framework is based on an

encoder-decoder structure with spatial transformer network

modules to restore a video sequence and its underlying mo-

tion in an end-to-end manner. We design a loss function and

regularizers with complementary properties to stabilize the

training and analyze variant models of the proposed net-

work. The effectiveness and transferability of our network

are highlighted through a large set of experiments on two

different types of datasets: camera rotation blurs generated

from panorama scenes and dynamic motion blurs in high

speed videos.

1. Introduction

Capturing an image is not an instant process; to capture

enough photons, the photosensitive elements of a camera

have to be exposed to light for a certain interval of time,

called exposure time. Therefore, during this interval if an

object is moving in the observed scene or the camera is un-

dergoing an arbitrary motion, the resulting image will con-

tain a blurring artifact known as motion blur. In general,

motion blur is an unwanted behaviour in vision applications

e.g. image editing [9], visual SLAM [16] and 3D recon-

struction [30], as it degrades the visual quality of images.

To cope with this type of artifact, image deblurring aims to

restore a sharp image from a blurred image. This problem

is known to be ill-posed since the blur kernel used for de-

convolution is generally assumed to be unknown.

Earlier studies assume a uniform-blur over the image to

simplify the estimation of the single deconvolution blur ker-

nel used to remove the blur [8, 5, 17]. Even though the

methods deploy deblurring tasks with uniform-blur assump-

tion, the assumption is often violated in practice. For in-

stance, when the blur is caused by out-of-plane camera ro-

tation, the blur pattern becomes spatially variant. More-

over, the problem is more complex when objects in a scene

are moving i.e. dynamic blur. While previous literature fo-

cuses on recovering a sharp image from a blurred image, we

tackle a more challenging task i.e. video restoration from a

blurred image.

Restoring the underlying image sequence of a blurred

image requires both contents and motion prediction. We

formulate video restoration from a blurred image as an

inverse problem where a clean sequence of images and

their motion as latent factors, and a blurred image as

an observation. Some of previous deblurring approaches

[10, 33, 29, 27, 24, 1] also estimate the underlying motion in

a blurred image, however, their goal remains in single frame

restoration. Recently Jin et al. [13] proposed to extract

video frames from a single motion-blurred image. Their

approach is close to image translation model without infer-

ring underlying motions between the latent frames. Purohit

et al. [26] addressed this issue by estimating pixel level

motion from a given blurred input. However, their model

is still prone to sequential error propagation as frames are

predicted in a sequential manner using a deblurred middle

frame. Our work differs from previous works in two as-

pects. First, we use a single network to restore the underly-

ing video frames from a single motion-blurred image in an

end-to-end manner while [13, 26] jointly optimize multiple

networks for the task. Second, our approach is not explic-

itly dependent on a deblurred middle frame in order to re-

store non-middle frames, and hence, is relatively robust to

sequential error propagation which occurs due to erroneous

middle frame.

In this paper, we propose a novel framework to gen-

erate a clean sequence of images from a single motion-

blurred image. Our framework is based on a single encoder-

decoder structure with Spatial Transformer Network mod-

ules (STN) and Local Warping layers (LW) to restore an

image sequence and its underlying motion. Specifically, a

single encoder is used to extract intermediate features which



are passed to multiple decoders with predicted motion from

STN and LW modules to generate a sequence of deblurred

images. We evaluate our model on two types of motion blur.

For rotation blur, which is caused by abrupt camera mo-

tion, we generated a synthetic dataset from panoramic im-

ages [11]. For dynamic blur caused by fast moving objects

in a scene, we used a high speed video dataset [20]. The

proposed model is evaluated on the panorama and the high

speed video datasets under various motion patterns. Both

the quantitative metrics and qualitative results highlight that

our method is more robust and performs favorably against

the competing approaches [13] We also provide comparison

with single image deblurring approaches on GoPro bench-

mark dataset [20] to evaluate the performance of the middle

frame prediction. For further investigation, we demonstrate

the transferability of our model by cross-dataset evaluation.

In short, our contributions are as follows. 1) We propose

a novel unified architecture to restore clean video frames

from a single motion-blurred image in an end-to-end man-

ner. 2) A simple yet effective mechanism is presented to

generate a realistic rotational blur dataset from panoramic

images 3) We carefully design loss terms for stable network

training and perform thorough experiments to analyze the

transferability and flexibility of the proposed architecture.

4) Our model quantitatively and qualitatively performs fa-

vorably against the competing approaches.

2. Related Works

Image deblurring. Image deblurring is an ill-posed in-

verse problem when a blur kernel is unknown i.e. blind

deconvolution problem, as different latent images can be

transformed to a blurred image depending on its blur kernel.

Early stage of deblurring studies [5, 8, 22, 19, 23, 4, 7, 32]

assume a single blur kernel that is applied to an image glob-

ally. The restoration of blur images is often modeled as a

maximization problem of probabilistic models [5, 8]. To

narrow down the ambiguity of the blur kernel estimation,

natural image priors [19, 22, 23, 32] are exploited. While

single blur kernel estimation approaches are effective when

blur kernels are shift-invariant, they fail when the blur is

not spatially uniform. To restore images affected by motion

blur from pure rotations, Dong et al. [7] use the geomet-

ric information of the camera motion as a prior to recover

the non-uniform blur model. Recently, deep network based

methods [20, 34] are proposed to handle general blur pat-

terns without the uniform blur assumption. Nah et al. pro-

pose multi-scale deep networks with multi-scale loss that

mimics coarse-to-fine approaches to restore sharp images

under non-uniform blurred images. Zhang et al. proposed

a spatially variant neural networks to learn spatially vari-

ant kernels. However, the approaches addressed here only

recover a single image while our goal is to recover the un-

derlying sequence of frames from a given blurred image.

Sequence restoration from a blurred image. Recently,

Jin et al. [13] proposed to extract a video sequence from a

single motion-blurred image using multiple deep networks.

They showed that deep networks can successfully generate

an image sequence from a blurred image, however there re-

mains a few limitations. Their proposed framework consists

of multiple networks of which each network is specialized

to predict a specific frame in a sequence. Each network is

trained separately and sequentially starting from the middle

frame and then adjacent frames taking previously predicted

frames as inputs. As a result, the non-middle frame predic-

tion heavily relies on previously predicted frames including

the middle frame itself, therefore when the middle frame

is erroneous the error propagates across frames. Purohit et

al. [26] proposed a two-step strategy to generate a video

from a motion-blurred image using three complementary

networks. They used video autoencoder to learn motion and

frame generation from clean frames as a pretraining phase.

Later, they introduced a motion disentangle network to ex-

tract motion from blurred image. They also used indepen-

dent deblurring network as their approach requires a clean

middle frame generated from a blurred image in advance.

Although their approach takes motion information into ac-

count, the approach generates frames sequentially starting

from the middle frame to adjacent frames which results in

error propagation just as in [13]. Unlike the previous works,

our approach runs in an end-to-end manner within a single

training stage without error propagation across frames.

3. Dataset

Collecting a large number of natural motion-blurred im-

ages is a daunting task. Hence, a common practice in com-

puter vision research is to generate blurry images by com-

bining a sequence of sharp images using various approaches

ranging from simple averaging [20, 13] to learnable meth-

ods [3]. The source of motion blur in an image can be gener-

alized into two main categories: rapid camera motion (cam-

era shake) and dynamic motion of objects in the scene. In

this section, we briefly explain how we generate a blurry

image dataset by considering each case individually.

Rotational blur (synthetic). In order to generate a rota-

tion blurred image dataset, we use the SUN360 panorama

dataset [11]. This dataset provides various panoramas with

360◦ field of view. Hence, a virtual camera can be mod-

eled to point at different orientations to represent the cam-

era rotation in SO(3). Given a panorama P of size H×W ,

we developed a simple yet effective framework to generate

blurred images. First, the panorama is projected onto a unit

sphere by linearly mapping each pixel coordinate (x, y) ∈
P into spherical coordinates (θ, φ) with θ ∈ (0, 2π) and

φ ∈ (−π/2, π/2). Then, a synthetic image can be cap-

tured via a virtual camera by re-projecting the 3D points on
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Figure 1: Rotational blur dataset generation. (a) input panorama image, (b) panorama projection on a unit sphere, (c)

intermediate frames between the initial and final images (d) blurred image obtained by averaging the captured frames.

the sphere into an image plane as briefly discussed in [18]

and [21]. Using this procedure we first capture an image

by positioning the virtual camera at an arbitrary orientation.

We call the image generated at this orientation initial image.

Then, we rotate the camera by a random rotation matrix

(with β = (βx, βy, βz) its Euler angle representation) and

capture a second image at the new camera position called

final image. We finally use a quaternion spherical linear

interpolation technique (Slerp) [6] to capture intermediate

frames between the initial and final images. All the result-

ing images (initial, final and intermediate frames) are then

averaged to generate a blurry image. The camera rotation

angle is uniformly sampled from [−10◦, 10◦]. In order to

generate a realistic blurred image, the number of interme-

diate images have to be adjusted automatically depending

upon the rotation magnitude between the initial and final

frames. Therefore, we use a simple linear relationship be-

tween the number of frames to be generated (n) and the

rotation magnitude as follows: n = c + 1
3‖β‖, where c

is a constant and ‖β‖ is the magnitude of β. In this man-

ner, we use 1000 panoramic images from which we generate

26, 000 training and 3, 200 test images of size 128×128px.

The dataset generation process is summarized in Fig. 1.

Dynamic motion (real). In order to generate more real-

istic and generic (arbitrary camera motions and dynamic

scene) blurred images, we take advantage of a GoPro high

speed video dataset [20]. This dataset provides 22 train-

ing and 11 test scenes, each scene containing frames of size

1280× 720px. A blurry image is generated by averaging n
consecutive frames [20, 13]. In our experiments, we fixed

n = 7 and generated 20, 000 training images by randomly

cropping images of size 256 × 256px. We also generated

2000 test images from the test videos by averaging 7 con-

secutive frames.

4. Method

Given a blurry image Ib synthesized from averaging n
latent frames, deblurring approaches predict the middle la-

tent frame Im. In this work, we restore the entire latent

frame sequence {Im−n
2
, . . . , Im−1, Im, Im+1, . . . , Im+n

2
},

where Im is the deblurred middle frame and {Ij}
m+n

2

j=m−n
2

where j �= m are the recovered non-middle latent frames.

The input blur is used as a motion cue to decode non-

middle latent frame features (with respect to the middle la-

tent frame) using transformer networks as shown in Fig. 2.

4.1. Middle latent frame

The middle latent frame Im is reconstructed using a U-

net [28] like network. The encoder contains five convolu-

tional blocks, each block containing two layers of convolu-

tions with spatial kernel size of 3 × 3 and stride size of 2

and 1, respectively. It outputs encoded features at different

feature levels as shown in Fig. 2a. The encoded features are

then decoded to predict the middle latent frame. The mid-

dle frame decoder network also contains five convolutional

blocks to upsample features and to predict images at differ-

ent scales. In each block, a feature is first upscaled using

a deconvolution layer of kernel size 4 × 4 and a stride size

of 2. The image predicted in the previous block is also up-

scaled in the same manner. The upsampled feature and its

respective image are then concatenated channel-wise with

the corresponding feature from the encoder (skip connec-

tion as shown in the Fig. 2a), then passed through five layers

of convolutions with dense connections to output a feature,

which will be used to predict an image at current block. In

this manner, features and images are successively upsam-

pled to predict a full scale middle frame. Along with the last

feature map from the decoder, the predicted image is finally

passed through a refining convolutional block. The purpose

of this network is to further refine the predicted frame with

contextual information by effectively enlarging the recep-

tive field size of the network.

4.2. Non-middle latent frame

The non-middle latent frames are reconstructed from

the encoded features via learned transformations by feature

transformer networks (FTN) and image transformer net-

works (ITN) as shown in Fig. 2b.
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Figure 2: Overview of our network. (a) The middle frame is predicted using an encoder-decoder structure. The non-middle

frames are reconstructed by transforming the multi-layer features of the middle frame. (b) Feature transformer network (FTN)

transforms features locally via local warping (LW) and globally via spatial transformer network (STN). Image transformer

network (ITN) transforms predicted middle frame via STN. Finally, the predicted frames are passed through a refining

network.

Feature transformer network. The feature transformer

network inputs an encoded feature and transforms it into

a non-middle latent feature in accordance with the learned

motion. It consists of spatial transformer network (STN)

[12] and local warping (LW) layer. The STNs learn to esti-

mate global transformation parameter θ[R|T ] from encoded

features of a motion-blurred input and transform them ac-

cordingly. In order to compensate for locally varying mo-

tions, we designed a local warping network. This network is

conditioned on the input feature like STN, however, instead

of predicting global transformation parameters, it predicts

pixel-wise displacement i.e. motion flow. Given an input

feature U ∈ R
H×W×C , the local warping network outputs

a motion flow of size H × W × 2. By warping the input

feature with the predicted motion flow, we obtain a locally

transformed feature which is concatenated with the globally

transformed feature as shown in Eq. (1).

U l
t = STNl(U l

e)⊕ LWl(U l
e), (1)

where l = {1, ... , k} is an index for k feature levels, Ue is

an encoded feature and Ut is a transformed feature.

Image transformer network. The middle frame decoder

predicts frames at different feature levels. To guide the re-

construction of the non-middle latent frames with respect

to the middle frame, we used STNs to spatially transform

the estimated middle frames according to the learned inter-

frame motion i.e. I lt = STN(I lm), where Im is the predcited

middle frame and It is the transformed image (see Fig. 2b).

FTNs decode non-middle latent features from encoded

features via learned local and non-local motions while ITNs

globally capture the motion of the non-middle latent frame

relative to the middle latent frame. The outputs of both net-

works are aggregated channel-wise and are passed through a

decoder to predict a non-middle frame (Fig. 2b). We also in-

put the encoded feature into the non-middle frame decoder

in order to guide the decoder to learn the spatial relation

between the middle and the non-middle frame as shown

Eq. (2).

I lp = Dl(U l
t ⊕ I lt ⊕ U l

e) (2)

where p = {m− n
2 , . . . ,m−1,m+1, . . . ,m+ n

2 } is an

index for non-middle latent frames and D is a non-middle

frame decoder.

Given ground truth non-middle frames during training,

our model learns the transformation parameters to be ap-

plied to the encoded features of a blurry input at different

scales in order to output the desired non-middle frames. The

fact that unique transformer networks are applied at each

feature and image scale gives the model a capacity to learn

various types of transformations, hence, making it robust to

different blur patterns including large blurs.



4.3. Loss functions

To ensure stable training and to restore clean latent frame

sequences in a temporally coherent manner, we carefully

designed the following loss functions,

Photometric loss. For sharp video frame reconstruction,

we trained our network with a weighted multi-scale pho-

tometric loss between the images predicted by the decoder

network and the ground truth image. A bilinear downsam-

pling is used to resize the ground truth image to the cor-

responding predicted frame size at different scales. Let

{ŷ}kl=1 denote a set of predicted images from the small-

est size (ŷ1) to the full scale (ŷk), and {y}kl=1 represent a

set of downsampled ground truth images where yk is a full

scale ground truth image. For training a model predicting

a sequence with n frames from a single blurry image, we

compute multi-scale photometric loss as follows,

Lmp =

n
∑

j=1

k
∑

l=1

wl ·
∣

∣yj,l − ŷj,l

∣

∣

1
(3)

where wl is the loss weight coefficient for feature level l
and j is an index for frame sequence.

Transformation consistency loss. We used individual

transformer networks at each feature level when predicting

non-middle frames. This augments our model with the ca-

pacity to learn transformations at different levels making

it robust to various blur patterns. However, we expect the

transformations at different scales to be aligned for suc-

cessfully reconstructing temporally consistent non-middle

frames. Especially at the initial stages of the training where

the transformer parameters are random, it is beneficial that

our model understands the relationship between the trans-

formations across different frame levels. In order to impose

this notion into our model and facilitate a smooth training,

we propose the transformation consistency loss. Let {θ}kl=1

be the set of predicted transformation parameters at differ-

ent scales. The transformation consistency loss for predict-

ing n− 1 non-middle frames can be defined as the term Ltc

in Eq. (4), where |.|2 is an ℓ2 loss between the transforma-

tion parameters.

Ltc =

n−1
∑

j=1

k
∑

l=2

∣

∣θj,l − θj,l−1

∣

∣

2
(4)

Penalty term. Predicting multiple frames from a single

blurry image can be problematic at times when the model

fails to learn any type of transformation and simply repli-

cates the middle frame predicition as non-middle frames.

In order to remedy this issue, we design a penalty term to

enforce symmetric diversity among generated images. This

is accomplished by explicitly maximizing the sum of abso-

lute difference (SAD) i.e. minimizing the negative SAD

between a predicted frame and its time-symmetric (about

the middle frame) ground truth frame. For example, when

predicting seven frames {I1, ..., I4, ...., I7}, we enforce the

predicted image I1 to be different content-wise from the

ground truth image I7 and vice versa. The penalty is im-

posed in a symmetric manner (as a matter of design choice

inspired by the network architecture) such that the model

learns to be sensitive to smaller transformations close to the

middle frame as well as larger transformations at the end

frames. Given a predicted frame ŷi and the corresponding

time-symmetric ground truth yn+1−i, the penalty term is

computed as the term Lp in Eq. (5), where m is the middle

frame index, n is the total number of frames.

Lp = −

n
∑

j=1,j �=m

∣

∣yn+1−j − ŷj
∣

∣

1
(5)

The final training loss function is defined as follows,

L = Lmp + λtcLtc + λpLp, (6)

where λtc and λp are weight coefficients for transformation

consistency loss and penalty term, respectively.

Temporal ambiguity and network training. The task at

hand has two main ambiguities. i. temporal shuffling and ii.

reverse ordering. As explained in section 3, motion-blur is

the result of an averaging process and, restoring temporally

consistent (no shuffling) sharp frame sequence from a given

motion-blurred input is a non-trivial task as the averaging

destroys the temporal order. Jin et al. [13] mentions that

photometric loss is not a sufficient constraint to make their

network converge. Hence, they propose a pair-wise order

invariant loss to train their network. Purohit et al. [26] also

uses the same loss function to fine-tune the recurrent video

decoder in their network.

We experimentally find that a multi-scale photometric

loss is a sufficient constraint to train our network. We fur-

ther impose more constraints using other loss terms to im-

prove performance (see Ablation studies). By design na-

ture, our model allows motions to be learned in a symmetric

manner (about the middle frame) with transformer networks

close to the middle frame decoding smaller motions and

those further from the middle frame decoding larger mo-

tions. This notion is enforced by symmetric constraint term

and transformation consistency loss during training. The

fact that our model is optimized in a joint manner allows

frames to be reconstructed in a motion-guided sequence.

Other than temporal shuffling, another issue is reverse

ordering. Given a single motion-blurred input, recover-

ing ground truth order is a highly ill-posed problem which

is intractable since reversely ordered frames result in the

same motion-blurred image. Neither our work nor previ-

ous works [13, 26] are capable of predicting the right or-

der. Hence, we evaluate frame reconstructions using both

ground truth order and its reverse order, then report the



Table 1: Quantitative evaluation on Panorama blur dataset

Methods Fi Fm Ff

PSNR Jin et al. 22.007 22.493 22.157

Ours 23.693 24.049 23.874

SSIM Jin et al. 0.572 0.621 0.589

Ours 0.699 0.716 0.704

higher metric in the experiment section. A recent work by

Argaw et al. [2] proposed an optical flow based approach

to reconstruct sharp frames in a temporally ordered manner,

however, their approach requires at least two blurry frames.

5. Experiment

Implementation details Our model is implemented using

PyTorch [25]. We chose Adam [14] as an optimizer with β1

and β2 fixed to 0.9 and 0.999, respectively. On our synthetic

blur dataset, we train the model using images of size 128×
128px and a mini-batch size of 8 to predict initial, middle

and final frames. A mini-batch size of 4 and input size of

256 × 256px is used to predict sequences of frames when

training on the high speed video dataset. In all experiments,

we train our model for 80 epochs. We set the learning rate

λ = 1e− 4 at the start of the training and decay it by half at

epochs 40 and 60. All the training images are cropped from

the original resolution images without resizing.

5.1. Video restoration results

In this section, we analyze the performance of our

model for sequential frame restoration qualitatively and

quantitatively on both camera shake blurs generated from

panoramic scenes and dynamic blurs obtained from high

speed videos.

Quantitative evaluation. We report test results using

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) metrics. To purely evaluate the quality of gener-

ated images without ordering estimation issue due to re-

verse ordering, we report the higher PSNR/SSIM metric

of either ground truth order or reverse order of frames i.e.

max{PSNR/SSIM(Fi → Ff ), PSNR/SSIM(Ff → Fi)},

where Fi, Fm and Ff refer to the initial, middle and final

frames in the restored sequence, respectively. We compared

our approach with previous works [13] on both rotational

and dynamic blur datasets as tabulated in Table 1 and Ta-

ble 2. On Panorama blur dataset, our model outperforms Jin

et al. by 1.65 dB on average. The middle and non-middle

frame accuracy are similar on average (see Table 1) mainly

because rotational blurs are static blurs with uniform cam-

era motion. Hence, it is relatively easier for the network

to infer the global motion and decode frames accordingly.

In contrast, the GoPro blur dataset, however, contains ar-

Table 2: Quantitative evaluation on GoPro blur dataset

Methods Fi Fm Ff

PSNR Jin et al. 23.713 29.473 23.681

Ours 27.357 31.989 27.414

SSIM Jin et al. 0.660 0.846 0.659

Ours 0.794 0.885 0.793

bitrary camera motions with dynamic scene and hence, de-

coding frames require inferring non-uniform global and lo-

cal motions between frames (with middle frame as a refer-

ence). Therefore, the network reliably performs for mid-

dle frame prediction and performs less for the end frames

due to randomness of motions (see Table 2). On GoPro

blur dataset, our model outperforms Jin et al. by 2.51 dB

on middle frame prediction and by 3.69 dB on non-middle

frame predictions. This highlights the advantage of adopt-

ing a motion-based approach to leverage blur as a motion

cue to decode latent frames rather than extracting frames

sequentially in a generic manner.

The performance gap between the middle frame and non-

middle frames is relatively larger in Jin et al. than our

method. This is due to sequential prediction in Jin et al.

which makes non-middle frame prediction heavily depen-

dent on the generated middle frame, resulting in error prop-

agation. As stated in [13], this limitation is particularly

problematic when a heavy blur affects the input image since

the middle frame prediction becomes less reliable. Our ap-

proach is relatively robust to heavy blur as the proposed

model generates frames independently from multiple de-

coders, therefore the error is not propagated (see Fig. 7).

We observed lower quantitative number in panorama sce-

nario compared to the high speed video for both Jin et al.

and our model. This is most likely because panorama GT

images are relatively sharper while high speed video con-

tains less sharp GT frames due to dynamic motion and short

exposure time.

Qualitative evaluation. The qualitative results for

panoramic scenes and high speed videos show that our

model can successfully restore multiple frames from a

blurred input under various blur patterns (see Fig. 3 and

Fig. 4). We compare our approach and previous method

[13] on relatively heavily blurred images from the high

speed video dataset. As can be seen from Fig. 4, our

method reconstructs contents consistently across frames

and restores visually sharper videos compared to [13].

We experimentally observed that failure cases occur for

temporally undersampled and severely blurred inputs (see

Fig. 5). The image contents of such inputs are usually

destroyed, and hence, the STNs [12] and the LW layers in

our network fail to learn the underlying motion from the

heavily blurred inputs i.e. feature decoding fails.
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Figure 3: Rotation blurred images generated from panorama scenes. The top row is ground truth frames and the bottom row

is restored frames from the blurs.

Input GT Jin et al. Ours Input GT Jin et al. Ours

Figure 4: Heavily blurred (dynamic) inputs from the high speed videos and the restored video frames. Click on the images

in Adobe Reader to play the videos.

5.2. Middle frame deblurring results

In addition to video restoration, we evaluate the per-

formance of our model on image deblurring task in com-

parison with state-of-the-art image deblurring approaches

[20, 15, 31] on a benchmark blur dataset provided by

[20]. The dataset provides 1111 test blurred images with

1280 × 720px resolution. We compared the middle frame

prediction (Fm) of our pretrained 7-frame prediction model

with state-of-the-art deblurring approaches and the results

are summarized in Table 3. As can be inferred from Ta-

ble 3, our video restoration model gives a competitive per-

formance on image deblurring task compared to state-of-

the-art deblurring approaches. The slight performance loss

can be attributed to the fact our model was trained on blur

dataset generated by averaging 7 frames while the bench-

mark dataset contains blurred images obtained by averaging

more than 7 sequential frames (larger blurs).

Table 3: Middle frame deblurring comparison with deblur-

ring approaches on benchmark GoPro blur dataset [20] on

PSNR metric.

Single image deblurring Video restoration

Nah et al. Kupyn et al. Tao et al. Jin et al. Ours

29.08 28.70 30.26 26.98 29.84

6. Analysis

Cross-dataset evaluation. We report a cross-dataset

panorama→high speed video evaluation to assess the gen-

eralization capability of our model. A model trained on the

Input Fi Fm Fffffffffffffffffff

Figure 5: Failure cases

panoramic scenes is evaluated on high speed video test set

(Table 4). Despite a performance degradation, our model

trained on the panorama dataset performs on par with the

competing approach [13] trained on the high speed video

dataset. The absence of dynamic motion on the panorama

dataset, which is apparent in high speed videos, can be one

contributing factor explaining the performance loss in ad-

dition to the domain gap e.g. image contents, sharpness,

blurriness.

Size of blur. We analyze our model for various blur sizes

by plotting the performance of the model with respect to

the camera rotation magnitudes of the blurred images in the

panorama test set. As can be inferred from Fig. 6, the model

performs better for smaller rotations and performance in

general decreases for large blurs.



Sequential error propagation. Previous works [13, 26]

are prone to error propagation as frames are reconstructed in

a sequential manner starting from the middle frame. Partic-

ularly, if the deblurred middle frame is erroneous, then, the

error propagates across the non-middle frames. Our work

is relatively robust to sequential error propagation since all

frames are predicted in a single-step without explicit middle

frame dependency, hence, error does not propagate. As can

be inferred from Fig. 7, for heavily blurred inputs, Jin et al.

predicts erroneous middle frame and hence, the predicted

non-middle frames are also erroneous. By contrast, our ap-

proach successfully recovers non-middle frames even when

the middle frame prediction fails.

Figure 6: PSNR value vs. camera rotation magnitude for

panorama test set

Table 4: Quantitative results for cross-dataset evaluation

Panorama→ high speed

Fi Fm Ff

PSNR 23.383 30.300 23.380

SSIM 0.649 0.832 0.651

7. Ablation studies

Network components. The STNs in the feature trans-

former network are the core part of our model for network

convergence. The addition of local warping (LW) layer also

significantly improves the performance of our model. The

best model performance is, yet, achieved with the all net-

work components (FTN and ITN) combined (Table 5). The

refining block improves performance by a margin of 0.43

dB on average.

Loss terms. As mentioned earlier, the multi-scale photo-

metric loss (PML) is a sufficient constraint to make our net-

work converge during training. We also experimentally find

that a model trained with transformation consistency loss

(TCL) not only converges faster with smoother behavior but

also gives a better performance during testing. The penalty

term (PT) gives a marginal performance improvement when
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Figure 7: Sequential error propagation

Table 5: Ablation studies on GoPro blur dataset for network

components and loss terms on PSNR metric.

Fi Fm Ff

FTN [STN] 25.86 31.20 25.78

Network FTN [STN ⊕ LW] 26.67 32.02 26.58

components FTN [STN] ⊕ ITN 26.06 31.78 26.05

FTN [STN ⊕ LW] ⊕ ITN 27.35 31.98 27.41

PML 25.98 30.77 25.97

Loss terms PML ⊕ TCL 27.08 31.78 27.12

PML ⊕ TCL ⊕ PT 27.35 31.98 27.41

predicting fewer frames as photometric loss is already a suf-

ficient constraint (see Table 5). In 3 frame prediction model,

the penalty term improved performance marginally around

0.25dB while in 7 frame prediction model, it improved ap-

proximately 0.6dB. Penalty term enforces the model to con-

sider subtle differences especially when the motion is small.

8. Conclusion

We present a novel unified architecture that restores

video frames from a single blurred image in an end-to-end

manner without motion supervision. We evaluate our model

on the two datasets with rotation blurs and dynamic blurs

and demonstrate qualitatively and quantitatively favorable

performance against the competing approach. The cross-

dataset evaluation demonstrates that our model can gener-

alize even when the training and test set have significantly

different blur patterns and domain gap. Unlike the previous

approaches, our model predicts frames in a single step with-

out middle frame dependency. It is advantageous not only

because it is simple to use but also robust to heavy blurs

where middle frame prediction often fails. Overall, the sim-

plicity and flexibility of our method makes it a promising

approach for future applications such as deblurring and tem-

poral super resolution.
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